Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(4): 732-741, 2024 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-39218599

ABSTRACT

Aiming at the problem that the feature extraction ability of forehead single-channel electroencephalography (EEG) signals is insufficient, which leads to decreased fatigue detection accuracy, a fatigue feature extraction and classification algorithm based on supervised contrastive learning is proposed. Firstly, the raw signals are filtered by empirical modal decomposition to improve the signal-to-noise ratio. Secondly, considering the limitation of the one-dimensional signal in information expression, overlapping sampling is used to transform the signal into a two-dimensional structure, and simultaneously express the short-term and long-term changes of the signal. The feature extraction network is constructed by depthwise separable convolution to accelerate model operation. Finally, the model is globally optimized by combining the supervised contrastive loss and the mean square error loss. Experiments show that the average accuracy of the algorithm for classifying three fatigue states can reach 75.80%, which is greatly improved compared with other advanced algorithms, and the accuracy and feasibility of fatigue detection by single-channel EEG signals are significantly improved. The results provide strong support for the application of single-channel EEG signals, and also provide a new idea for fatigue detection research.


Subject(s)
Algorithms , Electroencephalography , Fatigue , Forehead , Signal Processing, Computer-Assisted , Humans , Electroencephalography/methods , Fatigue/physiopathology , Fatigue/diagnosis , Signal-To-Noise Ratio
2.
Neural Netw ; 179: 106578, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39111158

ABSTRACT

Self-supervised contrastive learning draws on power representational models to acquire generic semantic features from unlabeled data, and the key to training such models lies in how accurately to track motion features. Previous video contrastive learning methods have extensively used spatially or temporally augmentation as similar instances, resulting in models that are more likely to learn static backgrounds than motion features. To alleviate the background shortcuts, in this paper, we propose a cross-view motion consistent (CVMC) self-supervised video inter-intra contrastive model to focus on the learning of local details and long-term temporal relationships. Specifically, we first extract the dynamic features of consecutive video snippets and then align these features based on multi-view motion consistency. Meanwhile, we compare the optimized dynamic features for instance comparison of different videos and local spatial fine-grained with temporal order in the same video, respectively. Ultimately, the joint optimization of spatio-temporal alignment and motion discrimination effectively fills the challenges of the missing components of instance recognition, spatial compactness, and temporal perception in self-supervised learning. Experimental results show that our proposed self-supervised model can effectively learn visual representation information and achieve highly competitive performance compared to other state-of-the-art methods in both action recognition and video retrieval tasks.


Subject(s)
Video Recording , Humans , Neural Networks, Computer , Motion Perception/physiology , Supervised Machine Learning , Motion , Algorithms
3.
Curr Med Imaging ; 20: e15734056313837, 2024.
Article in English | MEDLINE | ID: mdl-39039669

ABSTRACT

INTRODUCTION: This study introduces SkinLiTE, a lightweight supervised contrastive learning model tailored to enhance the detection and typification of skin lesions in dermoscopic images. The core of SkinLiTE lies in its unique integration of supervised and contrastive learning approaches, which leverages labeled data to learn generalizable representations. This approach is particularly adept at handling the challenge of complexities and imbalances inherent in skin lesion datasets. METHODS: The methodology encompasses a two-phase learning process. In the first phase, SkinLiTE utilizes an encoder network and a projection head to transform and project dermoscopic images into a feature space where contrastive loss is applied, focusing on minimizing intra-class variations while maximizing inter-class differences. The second phase freezes the encoder's weights, leveraging the learned representations for classification through a series of dense and dropout layers. The model was evaluated using three datasets from Skin Cancer ISIC 2019-2020, covering a wide range of skin conditions. RESULTS: SkinLiTE demonstrated superior performance across various metrics, including accuracy, AUC, and F1 scores, particularly when compared with traditional supervised learning models. Notably, SkinLiTE achieved an accuracy of 0.9087 using AugMix augmentation for binary classification of skin lesions. It also showed comparable results with the state-of-the-art approaches of ISIC challenge without relying on external data, underscoring its efficacy and efficiency. The results highlight the potential of SkinLiTE as a significant step forward in the field of dermatological AI, offering a robust, efficient, and accurate tool for skin lesion detection and classification. Its lightweight architecture and ability to handle imbalanced datasets make it particularly suited for integration into Internet of Medical Things environments, paving the way for enhanced remote patient monitoring and diagnostic capabilities. CONCLUSION: This research contributes to the evolving landscape of AI in healthcare, demonstrating the impact of innovative learning methodologies in medical image analysis.


