Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 225
Filter
Add more filters











Publication year range
1.
Bioresour Technol ; 409: 131239, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39122125

ABSTRACT

This study proposed the double-edged sword effects of sulfate reduction process on nitrogen removal and antibiotic resistance genes (ARGs) transmission in sulfur autotrophic denitrification system. Excitation-emission matrix-parallel factor analysis identified the protein-like fraction in soluble microbial products as main endogenous organic matter driving the sulfate reduction process. The resultant sulfide tended to serve as bacterial modulators, augmenting electron transfer processes and mitigating oxidative stress, thereby enhancing sulfur oxidizing bacteria (SOB) activity, rather than extra electron donors. The cooperation between SOB and heterotroph (sulfate reducing bacteria (SRB) and heterotrophic denitrification bacteria (HDB)) were responsible for advanced nitrogen removal, facilitated by multiple metabolic pathways including denitrification, sulfur oxidation, and sulfate reduction. However, SRB and HDB were potential ARGs hosts and assimilatory sulfate reduction pathway positively contributed to ARGs spread. Overall, the sulfate reduction process in sulfur autotrophic denitrification system boosted nitrogen removal process, but also increased the risk of ARGs transmission.


Subject(s)
Autotrophic Processes , Denitrification , Nitrogen , Sulfates , Sulfur , Sulfates/metabolism , Nitrogen/metabolism , Sulfur/metabolism , Oxidation-Reduction , Drug Resistance, Microbial/genetics , Bacteria/metabolism , Bacteria/genetics , Genes, Bacterial , Biodegradation, Environmental , Bioreactors
2.
Sci Total Environ ; 951: 175758, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39182787

ABSTRACT

Organosulfur compounds are prevalent in wastewater, presenting challenges for biodegradation, particularly in low-carbon environments. Supplementing additional carbon sources not only provides essential nutrients for microbial growth but also serves as regulators, influencing adaptive changes in biofilm and enhancing the survival of microorganisms in organosulfur-induced stress bioreactors. This study aims to elucidate the biodegradation of organosulfur under varying carbon source levels, placing specific emphasis on functional bacteria and metabolic processes. It has been observed that higher levels of carbon supplementation led to significantly improved total sulfur (TS) removal efficiencies, exceeding 83 %, and achieve a high organosulfur CH3SH removal efficiency of ~100 %. However, in the reactor with no external carbon source added, the oxidation end-product SO42- accumulated significantly, surpassing 120 mEq/m2-day. Furthermore, the TB-EPS concentration consistently increasedwith the ascending glucose concentration. The analysis of bacterial community reveals the enrichment of functional bacteria involved in sulfur metabolism and biofilm formation (e.g. Ferruginibacter, Rhodopeudomonas, Gordonia, and Thiobacillus). Correspondingly, the gene expressions related to the pathway of organosulfur to SO42- were notably enhanced (e.g. MTO increased by 27.7 %). In contrast, extra carbon source facilitated the transfer of organosulfur into amino acids in sulfur metabolism and promoted assimilation. These metabolic insights, coupled with kinetic transformation results, further validate distinct sulfur pathways under different carbon source conditions. The intricate interplay between bacteria growth regulation, pollutant biodegradation, and microbial metabolites underscores a complex network relationship that significantly contributes to efficient operation of bioreactors.

