Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 726
Filter
1.
Int Immunopharmacol ; 143(Pt 1): 113263, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39353391

ABSTRACT

OBJECTIVE: To investigate the effect of SO2 on Th1/Th2/Th17 cells in allergic rhinitis (AR) and the role of JAK1, 2/STAT3 signaling pathways.To Provide potential directions for the treatment of AR. METHODS: Fifteen AR patients were enrolled as the experimental group, while 15 healthy volunteers served as the normal control group. After collecting venous blood, peripheral blood mononuclear cells (PBMCs) were isolated and cultured, followed by the addition of SO2 derivatives and the JAK inhibitor Ruxolitinib. Flow cytometry was employed to assess alterations in the Th1/Th2 and Th17/Treg cell balance upon stimulation with SO2 and Ruxolitinib. qRT-PCR was utilized to detect the expression of Th1-related cytokines IL-2 and IFN-γ, Th2-related cytokines IL-4 and IL-5, Th17-related cytokines IL-17A and RORγt, as well as genes JAK1, JAK2, and STAT3. Flow cytometric cytokine analysis was conducted for quantitative assessment of the expression levels of inflammation-related cytokines in PBMC culture supernatants after stimulation. In addition, we stimulated the Jurkat T lymphocyte cell line with SO2 derivatives, added Ruxolitinib as an inhibitor, and used Western blot analysis to further determine the effects of SO2 on Th cells and the role of the JAK1,2/STAT3 signaling pathway in this process. RESULTS: Stimulation with SO2 derivatives upregulated the expression levels of Th2 cells and associated cytokines, as well as Th1 cells and associated cytokines. both AR patients and healthy individuals displayed increased percentages of Th17 cells and Th17/Treg ratios in PBMCs. The expression of IL-17A, RORγt, and IL-6 was also elevated. Under SO2 stimulation, the expression of JAK1, JAK2, STAT3, and RORγt in Jurkat cells increased. Moreover, after the application of Ruxolitinib, the JAK/STAT signaling pathway was inhibited. This led to a reduction in Th17 cells and IL-17A levels in both AR patients and healthy individuals, as well as a decrease in RORγt expression in Jurkat cells. Additionally, the expression of IL-5 decreased in healthy individuals. CONCLUSION: SO2 exposure exacerbated Th1/Th2/Th17 inflammation in AR patients and induced Th1 and Th17 inflammation in healthy individuals. The stimulatory effect of SO2 on Th17 cell differentiation could be inhibited by Ruxolitinib. This suggests that the Th17 inflammation induced by SO2 stimulation may be related to the activation of the JAK/STAT signaling pathway, and this has been confirmed in the Jurkat cell line.

2.
Chemosphere ; : 143512, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39389378

ABSTRACT

Sulfur dioxide (SO2), produced mainly from the combustion of coal, is the most important cause of acidic rain, skin diseases, and environmental issues. To overcome the environmental problems, SO2 must be captured on an industrial scale before it is released into the air. In chemical industries, organic solvents are used for partial absorption of SO2. However, those organic solvents have negative environmental effects. Thus, proposing environmentally friendly and green solvents for SO2 absorption is vital for industries. Recently, increased attention has been paid to capturing SO2 using Deep Eutectic Solvents (DESs) as the most recently introduced category of green solvents. This study performed a comprehensive screening study on the investigation of the performance of various simple and complicated models for SO2 solubilities in a wide range of different nature DESs. For this purpose, the most updated and largest SO2 solubility data bank in DESs involving 976 data points for 63 different nature DESs over wide temperature and pressure ranges has been gathered from open literature. For model screening, for the physical absorption models, the performances of SRK and CPA as the simple cubic and complicated sophisticated equations of state, NRTL and UNIQUAC as the well-known activity coefficient models, and for the chemical absorption models, RETM were investigated and compared. For physical absorption models, coupling an equation of state with the UNIQUAC activity coefficient model i.e. CPA-UNIQUAC, SRK-UNIQUAC, and also using simple SRK-SRK models led to the best performances. Compared to all investigated models, RETM as the chemical absorption model showed the best performance with the AARD% value of 12.95. This shows the importance of considering the chemical absorption mechanism for SO2 absorption by DESs. Finally, general guidelines for using different modeling approaches were proposed to be considered by the researchers.