Subject(s)
Dermoscopy , Skin Neoplasms , Supervised Machine Learning , Humans , Dermoscopy/methods , Skin Neoplasms/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Skin/diagnostic imaging
4.
Med Biol Eng Comput ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083136

ABSTRACT

Exercise-based rehabilitation programs have proven to be effective in enhancing the quality of life and reducing mortality and rehospitalization rates. AI-driven virtual rehabilitation, which allows patients to independently complete exercises at home, utilizes AI algorithms to analyze exercise data, providing feedback to patients and updating clinicians on their progress. These programs commonly prescribe a variety of exercise types, leading to a distinct challenge in rehabilitation exercise assessment datasets: while abundant in overall training samples, these datasets often have a limited number of samples for each individual exercise type. This disparity hampers the ability of existing approaches to train generalizable models with such a small sample size per exercise type. Addressing this issue, this paper introduces a novel supervised contrastive learning framework with hard and soft negative samples that effectively utilizes the entire dataset to train a single model applicable to all exercise types. This model, with a Spatial-Temporal Graph Convolutional Network (ST-GCN) architecture, demonstrated enhanced generalizability across exercises and a decrease in overall complexity. Through extensive experiments on three publicly available rehabilitation exercise assessment datasets, UI-PRMD, IRDS, and KIMORE, our method has proven to surpass existing methods, setting a new benchmark in rehabilitation exercise quality assessment.

5.
Cogn Neurodyn ; 18(2): 357-370, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38699605

ABSTRACT

Recognizing familiar faces holds great value in various fields such as medicine, criminal investigation, and lie detection. In this paper, we designed a Complex Trial Protocol-based familiar and unfamiliar face recognition experiment that using self-face information, and collected EEG data from 147 subjects. A novel neural network-based method, the EEG-based Face Recognition Model (EEG-FRM), is proposed in this paper for cross-subject familiar/unfamiliar face recognition, which combines a multi-scale convolutional classification network with the maximum probability mechanism to realize individual face recognition. The multi-scale convolutional neural network extracts temporal information and spatial features from the EEG data, the attention module and supervised contrastive learning module are employed to promote the classification performance. Experimental results on the dataset reveal that familiar face stimuli could evoke significant P300 responses, mainly concentrated in the parietal lobe and nearby regions. Our proposed model achieved impressive results, with a balanced accuracy of 85.64%, a true positive rate of 73.23%, and a false positive rate of 1.96% on the collected dataset, outperforming other compared methods. The experimental results demonstrate the effectiveness and superiority of our proposed model.