3.
Environ Res ; 262(Pt 1): 119778, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39155040

ABSTRACT

Biological nitrogen removal processes provide effective means to mitigate nitrogen-related issues in wastewater treatment. Previous studies have highlighted the collaborative efficiency between sulfur autotrophic denitrification and Anammox processes. However, the trigger point induced the combination of nitrogen and sulfur metabolism is unclear. In this study, elemental sulfur (S0) was introduced to Anammox system to figure out the performance and mechanism of S0-mediated autotrophic denitrification and Anammox (S0SAD-A) systems. The results showed that the nitrogen removal performance of the Anammox reactor decreased with the increasing concentrations of NH4+-N and NO2--N in influent, denitrification occurred when NH4+-N concentration reached 100 mg/L. At stage ⅳ (150 mg/L NH4+-N), the total nitrogen removal efficiency in S0SAD-A system (95.99%) was significantly higher than that in the Anammox system (77.22%). Throughout a hydraulic retention time, the consumption rate of NH4+-N in S0SAD-A was faster than that in Anammox reactor. And there existed a nitrate-concentration peak in S0SAD-A system. Metagenomic sequencing was performed to reveal functional microbes as well as key genes involved in sulfur and nitrogen metabolism. The results showed that the introduction of S0 elevated the abundance of Ca. Brocadia. Moreover, the relative abundance of Anammox genes, such as hao, hzsA and hzsC were also stimulated by sulfur. Notably, unclassified members in Rhodocyclaceae acted as the primary contributor to key genes involved in the sulfur metabolism. Overall, the interactions between Anammox and denitrification were stimulated by sulfur metabolism. Our study shed light on the potential significance of Rhodocyclaceae members in the S0SAD-A process and disclosed the relationship between anammox and denitrification.

4.
Food Chem ; 458: 140204, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38964092

ABSTRACT

The bacterial derived osmolyte ectoine has been shown to stabilize cell structure and function, a property that may help to extend the shelf life of broccoli. The impact of ectoine on broccoli stored for 4 d at 20 °C and 90% relative humidity was investigated. Results indicated that 0.20% ectoine treatment maintained the quality of broccoli, by reducing rate of respiration and ethylene generation, while increasing the levels of total phenolics, flavonoids, TSS, soluble protein, and vitamin C, relative to control. Headspace-gas chromatography-mass spectrometry, transcriptomic and metabolomic analyses revealed that ectoine stabilized aroma components in broccoli by maintaining level of volatile compounds and altered the expression of genes and metabolites associated with sulfur metabolism, as well as fatty acid and amino acid biosynthesis pathways. These findings provide a greater insight into how ectoine preserves the flavor and nutritional quality of broccoli, thus, extending its shelf life.


Subject(s)
Amino Acids, Diamino , Brassica , Food Storage , Nutritive Value , Taste , Brassica/chemistry , Brassica/metabolism , Amino Acids, Diamino/analysis , Amino Acids, Diamino/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Flavoring Agents/analysis , Food Preservation/methods
5.
mSystems ; 9(6): e0113523, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38747602

ABSTRACT

Sulfur-oxidizing bacteria (SOB) have developed distinct ecological strategies to obtain reduced sulfur compounds for growth. These range from specialists that can only use a limited range of reduced sulfur compounds to generalists that can use many different forms as electron donors. Forming intimate symbioses with animal hosts is another highly successful ecological strategy for SOB, as animals, through their behavior and physiology, can enable access to sulfur compounds. Symbioses have evolved multiple times in a range of animal hosts and from several lineages of SOB. They have successfully colonized a wide range of habitats, from seagrass beds to hydrothermal vents, with varying availability of symbiont energy sources. Our extensive analyses of sulfur transformation pathways in 234 genomes of symbiotic and free-living SOB revealed widespread conservation in metabolic pathways for sulfur oxidation in symbionts from different host species and environments, raising the question of how they have adapted to such a wide range of distinct habitats. We discovered a gene family expansion of soxY in these genomes, with up to five distinct copies per genome. Symbionts harboring only the "canonical" soxY were typically ecological "specialists" that are associated with specific host subfamilies or environments (e.g., hydrothermal vents, mangroves). Conversely, symbionts with multiple divergent soxY genes formed versatile associations across diverse hosts in various marine environments. We hypothesize that expansion and diversification of the soxY gene family could be one genomic mechanism supporting the metabolic flexibility of symbiotic SOB enabling them and their hosts to thrive in a range of different and dynamic environments.IMPORTANCESulfur metabolism is thought to be one of the most ancient mechanisms for energy generation in microorganisms. A diverse range of microorganisms today rely on sulfur oxidation for their metabolism. They can be free-living, or they can live in symbiosis with animal hosts, where they power entire ecosystems in the absence of light, such as in the deep sea. In the millions of years since they evolved, sulfur-oxidizing bacteria have adopted several highly successful strategies; some are ecological "specialists," and some are "generalists," but which genetic features underpin these ecological strategies are not well understood. We discovered a gene family that has become expanded in those species that also seem to be "generalists," revealing that duplication, repurposing, and reshuffling existing genes can be a powerful mechanism driving ecological lifestyle shifts.