3.
J Environ Manage ; 370: 122834, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39383759

ABSTRACT

As a key export-oriented economy, China faces significant challenges to its green economic development due to industrial pollution. While digital trade is crucial for sustainable development, its impact on industrial pollution has not been studied. This paper addresses this gap by adopting prefecture-level data from 2005 to 2021 and using a staggered difference-in-differences model to assess the impact of comprehensive pilot zones policy of cross-border e-commerce (CBEC) on industrial sulfur dioxide pollution. The findings indicate that CBEC significantly reduces industrial sulfur dioxide emission intensity, with the effect growing stronger over time. The effect is particularly notable in eastern and western regions, large cities, cities with underdeveloped digital infrastructure, and cities with lower pollution. Mechanism analysis reveals that CBEC lowers industrial emission intensity by driving structure upgrading, fostering green innovation, and advancing digital transformation. This paper emphasizes that the government can expedite the green transformation of the economy by integrating digital trade with industry.

4.
Food Chem ; 463(Pt 4): 141530, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39393114

ABSTRACT

Sulfur dioxide (SO2) is widely utilized as a preservative in food transportation and storage, but excessive consumption poses health risks. This study presents a novel and efficient method for the real-time detection of SO2 using a sensor named TK, synthesized from triphenylamine and 2-cyanomethyl-1-methyl-quinolinium. The core mechanism involves the Michael addition reaction of the CC bond in TK with SO2, which disrupts the intramolecular charge transfer process, resulting in a significant color change and a blue shift in fluorescence emission. Methodologically, the sensor's response was quantified by the change in fluorescence intensity ratio (I425/I647) within a SO2 concentration range of 0-180 µM. The sensor exhibited high sensitivity and selectivity. For practical application, TK was incorporated into hydrophilic polyvinyl alcohol to create a smart label capable of visual colorimetry and fluorescence analysis. SO2 concentration changes were monitored by using this label, demonstrated by the color transition from burgundy red to colorless, yielding a maximum color difference (ΔE) of 73.6. The smart label was successfully used to monitor the quality of various grapes and mangoes during long-term storage, providing a reliable, equipment-independent method suitable for household use. The study offers a new tool for enhancing food safety and mitigating health risks associated with SO2 exposure.

5.
Atmos Environ (1994) ; 3332024 Sep 15.
Article in English | MEDLINE | ID: mdl-39219580

ABSTRACT

BACKGROUND: Coal-fired power plants are major contributors of ambient sulfur dioxide (SO2) air pollution. Epidemiological literature suggests an adverse association between SO2 exposure during gestation and preterm birth (PTB; <37 weeks completed gestation). PTB is strongly associated with infant mortality and increased risk for later life morbidities. OBJECTIVE: We investigated associations between SO2 and PTB in North Carolina and evaluated whether the associations were modified by race/ethnicity. METHODS: We assembled a retrospective, administrative cohort of singleton births in North Carolina from 2003-2015. We used US EPA EQUATES data to assign long-term SO2 gestational exposures to eligible births for the entire pregnancy and by trimester. We used multivariable generalized linear regression to estimate risk differences (RD (95%CI)) per 1-ppb increase in SO2, adjusted for gestational parent education, Medicaid status, marital status, and season of conception. Multi-pollutant models were additionally adjusted for other criteria air co-pollutants (O3, PM2.5, NO2). RESULTS: The median SO2 (24-hour average) across exposure windows was ~1.5 (IQR: 1.8) ppb. The overall baseline risk for PTB was 8,756 per 100,000 live births. When stratified by race/ethnicity, the baseline risk for PTB was 12215, 7824, and 7187 per 100,000 live births among non-Hispanic Black, non-Hispanic white, and Hispanic births, respectively. RDs per 1-ppb increase in SO2 averaged across the entire pregnancy were 317.0 (95%CI: 279.4, 354.5) and 568.2 (95%CI: 500.3, 636.1) per 100,000 live births for single- and multi-pollutant models, respectively. For the PTB multi-pollutant models, we observed similar RDs for non-Hispanic Black participants (669.6 [95%CI: 573.9, 765.2]) and non-Hispanic white participants (635.4 [95%CI: 557.2, 713.6]) with smaller RDs for Hispanic participants (336.8 [95%CI: 241.3, 432.2]). SIGNIFICANCE: The results for our adjusted single- and multi-pollutant models showed adverse associations between SO2 and PTB, with some evidence of effect measure modification by race/ethnicity within subcategories of PTB.