6.
Comput Methods Programs Biomed ; 253: 108230, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810377

ABSTRACT

BACKGROUND AND OBJECTIVE: The classification of diabetic retinopathy (DR) aims to utilize the implicit information in images for early diagnosis, to prevent and mitigate the further worsening of the condition. However, existing methods are often limited by the need to operate within large, annotated datasets to show significant advantages. Additionally, the number of samples for different categories within the dataset needs to be evenly distributed, because the characteristic of sample imbalance distribution can lead to an excessive focus on high-frequency disease categories, while neglecting the less common but equally important disease categories. Therefore, there is an urgent need to develop a new classification method that can effectively alleviate the issue of sample distribution imbalance, thereby enhancing the accuracy of diabetic retinopathy classification. METHODS: In this work, we propose MediDRNet, a dual-branch network model based on prototypical contrastive learning. This model adopts prototype contrastive learning, creating prototypes for different levels of lesions, ensuring they represent the core features of each lesion level. It classifies by comparing the similarity between data points and their category prototypes. Our dual-branch network structure effectively resolves the issue of category imbalance and improves classification accuracy by emphasizing subtle differences in retinal lesions. Moreover, our approach combines a dual-branch network with specific lesion-level prototypes for core feature representation and incorporates the convolutional block attention module for enhanced lesion feature identification. RESULTS: Our experiments using both the Kaggle and UWF classification datasets have demonstrated that MediDRNet exhibits exceptional performance compared to other advanced models in the industry, especially on the UWF DR classification dataset where it achieved state-of-the-art performance across all metrics. On the Kaggle DR classification dataset, it achieved the highest average classification accuracy (0.6327) and Macro-F1 score (0.6361). Particularly in the classification tasks for minority categories of diabetic retinopathy on the Kaggle dataset (Grades 1, 2, 3, and 4), the model reached high classification accuracies of 58.08%, 55.32%, 69.73%, and 90.21%, respectively. In the ablation study, the MediDRNet model proved to be more effective in feature extraction from diabetic retinal fundus images compared to other feature extraction methods. CONCLUSIONS: This study employed prototype contrastive learning and bidirectional branch learning strategies, successfully constructing a grading system for diabetic retinopathy lesions within imbalanced diabetic retinopathy datasets. Through a dual-branch network, the feature learning branch effectively facilitated a smooth transition of features from the grading network to the classification learning branch, accurately identifying minority sample categories. This method not only effectively resolved the issue of sample imbalance but also provided strong support for the precise grading and early diagnosis of diabetic retinopathy in clinical applications, showcasing exceptional performance in handling complex diabetic retinopathy datasets. Moreover, this research significantly improved the efficiency of prevention and management of disease progression in diabetic retinopathy patients within medical practice. We encourage the use and modification of our code, which is publicly accessible on GitHub: https://github.com/ReinforceLove/MediDRNet.


Subject(s)
Diabetic Retinopathy , Diabetic Retinopathy/classification , Diabetic Retinopathy/diagnosis , Humans , Machine Learning , Neural Networks, Computer , Algorithms , Databases, Factual , Retina/diagnostic imaging , Image Interpretation, Computer-Assisted/methods
7.
Neuroimage ; 291: 120579, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38537766

ABSTRACT

Very preterm (VPT) infants (born at less than 32 weeks gestational age) are at high risk for various adverse neurodevelopmental deficits. Unfortunately, most of these deficits cannot be accurately diagnosed until the age of 2-5 years old. Given the benefits of early interventions, accurate diagnosis and prediction soon after birth are urgently needed for VPT infants. Previous studies have applied deep learning models to learn the brain structural connectome (SC) to predict neurodevelopmental deficits in the preterm population. However, none of these models are specifically designed for graph-structured data, and thus may potentially miss certain topological information conveyed in the brain SC. In this study, we aim to develop deep learning models to learn the SC acquired at term-equivalent age for early prediction of neurodevelopmental deficits at 2 years corrected age in VPT infants. We directly treated the brain SC as a graph, and applied graph convolutional network (GCN) models to capture complex topological information of the SC. In addition, we applied the supervised contrastive learning (SCL) technique to mitigate the effects of the data scarcity problem, and enable robust training of GCN models. We hypothesize that SCL will enhance GCN models for early prediction of neurodevelopmental deficits in VPT infants using the SC. We used a regional prospective cohort of ∼280 VPT infants who underwent MRI examinations at term-equivalent age from the Cincinnati Infant Neurodevelopment Early Prediction Study (CINEPS). These VPT infants completed neurodevelopmental assessment at 2 years corrected age to evaluate cognition, language, and motor skills. Using the SCL technique, the GCN model achieved mean areas under the receiver operating characteristic curve (AUCs) in the range of 0.72∼0.75 for predicting three neurodevelopmental deficits, outperforming several competing models. Our results support our hypothesis that the SCL technique is able to enhance the GCN model in our prediction tasks.