Subject(s)
Oxidation-Reduction , Sulfides , Symbiosis , Animals , Adaptation, Physiological/genetics , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genome, Bacterial , Hydrothermal Vents/microbiology , Multigene Family , Phylogeny , Sulfides/metabolism , Sulfur/metabolism , Symbiosis/genetics , Bivalvia
6.
Plants (Basel) ; 13(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38674501

ABSTRACT

High temperatures have adverse effects on the yield and quality of vegetables. Bok choy, a popular vegetable, shows varying resistance to heat. However, the mechanism underlying the thermotolerance of bok choy remains unclear. In this study, 26 bok choy varieties were identified in screening as being heat-resistant at the seedling stage; at 43 °C, it was possible to observe obvious heat damage in different bok choy varieties. The physiological and biochemical reactions of a heat-tolerant cultivar, Jinmei (J7), and a heat-sensitive cultivar, Sanyueman (S16), were analyzed in terms of the growth index, peroxide, and photosynthetic parameters. The results show that Jinmei has lower relative conductivity, lower peroxide content, and higher total antioxidant capacity after heat stress. We performed transcriptome analysis of the two bok choy varieties under heat stress and normal temperatures. Under heat stress, some key genes involved in sulfur metabolism, glutathione metabolism, and the ribosome pathway were found to be significantly upregulated in the heat-tolerant cultivar. The key genes of each pathway were screened according to their fold-change values. In terms of sulfur metabolism, genes related to protease activity were significantly upregulated. Glutathione synthetase (GSH2) in the glutathione metabolism pathway and the L3e, L23, and S19 genes in the ribosomal pathway were significantly upregulated in heat-stressed cultivars. These results suggest that the total antioxidant capacity and heat injury repair capacity are higher in Jinmei than in the heat-sensitive variety, which might be related to the specific upregulation of genes in certain metabolic pathways after heat stress.

7.
Trends Biochem Sci ; 49(6): 545-556, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38622038

ABSTRACT

Thiol oxidation to dioxygenated sulfinic acid is catalyzed by an enzyme family characterized by a cupin fold. These proteins act on free thiol-containing molecules to generate central metabolism precursors and signaling compounds in bacteria, fungi, and animal cells. In plants and animals, they also oxidize exposed N-cysteinyl residues, directing proteins to proteolysis. Enzyme kinetics, X-ray crystallography, and spectroscopy studies prompted the formulation and testing of hypotheses about the mechanism of action and the different substrate specificity of these enzymes. Concomitantly, the physiological role of thiol dioxygenation in prokaryotes and eukaryotes has been studied through genetic and physiological approaches. Further structural characterization is necessary to enable precise and safe manipulation of thiol dioxygenases (TDOs) for therapeutic, industrial, and agricultural applications.


Subject(s)
Dioxygenases , Sulfhydryl Compounds , Dioxygenases/metabolism , Dioxygenases/chemistry , Sulfhydryl Compounds/metabolism , Sulfhydryl Compounds/chemistry , Animals , Humans , Oxidation-Reduction , Substrate Specificity
8.
BMC Genomics ; 25(1): 376, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632539