6.
J Hazard Mater ; 480: 135975, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39342854

ABSTRACT

Sulfur dioxide (SO2) has a wide range of applications in food additives and industrial production, and it is one of the main substances that form acid rain, causing serious harm to ecosystems and human health. Hence, it is necessary to construct an effective tool to quickly and accurately detect SO2 derivatives in environmental, food, and biological samples. In this study, fluorescent probe NPMQ was built to detect SO2 derivatives from nopinone with the merits of superior water solubility, high sensitivity (12 nM), excellent specificity, large Stokes shift (180 nm), and rapid response time (within 5 s). NPMQ was used to qualitatively and quantitatively detect SO2 derivatives in environmental water, soil and food samples. In addition, an electrospinning film was prepared with the probe NPMQ to image SO2 derivatives, and test strips are capable of rapidly, sensitively, and selectively detecting SO2 derivatives with the naked eye. Moreover, the probe NPMQ was used to visualize endogenous SO2 derivatives in Arabidopsis thaliana under Cd2+ stress. Furthermore, the probe NPMQ was employed to image exogenous and endogenous SO2 derivatives in living Hela, HepG-2 cells, and zebrafish. This study develops an effective tool for monitoring SO2 derivatives in the environmental, food, and biological systems.

7.
Ecotoxicol Environ Saf ; 284: 116933, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39226864

ABSTRACT

Ambient air pollution has been reported to be a risk factor for hypertensive disorders of pregnancy (HDP). Past studies have reported supportive evidence, but evidence from China is scarce and does not integrate the different periods of the pregnancy course. In this study, 1945 pregnant women with HDP and healthy pregnancies between 2016 and 2022 from the Renmin Hospital of Wuhan University registry network database were analysed. The geographic information, biological information and demographic information of the case were fused in the analysis. Machine learning methods were used to obtain the weight of the variable. Then, we used the generalized linear mixed model to evaluate the relationship between increased exposure to each pollutant at different periods of HDP and examined it in different groups. The results showed that SO2 had the predominate impact (12.65 %) on HDP compared with other air pollutants. SO2 exposure was associated with an increased risk of HDP. Increased unit SO2 concentrations were accompanied by an increased risk of HDP (OR = 1.33, 95 % CI: 1.13, 1.566), and the susceptible window for this effect was mainly in the first trimester (OR = 1.242, 95 % CI: 1.092, 1.412). In addition, SO2 exposure was associated with an increased risk of HDP in urban maternity (OR = 1.356, 95 % CI: 1.112, 1.653), obese maternity (OR = 3.58, 95 % CI: 1.608, 7.971), no higher education maternity (OR = 1.348, 95 % CI: 1.065, 1.706), nonzero delivery maternity (OR = 1.981, 95 % CI: 1.439, 2.725), maternal with first time maternity (OR = 1.247, 95 % CI: 1.007, 1.544) and other groups. In summary, SO2 exposure in early pregnancy is one of the risk factors for HDP, and the increased risk of HDP due to increased SO2 exposure may be more pronounced in obese, urban, low-education, and nonzero delivery populations.