Subject(s)
Connectome , Infant, Premature , Infant , Infant, Newborn , Humans , Child, Preschool , Prospective Studies , Brain/diagnostic imaging , Infant, Very Low Birth Weight
8.
Comput Biol Med ; 172: 108267, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479197

ABSTRACT

Early detection of colon adenomatous polyps is pivotal in reducing colon cancer risk. In this context, accurately distinguishing between adenomatous polyp subtypes, especially tubular and tubulovillous, from hyperplastic variants is crucial. This study introduces a cutting-edge computer-aided diagnosis system optimized for this task. Our system employs advanced Supervised Contrastive learning to ensure precise classification of colon histopathology images. Significantly, we have integrated the Big Transfer model, which has gained prominence for its exemplary adaptability to visual tasks in medical imaging. Our novel approach discerns between in-class and out-of-class images, thereby elevating its discriminatory power for polyp subtypes. We validated our system using two datasets: a specially curated one and the publicly accessible UniToPatho dataset. The results reveal that our model markedly surpasses traditional deep convolutional neural networks, registering classification accuracies of 87.1% and 70.3% for the custom and UniToPatho datasets, respectively. Such results emphasize the transformative potential of our model in polyp classification endeavors.


Subject(s)
Adenomatous Polyps , Colonic Polyps , Humans , Colonic Polyps/diagnostic imaging , Neural Networks, Computer , Diagnosis, Computer-Assisted/methods , Diagnostic Imaging
9.
Front Plant Sci ; 15: 1341831, 2024.
Article in English | MEDLINE | ID: mdl-38384766

ABSTRACT

Diseases cause crop yield reduction and quality decline, which has a great impact on agricultural production. Plant disease recognition based on computer vision can help farmers quickly and accurately recognize diseases. However, the occurrence of diseases is random and the collection cost is very high. In many cases, the number of disease samples that can be used to train the disease classifier is small. To address this problem, we propose a few-shot disease recognition algorithm that uses supervised contrastive learning. Our algorithm is divided into two phases: supervised contrastive learning and meta-learning. In the first phase, we use a supervised contrastive learning algorithm to train an encoder with strong generalization capabilities using a large number of samples. In the second phase, we treat this encoder as an extractor of plant disease features and adopt the meta-learning training mechanism to accomplish the few-shot disease recognition tasks by training a nearest-centroid classifier based on distance metrics. The experimental results indicate that the proposed method outperforms the other nine popular few-shot learning algorithms as a comparison in the disease recognition accuracy over the public plant disease dataset PlantVillage. In few-shot potato leaf disease recognition tasks in natural scenarios, the accuracy of the model reaches the accuracy of 79.51% with only 30 training images. The experiment also revealed that, in the contrastive learning phase, the combination of different image augmentation operations has a greater impact on model. Furthermore, the introduction of label information in supervised contrastive learning enables our algorithm to still obtain high accuracy in few-shot disease recognition tasks with smaller batch size, thus allowing us to complete the training with less GPU resource compared to traditional contrastive learning.