ABSTRACT

BACKGROUND: Mycobacterium avium complex (MAC), including Mycobacterium intracellulare is a member of slow-growing mycobacteria and contributes to a substantial proportion of nontuberculous mycobacterial lung disease in humans affecting immunocompromised and elderly populations. Adaptation of pathogens in hostile environments is crucial in establishing infection and persistence within the host. However, the sophisticated cellular and molecular mechanisms of stress response in M. intracellulare still need to be fully explored. We aimed to elucidate the transcriptional response of M. intracellulare under acidic and oxidative stress conditions. RESULTS: At the transcriptome level, 80 genes were shown [FC] ≥ 2.0 and p < 0.05 under oxidative stress with 10 mM hydrogen peroxide. Specifically, 77 genes were upregulated, while 3 genes were downregulated. In functional analysis, oxidative stress conditions activate DNA replication, nucleotide excision repair, mismatch repair, homologous recombination, and tuberculosis pathways. Additionally, our results demonstrate that DNA replication and repair system genes, such as dnaB, dinG, urvB, uvrD2, and recA, are indispensable for resistance to oxidative stress. On the contrary, 878 genes were shown [FC] ≥ 2.0 and p < 0.05 under acidic stress with pH 4.5. Among these genes, 339 were upregulated, while 539 were downregulated. Functional analysis highlighted nitrogen and sulfur metabolism pathways as the primary responses to acidic stress. Our findings provide evidence of the critical role played by nitrogen and sulfur metabolism genes in the response to acidic stress, including narGHIJ, nirBD, narU, narK3, cysND, cysC, cysH, ferredoxin 1 and 2, and formate dehydrogenase. CONCLUSION: Our results suggest the activation of several pathways potentially critical for the survival of M. intracellulare under a hostile microenvironment within the host. This study indicates the importance of stress responses in M. intracellulare infection and identifies promising therapeutic targets.


Subject(s)
Mycobacterium avium Complex , Mycobacterium avium-intracellulare Infection , Humans , Aged , Mycobacterium avium Complex/genetics , Transcriptome , Mycobacterium avium-intracellulare Infection/microbiology , Gene Expression Profiling , Oxidative Stress , Nitrogen , Sulfur
9.
BMC Plant Biol ; 24(1): 257, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594609

ABSTRACT

BACKGROUND: Sulfur (S) is a mineral nutrient essential for plant growth and development, which is incorporated into diverse molecules fundamental for primary and secondary metabolism, plant defense, signaling, and maintaining cellular homeostasis. Although, S starvation response is well documented in the dicot model Arabidopsis thaliana, it is not clear if the same transcriptional networks control the response also in the monocots. RESULTS: We performed series of physiological, expression, and metabolite analyses in two model monocot species, one representing the C3 plants, Oryza sativa cv. kitaake, and second representing the C4 plants, Setaria viridis. Our comprehensive transcriptomic analysis revealed twice as many differentially expressed genes (DEGs) in S. viridis than in O. sativa under S-deficiency, consistent with a greater loss of sulfur and S-containing metabolites under these conditions. Surprisingly, most of the DEGs and enriched gene ontology terms were species-specific, with an intersect of only 58 common DEGs. The transcriptional networks were different in roots and shoots of both species, in particular no genes were down-regulated by S-deficiency in the roots of both species. CONCLUSIONS: Our analysis shows that S-deficiency seems to have different physiological consequences in the two monocot species and their nutrient homeostasis might be under distinct control mechanisms.


Subject(s)
Arabidopsis , Oryza , Genes, Plant , Arabidopsis/metabolism , Gene Expression Profiling , Sulfur/metabolism , Homeostasis , Gene Expression Regulation, Plant , Oryza/metabolism , Plant Roots/metabolism
10.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612787

ABSTRACT

Sulfur (S), one of the crucial macronutrients, plays a pivotal role in fundamental plant processes and the regulation of diverse metabolic pathways. Additionally, it has a major function in plant protection against adverse conditions by enhancing tolerance, often interacting with other molecules to counteract stresses. Despite its significance, a thorough comprehension of how plants regulate S nutrition and particularly the involvement of phytohormones in this process remains elusive. Phytohormone signaling pathways crosstalk to modulate growth and developmental programs in a multifactorial manner. Additionally, S availability regulates the growth and development of plants through molecular mechanisms intertwined with phytohormone signaling pathways. Conversely, many phytohormones influence or alter S metabolism within interconnected pathways. S metabolism is closely associated with phytohormones such as abscisic acid (ABA), auxin (AUX), brassinosteroids (BR), cytokinins (CK), ethylene (ET), gibberellic acid (GA), jasmonic acid (JA), salicylic acid (SA), and strigolactones (SL). This review provides a summary of the research concerning the impact of phytohormones on S metabolism and, conversely, how S availability affects hormonal signaling. Although numerous molecular details are yet to be fully understood, several core signaling components have been identified at the crossroads of S and major phytohormonal pathways.