Subject(s)
Air Pollutants , Air Pollution , Hypertension, Pregnancy-Induced , Sulfur Dioxide , Humans , Female , Pregnancy , China/epidemiology , Air Pollution/adverse effects , Air Pollution/statistics & numerical data , Air Pollutants/analysis , Adult , Hypertension, Pregnancy-Induced/epidemiology , Hypertension, Pregnancy-Induced/chemically induced , Sulfur Dioxide/analysis , Risk Factors , Particulate Matter/analysis , Environmental Exposure/statistics & numerical data , Environmental Exposure/adverse effects , Young Adult
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125165, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39312819

ABSTRACT

Sulfur dioxide (SO2), a toxic air pollutant, can have harmful effects on human health when inhaled or when it forms bisulfite in the body. In the present work, a ratiometric fluorescent probe, 2-(2'-hydroxyphenyl)benzothiazole-3-ethyl-1,1,2-trimethyl-1H-benzo[e]indolium (HBT-EMBI), was selected to study the mechanism of SO2 derivatives detection. This study provides insights into the attributions of ratiometric fluorescence through hydrogen bond dynamics, electronic excitation properties, radiation rates, and excited state intramolecular proton transfer (ESIPT) processes using the density functional theory (DFT) and the time-dependent density functional theory (TDDFT) level. The results confirm that the large Stokes shifts and broad emission spectra of the HBT-EMBI probe are associated with its intramolecular charge transfer (ICT) characteristics and hydrogen bonding-driven ESIPT processes, respectively. After the addition reaction between the probe and HSO3-/SO32-, the conformational populations of HBT-EMBI-HSO3- transfer abnormally from enol configurations to more stable keto configurations, which leads to a distinguished change in the visible color and the ratiometric fluorescence signal, and is not due to the blockage of the ICT process of HBT-EMBI-HSO3-, as previously reported. This work provides a new perspective on the mechanism of detection of SO2 derivatives by ESIPT fluorescent probes.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125132, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39303336

ABSTRACT

Sulfur dioxide (SO2) derivatives are typically employed as antioxidants in food and pharmaceutical processing. However, excessive sulfite intake could trigger serious health problems. Hence, it is urgent to establish a rapid and effective system for monitoring SO2. This study adopted a one-step hydrothermal method to synthesize dual-emitting nitrogen-doped carbon quantum dots (CECDs) and developed a ratiometric sensor for sulfite using CECDs-Cr (VI) composites. The emission intensity ratio (I440/I500) of the CECDs-Cr (VI) composites increased considerably with the addition of HSO3-. A method based on the ratiometric sensor was established for SO2 derivatives with advanced efficiency and excellent linearity over a broad concentration range of 0-500 µM (R2 = 0.9946). Four medicine-food homology materials (MFHMs) fumigated with sulfur have been accurately detected using this approach. Furthermore, a portable test tube was prepared to achieve rapid and semi-quantitative detection of SO2 residues and applied to real samples. This work presents an effective approach to develop a rapid on-site detection platform for sulfite residues in food and pharmaceuticals.

10.
Water Res ; 265: 122299, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39180954

ABSTRACT

The removal of arsenic (As(III)) from acidic wastewater using neutralization or sulfide precipitation generates substantial arsenic-containing hazardous solid waste, posing significant environmental challenges. This study proposed an advanced ultraviolet (UV)/dithionite reduction method to recover As(III) in the form of valuable elemental arsenic (As(0)) from acidic wastewater, thereby avoiding hazardous waste production. The results showed that more than 99.9 % of As(III) was reduced to As(0) with the residual concentration of arsenic below 25.0 µg L-1 within several minutes when the dithionite/As(III) molar ratio exceeded 1.5:1 and the pH was below 4.0. The content of As(0) in precipitate reached 99.70 wt%, achieving the purity requirements for commercial As(0) products. Mechanistic investigations revealed that SO2·â€’ and H· radicals generated by dithionite photolysis under UV irradiation are responsible for reducing As(III) to As(0). Dissolved O2, Fe(III), Fe(II), Mn(II), dissolved organic matter (DOM), and turbidity slightly inhibited As(III) reduction via free radicals scavenging or light blocking effect, whereas other coexisting ions, such as Mg(II), Zn(II), Cd(II), Ni(II), F(-I), and Cl(-I), had limited influence on As(III) reduction. Moreover, the cost of treating real arsenic-containing (250.3 mg L-1) acidic wastewater was estimated to be as low as $0.668 m-3, demonstrating the practical applicability of this method. This work provides a novel method for the reductive recovery of As(III) from acidic wastewater.