10.
Comput Biol Med ; 166: 107501, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37742416

ABSTRACT

Sleep is an important research area in nutritional medicine that plays a crucial role in human physical and mental health restoration. It can influence diet, metabolism, and hormone regulation, which can affect overall health and well-being. As an essential tool in the sleep study, the sleep stage classification provides a parsing of sleep architecture and a comprehensive understanding of sleep patterns to identify sleep disorders and facilitate the formulation of targeted sleep interventions. However, the class imbalance issue is typically salient in sleep datasets, which severely affects classification performances. To address this issue and to extract optimal multimodal features of EEG, EOG, and EMG that can improve the accuracy of sleep stage classification, a Borderline Synthetic Minority Oversampling Technique (B-SMOTE)-Based Supervised Convolutional Contrastive Learning (BST-SCCL) is proposed, which can avoid the risk of data mismatch between various sleep knowledge domains (varying health conditions and annotation rules) and strengthening learning characteristics of the N1 stage from the pair-wise segments comparison strategy. The lightweight residual network architecture with a novel truncated cross-entropy loss function is designed to accommodate multimodal time series and boost the training speed and performance stability. The proposed model has been validated on four well-known public sleep datasets (Sleep-EDF-20, Sleep-EDF-78, ISRUC-1, and ISRUC-3) and its superior performance (overall accuracy of 91.31-92.34%, MF1 of 88.21-90.08%, and Cohen's Kappa coefficient k of 0.87-0.89) has further demonstrated its effectiveness. It shows the great potential of contrastive learning for cross-domain knowledge interaction in precision medicine.

11.
J Biomed Inform ; 146: 104496, 2023 10.
Article in English | MEDLINE | ID: mdl-37704104

ABSTRACT

Automatic radiology report generation has the potential to alert inexperienced radiologists to misdiagnoses or missed diagnoses and improve healthcare delivery efficiency by reducing the documentation workload of radiologists. Motivated by the continuous development of automatic image captioning, more and more deep learning methods have been proposed for automatic radiology report generation. However, the visual and textual data bias problem still face many challenges in the medical domain. Additionally, do not integrate medical knowledge, ignoring the mutual influences between medical findings, and abundant unlabeled medical images influence the accuracy of generating report. In this paper, we propose a Medical Knowledge with Contrastive Learning model (MKCL) to enhance radiology report generation. The proposed model MKCL uses IU Medical Knowledge Graph (IU-MKG) to mine the relationship among medical findings and improve the accuracy of identifying positive diseases findings from radiologic medical images. In particular, we design Knowledge Enhanced Attention (KEA), which integrates the IU-MKG and the extracted chest radiological visual features to alleviate textual data bias. Meanwhile, this paper leverages supervised contrastive learning to relieve radiographic medical images which have not been labeled, and identify abnormalities from images. Experimental results on the public dataset IU X-ray show that our proposed model MKCL outperforms other state-of-the-art report generation methods. Ablation studies also demonstrate that IU medical knowledge graph module and supervised contrastive learning module enhance the ability of the model to detect the abnormal parts and accurately describe the abnormal findings. The source code is available at: https://github.com/Eleanorhxd/MKCL.


Subject(s)
Radiology , Humans , Documentation , Knowledge , Radiography , Radiologists , Learning
12.
Brief Bioinform ; 24(5)2023 09 20.
Article in English | MEDLINE | ID: mdl-37544660

ABSTRACT

Combination therapies have brought significant advancements to the treatment of various diseases in the medical field. However, searching for effective drug combinations remains a major challenge due to the vast number of possible combinations. Biomedical knowledge graph (KG)-based methods have shown potential in predicting effective combinations for wide spectrum of diseases, but the lack of credible negative samples has limited the prediction performance of machine learning models. To address this issue, we propose a novel model-agnostic framework that leverages existing drug-drug interaction (DDI) data as a reliable negative dataset and employs supervised contrastive learning (SCL) to transform drug embedding vectors to be more suitable for drug combination prediction. We conducted extensive experiments using various network embedding algorithms, including random walk and graph neural networks, on a biomedical KG. Our framework significantly improved performance metrics compared to the baseline framework. We also provide embedding space visualizations and case studies that demonstrate the effectiveness of our approach. This work highlights the potential of using DDI data and SCL in finding tighter decision boundaries for predicting effective drug combinations.