Subject(s)
Plant Growth Regulators , Sulfates , Plant Development , Abscisic Acid , Cytokinins
11.
Chemosphere ; 354: 141667, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485002

ABSTRACT

The rapid development of the economy has led to an increase in the sulfur and nitrogen load in surface water, which has the potential to cause river eutrophication and the emission of malodorous gases. A lab-scale sediment microbial fuel cell coupled with Vallisneria natans (P-SMFC) was designed for surface water remediation. The enhancement of pollutant removal performance of P-SMFC was evaluated in contrast to the SMFC system without plants (SMFC), the open-circuit control system with plants (C-P), and the open-circuit control system without plants (C-S), while illustrating the mechanisms of the sulfur and nitrogen transformation process. The results demonstrated that the effluent and sediment of P-SMFC had lower concentrations of sulfide compared to other systems. Furthermore, P-SMFC exhibited higher removal efficiency for COD (73.1 ± 8.7%), NH4+-N (80.5 ± 19.8%), and NO3--N (88.5 ± 11.8%) compared to other systems. The closed-circuit conditions and growth of Vallisneria natans create a favorable ecological niche for functional microorganisms involved in power generation, sulfur oxidation, and nitrogen transformation. Additionally, metagenomic analysis revealed that multifunctional bacteria possessing both denitrification and sulfur oxidation genes, such as Thiobacillus, Dechloromonas, and Bacillus, may play simultaneous roles in metabolizing sulfur and nitrogen, thus serving as integral factors in maintaining the performance of P-SMFC. In summary, these findings provide a theoretical reference for the concurrent enhancement of sulfur and nitrogen pollutants removal in P-SMFC and will facilitate its practical application in the remediation of contaminated surface water.


Subject(s)
Bioelectric Energy Sources , Microbiota , Nitrogen/metabolism , Geologic Sediments/chemistry , Water/chemistry , Sulfur , Denitrification
12.
Plants (Basel) ; 13(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38475560

ABSTRACT

Melatonin can improve plant adaptability to water deficit stress by regulating the biosynthesis of flavonoids and improving the reactive oxygen species-scavenging enzyme system. However, it remains unclear whether melatonin mitigates the effects and causes of water deficit stress in Cenchrus alopecuroides. We conducted a PEG-simulated water stress pot experiment to determine whether and how exogenous melatonin alleviates water deficit in C. alopecuroides. The experiment was divided into four treatments: (1) normal watering (Control), (2) 40% PEG-6000 treatment (D), (3) 100 µmol·L-1 melatonin treatment (MT), and (4) both melatonin and PEG-6000 treatment (DMT). The results showed that melatonin can alleviate water deficit in C. alopecuroides by effectively inhibiting plant chlorophyll degradation and MDA accumulation while increasing antioxidant enzyme activities and photosynthetic rates under water deficit stress. The transcriptome results indicated that melatonin regulates the expression of genes with the biosynthesis pathway of flavonoids (by increasing the expression of PAL, 4CL, HCT, and CHS), photosynthesis-antenna proteins (by increasing the expression of LHC), and sulfur metabolism (the expression of PAPSS and CysC is up-regulated in the assimilatory sulfate reduction pathway), while up-regulating the transcription factors (AP2/ERF-ERF-, C2H2-, WRKY-, Tify-, bHLH-, NAC-, and MYB-related). These findings revealed the possible causes by which melatonin mitigates water deficit stress in C. alopecuroides, which provided novel insights into the role of melatonin in water deficit stress.

13.
Trends Endocrinol Metab ; 35(5): 400-412, 2024 May.
Article in English | MEDLINE | ID: mdl-38383161

ABSTRACT

Methionine restriction (MR) has been shown to suppress tumor growth and improve the responses to various anticancer therapies. However, methionine itself is required for the proliferation, activation, and differentiation of T cells that are crucial for antitumor immunity. The dual impact of methionine, that influences both tumor and immune cells, has generated concerns regarding the potential consequences of MR on T cell immunity and its possible role in promoting cancer. In this review we systemically examine current literature on the interactions between dietary methionine, cancer cells, and immune cells. Based on recent findings on MR in immunocompetent animals, we further discuss how tumor stage-specific methionine dependence of immune cells and cancer cells in the tumor microenvironment could ultimately dictate the response of tumors to MR.