Subject(s)
Arsenic , Dithionite , Ultraviolet Rays , Wastewater , Water Pollutants, Chemical , Arsenic/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Dithionite/chemistry , Oxidation-Reduction , Waste Disposal, Fluid/methods , Hydrogen-Ion Concentration , Water Purification/methods
11.
Sci Rep ; 14(1): 19616, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39179784

ABSTRACT

Impaired cognitive health is the leading cause of various disabilities and disorders. Air pollution has been dramatically increasing over the last few decades and has been identified as a potential risk factor for impaired cognitive health. This study investigates the effect of air pollutants, particulate matter (PM2.5, PM10), sulfur dioxide (SO2), and ground-level ozone, on global cognitive health. The data on environmental pollutants and cognitive health were recorded from PubMed, Web of Science, Scopus, and Google Scholar. Initially, 790 articles were identified after screening for duplicates and applying the inclusion and exclusion criteria, 21 studies were included, and data was synthesized to get a pooled result. The overall results revealed that increased exposure to PM2.5 was positively and significantly associated with cognitive decline (OR 1.49; 95% CI 1.11, 1.99; p = 0.01). The risk of cognitive impairment due to PM10 (OR 1.30; 95% CI 1.00-1.70, p = 0.05), and SO2 (OR 1.39; 95% CI 1.27-1.51; p < 0.01) exposure were also significantly heightened. The study findings show that overall exposure to particulate matter PM2.5, PM10, and SO2 was associated with an increased risk of a decrease in global cognitive functions. The findings suggest that reducing levels of air pollutants could be a strategic approach to mitigate cognitive health risks in populations worldwide.


Subject(s)
Air Pollutants , Ozone , Particulate Matter , Sulfur Dioxide , Particulate Matter/adverse effects , Ozone/adverse effects , Sulfur Dioxide/analysis , Humans , Air Pollutants/adverse effects , Air Pollution/adverse effects , Environmental Exposure/adverse effects , Cognition/drug effects , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/etiology
12.
Ecotoxicol Environ Saf ; 284: 116888, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39168082

ABSTRACT

Several studies have documented a relationship between short-term exposure to atmospheric sulfur dioxide (SO2) and chronic obstructive pulmonary disease (COPD). However, findings vary across different regions. This meta-analysis employed a random-effects model to calculate the combined risk estimate for each 10-µg/m3 increase in ambient SO2 concentration. Subgroup analysis aimed to identify sources of heterogeneity. To assess potential bias, studies were evaluated using a domain-based assessment tool developed by the World Health Organization. Sensitivity analyses, based on bias risk, explored how model assumptions influenced associations. An evidence certainty framework was used to evaluate overall evidence quality. The study protocol was registered with PROSPERO (CRD42023446823). We thoroughly reviewed 191 full-text articles, ultimately including 15 in the meta-analysis. The pooled relative risk for COPD was 1.26 (95 % CI 0.94-1.70) per 10-µg/m3 increase in ambient SO2. Eleven studies were deemed high risk due to inadequate handling of missing data. Overall evidence certainty was rated as medium. Given SO2's significant public health implications, continuous monitoring is crucial. Future research should include countries in Africa and Oceania to enhance global understanding of atmospheric SO2-related health issues.