Subject(s)
Algorithms , Pattern Recognition, Automated , Benchmarking , Drug Combinations , Drug Interactions
13.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(5): 815-824, 2023 May 20.
Article in Chinese | MEDLINE | ID: mdl-37313824

ABSTRACT

OBJECTIVE: We propose a novel region- level self-supervised contrastive learning method USRegCon (ultrastructural region contrast) based on the semantic similarity of ultrastructures to improve the performance of the model for glomerular ultrastructure segmentation on electron microscope images. METHODS: USRegCon used a large amount of unlabeled data for pre- training of the model in 3 steps: (1) The model encoded and decoded the ultrastructural information in the image and adaptively divided the image into multiple regions based on the semantic similarity of the ultrastructures; (2) Based on the divided regions, the first-order grayscale region representations and deep semantic region representations of each region were extracted by region pooling operation; (3) For the first-order grayscale region representations, a grayscale loss function was proposed to minimize the grayscale difference within regions and maximize the difference between regions. For deep semantic region representations, a semantic loss function was introduced to maximize the similarity of positive region pairs and the difference of negative region pairs in the representation space. These two loss functions were jointly used for pre-training of the model. RESULTS: In the segmentation task for 3 ultrastructures of the glomerular filtration barrier based on the private dataset GlomEM, USRegCon achieved promising segmentation results for basement membrane, endothelial cells, and podocytes, with Dice coefficients of (85.69 ± 0.13)%, (74.59 ± 0.13)%, and (78.57 ± 0.16)%, respectively, demonstrating a good performance of the model superior to many existing image-level, pixel-level, and region-level self-supervised contrastive learning methods and close to the fully- supervised pre-training method based on the large- scale labeled dataset ImageNet. CONCLUSION: USRegCon facilitates the model to learn beneficial region representations from large amounts of unlabeled data to overcome the scarcity of labeled data and improves the deep model performance for glomerular ultrastructure recognition and boundary segmentation.


Subject(s)
Kidney Diseases , Podocytes , Humans , Electrons , Endothelial Cells , Learning
14.
Patterns (N Y) ; 4(4): 100693, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37123442

ABSTRACT

3D electron microscopy (EM) connectomics image volumes are surpassing 1 mm3, providing information-dense, multi-scale visualizations of brain circuitry and necessitating scalable analysis techniques. We present SynapseCLR, a self-supervised contrastive learning method for 3D EM data, and use it to extract features of synapses from mouse visual cortex. SynapseCLR feature representations separate synapses by appearance and functionally important structural annotations. We demonstrate SynapseCLR's utility for valuable downstream tasks, including one-shot identification of defective synapse segmentations, dataset-wide similarity-based querying, and accurate imputation of annotations for unlabeled synapses, using manual annotation of only 0.2% of the dataset's synapses. In particular, excitatory versus inhibitory neuronal types can be assigned with >99.8% accuracy to individual synapses and highly truncated neurites, enabling neurite-enhanced connectomics analysis. Finally, we present a data-driven, unsupervised study of synaptic structural variation on the representation manifold, revealing its intrinsic axes of variation and showing that representations contain inhibitory subtype information.

15.
Int J Neural Syst ; 33(6): 2350032, 2023 May.
Article in English | MEDLINE | ID: mdl-37195808

ABSTRACT

Facial expression recognition (FER) plays a vital role in the field of human-computer interaction. To achieve automatic FER, various approaches based on deep learning (DL) have been presented. However, most of them lack for the extraction of discriminative expression semantic information and suffer from the problem of annotation ambiguity. In this paper, we propose an elaborately designed end-to-end recognition network with contrastive learning and uncertainty-guided relabeling, to recognize facial expressions efficiently and accurately, as well as to alleviate the impact of annotation ambiguity. Specifically, a supervised contrastive loss (SCL) is introduced to promote inter-class separability and intra-class compactness, thus helping the network extract fine-grained discriminative expression features. As for the annotation ambiguity problem, we present an uncertainty estimation-based relabeling module (UERM) to estimate the uncertainty of each sample and relabel the unreliable ones. In addition, to deal with the padding erosion problem, we embed an amending representation module (ARM) into the recognition network. Experimental results on three public benchmarks demonstrate that our proposed method facilitates the recognition performance remarkably with 90.91% on RAF-DB, 88.59% on FERPlus and 61.00% on AffectNet, outperforming current state-of-the-art (SOTA) FER methods. Code will be available at http//github.com/xiaohu-run/fer_supCon.