Subject(s)
Methionine , Neoplasms , Methionine/metabolism , Humans , Animals , Neoplasms/immunology , Neoplasms/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Diet , Tumor Microenvironment/immunology
14.
Biotechnol J ; 19(2): e2300564, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38403441

ABSTRACT

The dipeptide γ-glutamylcysteine (γ-GC), the first intermediate of glutathione (GSH) synthesis, is considered as a promising drug to reduce or prevent plethora of age-related disorders such as Alzheimer and Parkinson diseases. The unusual γ-linkage between the two constitutive amino acids, namely cysteine and glutamate, renders its chemical synthesis particularly challenging. Herein, we report on the metabolic engineering of the non-conventional yeast Yarrowia lipolytica for efficient γ-GC synthesis. The yeast was first converted into a γ-GC producer by disruption of gene GSH2 encoding GSH synthase and by constitutive expression of GSH1 encoding glutamylcysteine ligase. Subsequently genes involved in cysteine and glutamate anabolism, namely MET4, CYSE, CYSF, and GDH1 were overexpressed with the aim to increase their intracellular availability. With such a strategy, a γ-GC titer of 464 nmol mg-1 protein (93 mg gDCW-1 ) was obtained within 24 h of cell growth.


Subject(s)
Antioxidants , Yarrowia , Antioxidants/metabolism , Cysteine/metabolism , Yarrowia/genetics , Yarrowia/metabolism , Glutathione , Glutamates/metabolism
15.
Front Microbiol ; 15: 1338669, 2024.
Article in English | MEDLINE | ID: mdl-38348185

ABSTRACT

Tetrathionate hydrolase (TTH) is a unique enzyme found in acidophilic sulfur-oxidizing microorganisms, such as bacteria and archaea. This enzyme catalyzes the hydrolysis of tetrathionate to thiosulfate, elemental sulfur, and sulfate. It is also involved in dissimilatory sulfur oxidation metabolism, the S4-intermediate pathway. TTHs have been purified and characterized from acidophilic autotrophic sulfur-oxidizing microorganisms. All purified TTHs show an optimum pH in the acidic range, suggesting that they are localized in the periplasmic space or outer membrane. In particular, the gene encoding TTH from Acidithiobacillus ferrooxidans (Af-tth) was identified and recombinantly expressed in Escherichia coli cells. TTH activity could be recovered from the recombinant inclusion bodies by acid refolding treatment for crystallization. The mechanism of tetrathionate hydrolysis was then elucidated by X-ray crystal structure analysis. Af-tth is highly expressed in tetrathionate-grown cells but not in iron-grown cells. These unique structural properties, reaction mechanisms, gene expression, and regulatory mechanisms are discussed in this review.