Subject(s)
Air Pollutants , Pulmonary Disease, Chronic Obstructive , Sulfur Dioxide , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Disease, Chronic Obstructive/epidemiology , Sulfur Dioxide/analysis , Sulfur Dioxide/toxicity , Humans , Air Pollutants/analysis , Air Pollutants/toxicity , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Bias , Risk Assessment
13.
Heliyon ; 10(14): e34260, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39092251

ABSTRACT

Background: Endogenous sulfur dioxide (SO2) plays a crucial role in protecting heart from myocardial fibrosis by inhibiting the excessive growth of cardiac fibroblasts. This study aimed to investigate potential mechanisms by which SO2 suppressed myocardial fibrosis. Methods and results: Mouse model of angiotensin II (Ang II)-induced cardiac fibrosis and cell model of Ang II-stimulated cardiac fibroblast proliferation were employed. Our findings discovered that SO2 mitigated the aberrant phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) induced by Ang II, leading to a reduction of fibroblast proliferation. Mechanistically, for the first time, we found that SO2 sulfenylated ERK1/2, and inhibited ERK1/2 phosphorylation and cardiac fibroblast proliferation, while a sulfhydryl reducing agent dithiothreitol (DTT) reversed the above effects of SO2. Furthermore, mutant ERK1C183S (cysteine 183 to serine) abolished the sulfenylation of ERK by SO2, thereby preventing the inhibitory effects of SO2 on ERK1 phosphorylation and cardiac fibroblast proliferation. Conclusion: Our study suggested that SO2 inhibited cardiac fibroblast proliferation by sulfenylating ERK1/2 and subsequently suppressing ERK1/2 phosphorylation. These new findings might enhance the understanding of the mechanisms underlying myocardial fibrosis and emphasize the potential of SO2 as a novel therapeutic target for myocardial fibrosis.

14.
Heliyon ; 10(14): e34310, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39113959

ABSTRACT

Sulfur dioxide (SO2) is one of the most used additives in wine industry for its antioxidant and antimicrobial activity. However, due to health concerns, consumers' demand of wines with either reduced or totally replaced SO2 has increased. This study aimed to assess the effect of partial and total replacement of SO2 with a vine-shoots extract rich in stilbenes in rosé (cv. Sangiovese) and red (cv. Negramaro) wines respectively. Color as well as phenolic, volatile, and sensory profiles of wines were evaluated at bottling and during storage. The results showed that the vine-shoots extract increased the levels of trans-resveratrol, catechin, and gallic acid in wines. Moreover, the positive correlation of procyanidin dimers in red wine suggested an increase of the polymerization reactions. The amount of added extract probably provided lower antimicrobial protection compared to SO2, as indicated by the higher levels of ethyl phenol. The decrease of individual anthocyanins and oxidation aldehydes observed in wines with SO2 replacement and the higher levels of caftaric acid in the rosé wine with the extract suggested a shift of the oxidative protection, with a lower protection towards anthocyanin degradation and higher protection towards carbonyl formation and oxidation of readily oxidizable phenolic acids.

15.
Cureus ; 16(8): e66578, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39156990

ABSTRACT

Background Acute community-acquired pneumonia (CAP) is considered the leading cause of infectious death worldwide. Air pollution and prolonged exposure to airborne contaminants have been implicated in various respiratory conditions, including asthma and chronic obstructive pulmonary disease (COPD). However, the specific impact of air pollution on pneumonia, particularly CAP, remains underexplored. Given the rising levels of urban air pollution and its potential health ramifications, our study aimed to examine the association between exposure to outdoor air pollution and severity as well as the outcomes of pneumonia cases requiring hospitalization. Methodology A cohort analytical study with retrospective data collection was carried out in the pulmonology department of the Gabès University Hospital between January and October 2022. We compared levels of particulate matter less than or equal to 10µm in aerodynamic diameter (PM10), sulfur dioxide (SO2), ozone (O3), moisture and ambient temperature with severity and outcomes of pneumonia requiring hospitalization. The choice of these specific pollutants and environmental factors was based on their established impact on respiratory health and their prevalence in the study region. Results Increased sulfur dioxide (SO2) levels were associated with increased use of non-invasive ventilation (NIV) (r = 0.400). Higher levels of particulate matter (PM10) were significantly associated with the development of lung abscesses. Similarly, increased humidity and ambient temperature were strongly correlated with the development of lung abscesses. Increased air SO2 levels were correlated with a higher CURB65 score (r = 0.299). High outdoor SO2 levels and increasing moisture content were associated with increased Pneumonia Severity Index (PSI) score (r = 0.303 and = 0.310, respectively). Higher levels of PM10 were associated with an increased risk of pleural effusion, a serious complication of pneumonia. Finally, higher ambient temperatures were correlated with more extensive opacities on chest X-rays (r = 0.706), suggesting the severity of pneumonia. Conclusion This study highlights the significant associations between environmental factors and various clinical parameters in pneumonia patients. The findings underscore the importance of considering environmental exposures, such as air quality and weather conditions, in understanding and managing the severity of pneumonia.