Subject(s)
Facial Recognition , Humans , Uncertainty , Facial Expression
16.
Front Genet ; 14: 1109269, 2023.
Article in English | MEDLINE | ID: mdl-36873945

ABSTRACT

Chromosome segmentation is a crucial analyzing task in karyotyping, a technique used in experiments to discover chromosomal abnormalities. Chromosomes often touch and occlude with each other in images, forming various chromosome clusters. The majority of chromosome segmentation methods only work on a single type of chromosome cluster. Therefore, the pre-task of chromosome segmentation, the identification of chromosome cluster types, requires more focus. Unfortunately, the previous method used for this task is limited by the small-scale chromosome cluster dataset, ChrCluster, and needs the help of large-scale natural image datasets, such as ImageNet. We realized that semantic differences between chromosomes and natural objects should not be ignored, and thus developed a novel two-step method called SupCAM, which could avoid overfitting only using ChrCluster and achieve a better performance. In the first step, we pre-trained the backbone network on ChrCluster following the supervised contrastive learning framework. We introduced two improvements to the model. One is called the category-variant image composition method, which augments samples by synthesizing valid images and proper labels. The other introduces angular margin into large-scale instance contrastive loss, namely self-margin loss, to increase the intraclass consistency and decrease interclass similarity. In the second step, we fine-tuned the network and obtained the final classification model. We validated the effectiveness of modules through massive ablation studies. Finally, SupCAM achieved an accuracy of 94.99% with the ChrCluster dataset, which outperformed the method used previously for this task. In summary, SupCAM significantly supports the chromosome cluster type identification task to achieve better automatic chromosome segmentation.

17.
Sensors (Basel) ; 23(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36904883

ABSTRACT

Multimodal sentiment analysis has gained popularity as a research field for its ability to predict users' emotional tendencies more comprehensively. The data fusion module is a critical component of multimodal sentiment analysis, as it allows for integrating information from multiple modalities. However, it is challenging to combine modalities and remove redundant information effectively. In our research, we address these challenges by proposing a multimodal sentiment analysis model based on supervised contrastive learning, which leads to more effective data representation and richer multimodal features. Specifically, we introduce the MLFC module, which utilizes a convolutional neural network (CNN) and Transformer to solve the redundancy problem of each modal feature and reduce irrelevant information. Moreover, our model employs supervised contrastive learning to enhance its ability to learn standard sentiment features from data. We evaluate our model on three widely-used datasets, namely MVSA-single, MVSA-multiple, and HFM, demonstrating that our model outperforms the state-of-the-art model. Finally, we conduct ablation experiments to validate the efficacy of our proposed method.

18.
Med Image Anal ; 85: 102759, 2023 04.
Article in English | MEDLINE | ID: mdl-36706638

ABSTRACT

Diffusion MRI tractography is an advanced imaging technique that enables in vivo mapping of the brain's white matter connections. White matter parcellation classifies tractography streamlines into clusters or anatomically meaningful tracts. It enables quantification and visualization of whole-brain tractography. Currently, most parcellation methods focus on the deep white matter (DWM), whereas fewer methods address the superficial white matter (SWM) due to its complexity. We propose a novel two-stage deep-learning-based framework, Superficial White Matter Analysis (SupWMA), that performs an efficient and consistent parcellation of 198 SWM clusters from whole-brain tractography. A point-cloud-based network is adapted to our SWM parcellation task, and supervised contrastive learning enables more discriminative representations between plausible streamlines and outliers for SWM. We train our model on a large-scale tractography dataset including streamline samples from labeled long- and medium-range (over 40 mm) SWM clusters and anatomically implausible streamline samples, and we perform testing on six independently acquired datasets of different ages and health conditions (including neonates and patients with space-occupying brain tumors). Compared to several state-of-the-art methods, SupWMA obtains highly consistent and accurate SWM parcellation results on all datasets, showing good generalization across the lifespan in health and disease. In addition, the computational speed of SupWMA is much faster than other methods.


Subject(s)
Deep Learning , White Matter , Infant, Newborn , Humans , White Matter/pathology , Cloud Computing , Brain , Diffusion Tensor Imaging/methods , Image Processing, Computer-Assisted/methods
19.
Neural Netw ; 160: 1-11, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36587439

ABSTRACT

With the development of deep learning technology, deep reinforcement learning (DRL) has successfully built intelligent agents in sequential decision-making problems through interaction with image-based environments. However, learning from unlimited interaction is impractical and sample inefficient because training an agent requires many trial and error and numerous samples. One response to this problem is sample-efficient DRL, a research area that encourages learning effective state representations in limited interactions with image-based environments. Previous methods could effectively surpass human performance by training an RL agent using self-supervised learning and data augmentation to learn good state representations from a given interaction. However, most of the existing methods only consider similarity of image observations so that they are hard to capture semantic representations. To address these challenges, we propose spatio-temporal and action-based contrastive representation (STACoRe) learning for sample-efficient DRL. STACoRe performs two contrastive learning to learn proper state representations. One uses the agent's actions as pseudo labels, and the other uses spatio-temporal information. In particular, when performing the action-based contrastive learning, we propose a method that automatically selects data augmentation techniques suitable for each environment for stable model training. We train the model by simultaneously optimizing an action-based contrastive loss function and spatio-temporal contrastive loss functions in an end-to-end manner. This leads to improving sample efficiency for DRL. We use 26 benchmark games in Atari 2600 whose environment interaction is limited to only 100k steps. The experimental results confirm that our method is more sample efficient than existing methods. The code is available at https://github.com/dudwojae/STACoRe.


Subject(s)
Benchmarking , Intelligence , Humans , Reinforcement, Psychology , Semantics
20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-986993

ABSTRACT

OBJECTIVE@#We propose a novel region- level self-supervised contrastive learning method USRegCon (ultrastructural region contrast) based on the semantic similarity of ultrastructures to improve the performance of the model for glomerular ultrastructure segmentation on electron microscope images.@*METHODS@#USRegCon used a large amount of unlabeled data for pre- training of the model in 3 steps: (1) The model encoded and decoded the ultrastructural information in the image and adaptively divided the image into multiple regions based on the semantic similarity of the ultrastructures; (2) Based on the divided regions, the first-order grayscale region representations and deep semantic region representations of each region were extracted by region pooling operation; (3) For the first-order grayscale region representations, a grayscale loss function was proposed to minimize the grayscale difference within regions and maximize the difference between regions. For deep semantic region representations, a semantic loss function was introduced to maximize the similarity of positive region pairs and the difference of negative region pairs in the representation space. These two loss functions were jointly used for pre-training of the model.@*RESULTS@#In the segmentation task for 3 ultrastructures of the glomerular filtration barrier based on the private dataset GlomEM, USRegCon achieved promising segmentation results for basement membrane, endothelial cells, and podocytes, with Dice coefficients of (85.69 ± 0.13)%, (74.59 ± 0.13)%, and (78.57 ± 0.16)%, respectively, demonstrating a good performance of the model superior to many existing image-level, pixel-level, and region-level self-supervised contrastive learning methods and close to the fully- supervised pre-training method based on the large- scale labeled dataset ImageNet.@*CONCLUSION@#USRegCon facilitates the model to learn beneficial region representations from large amounts of unlabeled data to overcome the scarcity of labeled data and improves the deep model performance for glomerular ultrastructure recognition and boundary segmentation.


Subject(s)
Humans , Electrons , Endothelial Cells , Learning , Podocytes , Kidney Diseases
SELECTION OF CITATIONS
SEARCH DETAIL