16.
Appl Environ Microbiol ; 90(2): e0201523, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38299812

ABSTRACT

Fungi have the capacity to assimilate a diverse range of both inorganic and organic sulfur compounds. It has been recognized that all sulfur sources taken up by fungi are in soluble forms. In this study, we present evidence that fungi can utilize gaseous carbonyl sulfide (COS) for the assimilation of a sulfur compound. We found that the filamentous fungus Trichoderma harzianum strain THIF08, which has constitutively high COS-degrading activity, was able to grow with COS as the sole sulfur source. Cultivation with 34S-labeled COS revealed that sulfur atom from COS was incorporated into intracellular metabolites such as glutathione and ergothioneine. COS degradation by strain THIF08, in which as much of the moisture derived from the agar medium as possible was removed, indicated that gaseous COS was taken up directly into the cell. Escherichia coli transformed with a COS hydrolase (COSase) gene, which is clade D of the ß-class carbonic anhydrase subfamily enzyme with high specificity for COS but low activity for CO2 hydration, showed that the COSase is involved in COS assimilation. Comparison of sulfur metabolites of strain THIF08 revealed a higher relative abundance of reduced sulfur compounds under the COS-supplemented condition than the sulfate-supplemented condition, suggesting that sulfur assimilation is more energetically efficient with COS than with sulfate because there is no redox change of sulfur. Phylogenetic analysis of the genes encoding COSase, which are distributed in a wide range of fungal taxa, suggests that the common ancestor of Ascomycota, Basidiomycota, and Mucoromycota acquired COSase at about 790-670 Ma.IMPORTANCEThe biological assimilation of gaseous CO2 and N2 involves essential processes known as carbon fixation and nitrogen fixation, respectively. In this study, we found that the fungus Trichoderma harzianum strain THIF08 can grow with gaseous carbonyl sulfide (COS), the most abundant and ubiquitous gaseous sulfur compound, as a sulfur source. When the fungus grew in these conditions, COS was assimilated into sulfur metabolites, and the key enzyme of this assimilation process is COS hydrolase (COSase), which specifically degrades COS. Moreover, the pathway was more energy efficient than the typical sulfate assimilation pathway. COSase genes are widely distributed in Ascomycota, Basidiomycota, and Mucoromycota and also occur in some Chytridiomycota, indicating that COS assimilation is widespread in fungi. Phylogenetic analysis of these genes revealed that the acquisition of COSase in filamentous fungi was estimated to have occurred at about 790-670 Ma, around the time that filamentous fungi transitioned to a terrestrial environment.


Subject(s)
Hypocreales , Sulfur Oxides , Trichoderma , Gases , Carbon Dioxide , Soil , Phylogeny , Sulfur Compounds , Sulfur/metabolism , Hypocreales/genetics , Hypocreales/metabolism , Hydrolases/metabolism , Sulfates , Trichoderma/genetics , Trichoderma/metabolism
17.
Proc Natl Acad Sci U S A ; 121(6): e2313650121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38285932

ABSTRACT

Microbial dissimilatory sulfate reduction (DSR) is a key process in the Earth biogeochemical sulfur cycle. In spite of its importance to the sulfur and carbon cycles, industrial processes, and human health, it is still not clear how reduction of sulfate to sulfide is coupled to energy conservation. A central step in the pathway is the reduction of sulfite by the DsrAB dissimilatory sulfite reductase, which leads to the production of a DsrC-trisulfide. A membrane-bound complex, DsrMKJOP, is present in most organisms that have DsrAB and DsrC, and its involvement in energy conservation has been inferred from sequence analysis, but its precise function was so far not determined. Here, we present studies revealing that the DsrMKJOP complex of the sulfate reducer Archaeoglobus fulgidus works as a menadiol:DsrC-trisulfide oxidoreductase. Our results reveal a close interaction between the DsrC-trisulfide and the DsrMKJOP complex and show that electrons from the quinone pool reduce consecutively the DsrM hemes b, the DsrK noncubane [4Fe-4S]3+/2+ catalytic center, and finally the DsrC-trisulfide with concomitant release of sulfide. These results clarify the role of this widespread respiratory membrane complex and support the suggestion that DsrMKJOP contributes to energy conservation upon reduction of the DsrC-trisulfide in the last step of DSR.


Subject(s)
Hydrogensulfite Reductase , Sulfates , Humans , Sulfates/metabolism , Anaerobiosis , Hydrogensulfite Reductase/metabolism , Sulfur Oxides , Sulfur/metabolism , Sulfides/metabolism , Respiration , Oxidation-Reduction
18.
Food Chem ; 443: 138535, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38295568

ABSTRACT

T. panzhihuanense and T. latisporum are white truffle species native to China, of which T. panzhihuanense has significant commercial potential, with high nutritional value and unique flavor. Maturity is an important factor affecting the nutrition and aroma of truffles, which determines their economic status. Here, a label-free-based comparative proteomics method was used to determine the proteomic profiles of T. panzhihuanense and T. latisporum at two different stages of maturity. The results showed that both maturity and species significantly affected the protein expression patterns. T. panzhihuanense responded stronger to maturity than T. latisporum, accompanied by a more complex interaction network between proteins. Some critical proteins were regulated by maturity and variety, including those involved in aroma formation, e.g., S-adenosyl-methionine synthetase. The enrichment of oxidation-reduction processes, glycolysis, and SNARE interactions in vesicular transport were driven by species and maturity. This study provides the first insights into the proteomic profiles of T. panzhihuanense and T. latisporum, revealing the roles of key proteins and biological processes in their maturation.