17.
Hum Exp Toxicol ; 43: 9603271241263569, 2024.
Article in English | MEDLINE | ID: mdl-39073095

ABSTRACT

OBJECTIVE OF THE RESEARCH: Air pollution is a universal issue and has significant deleterious effects on both human health and also environment. The important indicators of air pollution include ozone (O3), particulate matter (PM), nitrogen dioxide (NO2), and sulfur dioxide (SO2). This research aims to investigate the impacts of ambient air pollution (AAP), SO2, and O3 on oxidative stress parameters, liver tissue histopathology, and expression of some carcinogenesis-related genes in the hepatic tissue of rats. MATERIALS AND METHODS: 32 Wistar rats were randomly allocated to four groups: the control group, the AAP group, the SO2 group (10 ppm), and the ozone group (0.6 ppm). Over a period of five consecutive weeks, the rats were exposed to the specified pollutants for 3 h daily; liver tissues were harvested and instantly fixed with formalin. Pathological changes were assessed in the tissue samples. Additionally, the RT-qPCR technique was utilized to investigate Expression alterations of BAX, p-53, BCL2, caspase-3, caspase-8 and caspase-9. Furthermore, 30 milligrams of hepatic tissues were extracted to assess the activities of oxidative stress enzymes. RESULTS: The liver catalase and MDA activity were elevated in the air pollution (p < .05). Also, liver GPx activity in air pollution and ozone groups was significant in comparison to the control group (p < .05). The SO2 group exhibited severe lesions in histopathology examinations. CONCLUSIONS: The findings revealed an alteration in liver histopathology, an induction of oxidative stress, and the expression of some apoptosis-related genes in hepatic tissues after exposure to AAP, SO2, and O3.


Subject(s)
Air Pollutants , Liver , Oxidative Stress , Ozone , Rats, Wistar , Sulfur Dioxide , Animals , Ozone/toxicity , Sulfur Dioxide/toxicity , Oxidative Stress/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Air Pollutants/toxicity , Male , Rats , Carcinogenesis/drug effects , Carcinogenesis/genetics , Air Pollution/adverse effects , Gene Expression/drug effects
18.
J Econ Entomol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981127

ABSTRACT

Sulfur dioxide (SO2) fumigation was studied in laboratory to determine its potential as an alternative treatment for postharvest control of stored product insects, confused flour beetle, Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae), and rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Three-hour fumigations with 0.1%-2.0% SO2 were conducted against eggs, immature stages, and adults of the 2 insects at 20 °C. Effective control of both insects was achieved. However, there were considerable variations between the 2 insects and among different life stages. Confused flour beetle was more susceptible to SO2 fumigation than rice weevil. Complete control of adults and all life stages of confused flour beetle was achieved in 3-h fumigations with 0.5% and 2.0% SO2, respectively. For rice weevil, 3-h fumigation with 1.5% SO2 resulted in 96.5% adult mortality and the fumigation with 2.0% SO2 resulted in 99.27% mortality of adults and 87.5% mortality of immature stages. Three-hour fumigations with 1% SO2 resulted in <5% egg survival to adults. The study demonstrated high efficacy of SO2 fumigation against the insects and suggested that SO2 fumigation has good potential for postharvest pest control on stored products.

19.
Curr Issues Mol Biol ; 46(7): 7147-7168, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39057067

ABSTRACT

Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), are pulmonary conditions that cause significant morbidity and mortality. The common etiologies of these conditions include pneumonia, pulmonary contusion, fat embolism, smoke inhalation, sepsis, shock, and acute pancreatitis. Inflammation, oxidative stress, apoptosis, and autophagy are key pathophysiological mechanisms underlying ALI. Hydrogen sulfide (H2S) and sulfur dioxide (SO2) are sulfur-containing gas signaling molecules that can mitigate these pathogenic processes by modulating various signaling pathways, such as toll-like receptor 4 (TLR4)/nod-like receptor protein 3 (NLRP3), extracellular signal-regulating protein kinase 1/2 (ERK1/2), mitogen-activated protein kinase (MAPK), phosphatidyl inositol 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), and nuclear factor kappa B (NF-κB), thereby conferring protection against ALI. Given the limited clinical effectiveness of prevailing ALI treatments, investigation of the modulation of sulfur-containing gas signaling molecules (H2S and SO2) in ALI is imperative. This article presents an overview of the regulatory pathways of sulfur-containing gas signaling molecules in ALI animal models induced by various stimuli, such as lipopolysaccharide, gas inhalation, oleic acid, and ischemia-reperfusion. Furthermore, this study explored the therapeutic prospects of diverse H2S and SO2 donors for ALI, stemming from diverse etiologies. The aim of the present study was to establish a theoretical framework, in order to promote the new treatment of ALI.

20.
Front Immunol ; 15: 1369326, 2024.
Article in English | MEDLINE | ID: mdl-38953022

ABSTRACT

Objectives: Mast cell (MC) degranulation is a key process in allergic reactions and inflammatory responses. Aspartate aminotransferase 1 (AAT1)-derived endogenous sulfur dioxide (SO2) is an important regulator of MC function. However, the mechanism underlying its role in MC degranulation remains unclear. This study aimed to investigate the mechanism by which endogenous SO2 controlled MC degranulation. Methods: HMC-1 and Rat basophilic leukemia cell MC line (RBL-2H3) were used in the cell experiments. SO2 content was detected by in situ fluorescent probe. MC degranulation represented by the release rate of MC ß-hexosaminidase was determined using a colorimetric assay. Sulfenylation of galectin-9 (Gal-9) in MCs and purified protein was detected using a biotin switch assay. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the exact sulfenylation sites of Gal-9 by SO2. Animal models of passive cutaneous anaphylaxis (PCA) and hypoxia-driven pulmonary vascular remodeling were used to investigate the effect of SO2 on mast cell activation in vivo. Site-directed mutation of Gal-9 was conducted to confirm the exact site of SO2 and support the significance of SO2/Gal-9 signal axis in the regulation of MC degranulation. Results: Degranulation was increased in AAT1-knockdowned MCs, and SO2 supplementation reversed the increase in MC degranulation. Furthermore, deficiency of endogenous SO2 contributed to IgE-mediated degranulation in vitro. Besides, SO2 inhibited IgE-mediated and hypoxia-driven MC degranulation in vivo. Mechanistically, LC-MS/MS analysis and site-directed mutation results showed that SO2 sulfenylated Gal-9 at cysteine 74. Sulfenylation of the 74th cysteine of Gal-9 protein was required in the SO2-inhibited MC degranulation under both physiological and pathophysiological conditions. Conclusion: These findings elucidated that SO2 inhibited MC degranulation via sulfenylating Gal-9 under both physiological and pathophysiological conditions, which might provide a novel treatment approach for MC activation-related diseases.


Subject(s)
Cell Degranulation , Cysteine , Galectins , Mast Cells , Sulfur Dioxide , Animals , Cell Degranulation/drug effects , Mast Cells/metabolism , Mast Cells/immunology , Mast Cells/drug effects , Cysteine/metabolism , Rats , Sulfur Dioxide/pharmacology , Sulfur Dioxide/metabolism , Humans , Galectins/metabolism , Mice , Male , Passive Cutaneous Anaphylaxis , Cell Line
SELECTION OF CITATIONS
SEARCH DETAIL