Subject(s)
Ascomycota , Proteomics , China
19.
J Orthop Surg Res ; 19(1): 62, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218914

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a chronic and low-grade inflammatory disease associated with metabolism disorder and multiple cell death types in the synovial tissues. Sulfur metabolism has not been studied in OA. METHODS: First, we calculated the single sample gene set enrichment analysis score of sulfur metabolism-associated annotations (i.e., cysteine metabolism process, regulation of sulfur metabolism process, and disulfidptosis) between healthy and synovial samples from patients with OA. Sulfur metabolism-related differentially expressed genes (DEGs) were analyzed in OA. Least absolute shrinkage and selection operator COX regression were used to identify the sulfur metabolism-associated gene signature for diagnosing OA. Correlation and immune cell deconvolution analyses were used to explore the correlated functions and cell specificity of the signature gene, TM9SF2. TM9SF2's effect on the phagocytosis of macrophages M2 was analyzed by coculturing macrophages with IgG-coated beads or apoptotic Jurkat cells. RESULTS: A diagnostic six gene signature (i.e., MTHFD1, PDK4, TM9SF2, POU4F1, HOXA2, NCKAP1) was identified based on the ten DEGs, validated using GSE12021 and GSE1919 datasets. TM9SF2 was upregulated in the synovial tissues of OA at both mRNA and protein levels. The relationship between TM9SF2 and several functional annotations, such as antigen processing and presentation, lysosome, phagosome, Fcγ-mediated phagocytosis, and tyrosine metabolism, was identified. TM9SF2 and macrophages M2 were significantly correlated. After silencing TM9SF2 in THP-1-derived macrophages M2, a significantly reduced phagocytosis and attenuated activation of PLC-γ1 were observed. CONCLUSION: A sulfur metabolism-associated six-gene signature for OA diagnosis was constructed and upregulation of the phagocytosis-associated gene, TM9SF2, was identified. The findings are expected to deepen our understanding of the molecular mechanism underlying OA development and be used as potential therapeutic targets.


Subject(s)
Osteoarthritis , Humans , Osteoarthritis/genetics , Osteoarthritis/metabolism , Synovial Membrane/metabolism , Macrophages/metabolism , Up-Regulation , Sulfur/metabolism , Membrane Proteins/genetics
20.
Sci Total Environ ; 915: 170115, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38232848

ABSTRACT

Grafting is an effective horticultural method to reduce Cd accumulation in crops. However, the mechanism of grafting inducing the decrease in Cd content in scions remains unclear. This study evaluated the effect of grafting on fruit quality, yield, and Cd content of Solanum melongena, and explored the potential mechanism of grafting reducing Cd content in scions. In the low Cd-contaminated soil, compared with un-grafted (UG) and self-grafted plants (SG), the fruit yield of inter-grafted plants (EG) increased by 38 %, and the fruit quality was not markedly affected. In EG, the decrease in total S and Cd content was not related to organic acids and thiol compounds. The decrease in total S and Cd content in EG leaves and fruits was closely related to the synthesis and transportation of glucosinolates (GSL). The genes encoding GSL synthesis in leaves, such as basic helix-loop-helix, myelocytomatosis proteins, acetyl-CoA, cytochrome P450, and glutathione S-transferases, were significantly downregulated. In EG leaves, the contents of five of the eight amino acids involved in GSL synthesis decreased significantly (P < 0.05). Notably, total GSL in EG stems, leaves, and fruits had a significant linear correlation with total S and Cd. In summary, the decrease in total S and Cd content in scions caused by grafting is closely related to GSL. Our findings provide a theoretical basis for the safe use of Cd-contaminated soil, exploring the long-distance transport of Cd in plants and cultivating crops with low Cd accumulation.


Subject(s)
Soil Pollutants , Solanum melongena , Cadmium/analysis , Solanum melongena/metabolism , Glucosinolates/analysis , Antioxidants/metabolism , Soil , Soil Pollutants/analysis , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL