ABSTRACT
This study proposes an affordable plasma device that utilizes a parallel-plate dielectric barrier discharge geometry with a metallic mesh electrode, featuring a straightforward 3D-printed design. Powered by a high-voltage supply adapted from a cosmetic plasma device, it operates on atmospheric air, eliminating the need for gas flux. Surface modification of polyethylene treated with this device was characterized and showed that the elemental composition after 15 min of plasma treatment decreased the amount of C to ~80 at% due to the insertion of O (~15 at%). Tested against Candida albicans and Staphylococcus aureus, the device achieved a reduction of over 99% in microbial load with exposure times ranging from 1 to 10 min. Simultaneously, the Vero cell viability remained consistently high, namely between 91% and 96% across exposure times. These results highlight this device's potential for the surface modification of materials and various infection-related applications, boasting affordability and facilitating effective antimicrobial interventions.
Subject(s)
Candida albicans , Plasma Gases , Staphylococcus aureus , Surface Properties , Candida albicans/drug effects , Plasma Gases/chemistry , Plasma Gases/pharmacology , Staphylococcus aureus/drug effects , Animals , Vero Cells , Chlorocebus aethiops , Microbial Viability/drug effects , Polymers/chemistryABSTRACT
To improve the biocompatibility and bioactivity of biodegradable iron-based materials, nanostructured surfaces formed by metal oxides offer a promising strategy for surface functionalization. To explore this potential, iron oxide nanotubes were synthesized on pure iron (Fe) using an anodic oxidation process (50 V-30 min, using an ethylene glycol solution containing 0.3% NH4F and 3% H2O, at a speed of 100 rpm). A nanotube layer composed mainly of α-Fe2O3 with diameters between 60 and 70 nm was obtained. The effect of the Fe-oxide nanotube layer on cell viability and morphology was evaluated by in vitro studies using a human osteosarcoma cell line (SaOs-2 cells). The results showed that the presence of this layer did not harm the viability or morphology of the cells. Furthermore, cells cultured on anodized surfaces showed higher metabolic activity than those on non-anodized surfaces. This research suggests that growing a layer of Fe oxide nanotubes on pure Fe is a promising method for functionalizing and improving the cytocompatibility of iron substrates. This opens up new opportunities for biomedical applications, including the development of cardiovascular stents or osteosynthesis implants.
ABSTRACT
Sulfuric acid anodizing assisted by a hydrothermal sealing with inhibitors [Ce3+-Mo6+] was used to prevent pitting corrosion on spray-deposited hypereutectic Al-Si alloy (A390). An investigation concerning the evaluation of pitting corrosion resistance on the anodic oxide thin film with ions incorporated was carried out in NaCl solution using electrochemical measurements (i.e., potentiodynamic polarization and electrochemical impedance spectroscopy, EIS). The influence of Si phase morphology and size on the growth mechanism of an anodic oxide film was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results were then compared with those for its equivalent IM390 alloy (Al-17Si-4.5Cu-0.6Mg) produced through a conventional process ingot metallurgy, IM. The electrochemical findings indicate that sulfuric acid anodizing followed by a simple hot water sealing treatment was ineffective. In this manner, an intense attack was localized by pitting corrosion that occurred on the anodic oxide film in less than three days, as denoted by characteristic changes in the EIS spectra at the lowest frequencies. Improved results were achieved for Ce-Mo surface modification, which can provide better corrosion resistance on the aluminum alloys because no signs of pits were observed during the corrosion testing.
ABSTRACT
Water pollution is a worldwide environmental and health problem that requires the development of sustainable, efficient, and accessible technologies. Nanotechnology is a very attractive alternative in environmental remediation processes due to the multiple properties that are conferred on a material when it is at the nanometric scale. This present review focuses on the understanding of the structure-physicochemical properties-performance relationships of silver nanoparticles, with the objective of guiding the selection of physicochemical properties that promote greater performance and are key factors in their use as antibacterial agents, surface modifiers, colorimetric sensors, signal amplifiers, and plasmonic photocatalysts. Silver nanoparticles with a size of less than 10 nm, morphology with a high percentage of reactive facets {111}, and positive surface charge improve the interaction of the nanoparticles with bacterial cells and induce a greater antibacterial effect. Adsorbent materials functionalized with an optimal concentration of silver nanoparticles increase their contact area and enhance adsorbent capacity. The use of stabilizing agents in silver nanoparticles promotes selective adsorption of contaminants by modifying the surface charge and type of active sites in an adsorbent material, in addition to inducing selective complexation and providing stability in their use as colorimetric sensors. Silver nanoparticles with complex morphologies allow the formation of hot spots or chemical or electromagnetic bonds between substrate and analyte, promoting a greater amplification factor. Controlled doping with nanoparticles in photocatalytic materials produces improvements in their electronic structural properties, promotes changes in charge transfer and bandgap, and improves and expands their photocatalytic properties. Silver nanoparticles have potential use as a tool in water remediation, where by selecting appropriate physicochemical properties for each application, their performance and efficiency are improved.
ABSTRACT
A polyethylene (PE) film surface modification method is proposed via benzoic acid (BA) alkylation grafting to improve the surface affinity to polar substances. The procedure involves sequentially spraying AlCl3 and BA onto the heat-softened PE surface. The occurrence of the alkylation reaction was evaluated through comparative chemical, morphological, and thermal analyses. It was demonstrated that the grafting reaction of BA onto the PE film surface took place, limited to the surface layer, while preserving the bulk properties of PE. The reaction resulted in the formation of aluminum benzoate complexes, which improved the surface affinity to polar compounds. The impact of grafting on the surface properties of PE was further assessed by comparing the behavior of PE films treated with BA and untreated PE films when painted with watercolors. The PE film grafted with BA exhibited increased affinity towards watercolors, providing strong evidence of a change in surface polarity from hydrophobic to hydrophilic. These findings indicate that the proposed methodology effectively renders the PE surface paintable, even with non-toxic water-based inks, making it suitable for applications such as packaging.
ABSTRACT
OBJECTIVES: To evaluate the mechanical and antimicrobial properties of boron-containing coating on translucent zirconia (5Y-PSZ). METHODS: 5Y-PSZ discs (Control) were coated with a glaze (Glaze), silver- (AgCoat), or boron-containing (BCoat) glasses. The coatings' antimicrobial potential was characterized using S. mutans biofilms after 48 h via viable colony-forming units (CFU), metabolic activity (CV) assays, and quantification of extracellular polysaccharide matrix (EPS). Biofilm architectures were imaged under scanning electron and confocal laser scanning microscopies (SEM and CLSM). The cytocompatibility was determined at 24 h via WST-1 and LIVE&DEAD assays using periodontal ligament stem cells (PDLSCs). The coatings' effects on properties were characterized by Vickers hardness, biaxial bending tests, and fractography analysis. Statistical analyses were performed via one-way ANOVA, Tukey's tests, Weibull analysis, and Pearson's correlation analysis. RESULTS: BCoat significantly decreased biofilm formation, having the lowest CFU and metabolic activity compared with the other groups. BCoat and AgCoat presented the lowest EPS, followed by Glaze and Control. SEM and CLSM images revealed that the biofilms on BCoat were thin and sparse, with lower biovolume. In contrast, the other groups yielded robust biofilms with higher biovolume. The cytocompatibility was similar in all groups. BCoat, AgCoat, and Glaze also presented similar hardness and were significantly lower than Control. BCoat had the highest flexural strength, characteristic strength and Weibull parameters (σF: 625 MPa; σ0: 620 MPa; m = 11.5), followed by AgCoat (σF: 464 MPa; σ0: 478 MPa; m = 5.3). SIGNIFICANCE: BCoat is a cytocompatible coating with promising antimicrobial properties that can improve the mechanical properties and reliability of 5Y-PSZ.
Subject(s)
Anti-Infective Agents , Ceramics , Materials Testing , Boron/pharmacology , Reproducibility of Results , Zirconium/pharmacology , Surface PropertiesABSTRACT
Abstract Objectives This study aimed to investigate the osseointegration of titanium (Ti) implants with micro-nano textured surfaces functionalized with strontium additions (Sr) in a pre-clinical rat tibia model. Methodology Ti commercially pure (cp-Ti) implants were installed bilaterally in the tibia of 64 Holtzman rats, divided into four experimental groups (n=16/group): (1) Machined surface - control (C); (2) Micro-nano textured surface treatment (MN); (3) Micro-nano textured surface with Sr2+ addition (MNSr); and (4) Micro-nano textured surface with a higher complementary addition of Sr2+ (MNSr+). In total, two experimental euthanasia periods were assessed at 15 and 45 days (n=8/period). The tibia was subjected to micro-computed tomography (μ-CT), histomorphometry with the EXAKT system, removal torque (TR) testing, and gene expression analysis by PCR-Array of 84 osteogenic markers. Gene expression and protein production of bone markers were performed in an in vitro model with MC3T3-E1 cells. The surface characteristics of the implants were evaluated by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and laser scanning confocal microscopy. Results SEM, confocal, and EDS analyses demonstrated the formation of uniform micro-nano textured surfaces in the MN group and Sr addition in the MNSr and MNSr+ groups. TR test indicated greater osseointegration in the 45-day period for treated surfaces. Histological analysis highlighted the benefits of the treatments, especially in cortical bone, in which an increase in bone-implant contact was found in groups MN (15 days) and MNSr (45 days) compared to the control group. Gene expression analysis of osteogenic activity markers showed modulation of various osteogenesis-related genes. According to the in vitro model, RT-qPCR and ELISA demonstrated that the treatments favored gene expression and production of osteoblastic differentiation markers. Conclusions Micro-nano textured surface and Sr addition can effectively improve and accelerate implant osseointegration and is, therefore, an attractive approach to modifying titanium implant surfaces with significant potential in clinical practice.
ABSTRACT
Bacterial adhesion to the surface of materials is the first step in biofilm formation, which will lead to conditions that may compromise the health status of patients. Recently, polydopamine (PDA) has been proposed as an antibacterial material. Therefore, the objective of the current work was to assess and compare the adhesion of Streptococcus mutans to the surface of poly(methyl methacrylate) (PMMA) discs that were modified using PDA following a biomimetic approach versus smooth PDA-coated PMMA surfaces. In addition, an assessment of the growth inhibition by PDA was performed. PMMA discs were manufactured and polished; soft lithography, using the topography from the Crocosmia aurea leaf, was used to modify their surface. PDA was used to smooth-coat PMMA discs by dip-coating. The growth inhibition was measured using an inhibition halo. The surfaces were characterized by means of atomic force microscopy (AFM), the contact angle (CA), and Fourier-transform infrared spectroscopy (FTIR). Polydopamine exhibited a significant antibacterial effect when used directly on the S. mutans planktonic cells, but such an effect was not as strong when modifying the PMMA surfaces. These results open the possibility of using polydopamine to reduce the adhesion and growth of S. mutans, which might have important consequences in the dental field.
ABSTRACT
Polyether ether ketone (PEEK) is a biocompatible polymer used in maxillofacial and orthopedic applications because of its mechanical properties and chemical stability. However, this biomaterial is inert and requires surface modification to make it bioactive, enhancing implant-tissue integration and giving the material the ability to interact with the surrounding microenvironment. In this paper, surface of PEEK was activated by oxygen plasma treatment and this resulted in increasing reactivity and surface hydrophilicity. Then, a polydopamine (PDA) coating was deposited over the surface followed by biofunctionalization with an RGD peptide. The plasma effect was studied by contact angle measurements and scanning electron microscopy. X-ray photoelectron spectroscopy confirmed the presence of PDA coating and RGD peptide. Crystallinity and phase identification were carried out through X-ray diffraction. Quantification of the immobilized peptide over the PEEK surface was reached through UV-vis spectroscopy. In addition, in vitro tests with fibroblast cell line (NIH/3T3) determined the viability, attachment, spreading, and proliferation of these cells over the modified PEEK surfaces. According to the results, PEEK surfaces functionalized with peptides demonstrated an increased cellular response with each successive surface modification.
Subject(s)
Ketones , Polyethylene Glycols , Polyethylene Glycols/pharmacology , Ketones/pharmacology , EthersABSTRACT
Although atmospheric pressure plasma jets (APPJs) have been widely employed for materials modification, they have some drawbacks, such as the small treatment area (couple of cm2). To overcome this limitation, a funnel-like APPJ with a wide exit has been proposed. In this work, a gas-permeable cotton cloth covered the nozzle of the device to improve the gas flow dynamics and increase its range of operation. The funnel jet was flushed with Ar, and the plasma was ignited in a wide range of gas flow rates and the gap distances between the exit nozzle and the sample holder. The device characterization included electric measurements and optical emission spectroscopy (OES). To evaluate the size of the treatment and the degree of surface modification, large samples of high-density polyethylene (PE) were exposed to plasma for 5 min. Afterward, the samples were analyzed via water contact angle WCA measurements, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). It was found that surface modification occurs simultaneously on the top and bottom faces of the samples. However, the treatment incorporated different functional groups on each side.
ABSTRACT
The peopling of the Americas and human interaction with the Pleistocene megafauna in South America remain hotly debated. The Santa Elina rock shelter in Central Brazil shows evidence of successive human settlements from around the last glacial maximum (LGM) to the Early Holocene. Two Pleistocene archaeological layers include rich lithic industry associated with remains of the extinct giant ground sloth Glossotherium phoenesis. The remains include thousands of osteoderms (i.e. dermal bones), three of which were human-modified. In this study, we perform a traceological analysis of these artefacts by optical microscopy, non-destructive scanning electron microscopy, UV/visible photoluminescence and synchrotron-based microtomography. We also describe the spatial association between the giant sloth bone remains and stone tools and provide a Bayesian age model that confirms the timing of this association in two time horizons of the Pleistocene in Santa Elina. The conclusion from our traceological study is that the three giant sloth osteoderms were intentionally modified into artefacts before fossilization of the bones. This provides additional evidence for the contemporaneity of humans and megafauna, and for the human manufacturing of personal artefacts on bone remains of ground sloths, around the LGM in Central Brazil.
Subject(s)
Sloths , Xenarthra , Humans , Animals , Brazil , Artifacts , Bayes TheoremABSTRACT
This study aimed to evaluate the influence of the addition of the cationic surfactant cetyltrimethylammonium bromide (CTAB) in microfibrillated cellulose (MFC/CNFs) suspensions submitted to different pretreatments to produce redispersible spray-dried (SD) MFC/CNFs. Suspensions pretreated with 5 % and 10 % sodium silicate and oxidized with 2,2,6,6,-tetramethylpiperidinyl-1-oxyl (TEMPO) were modified with CTAB surfactant and subsequently dried by SD. The SD-MFC/CNFs aggregates were redispersed by ultrasound to produce cellulosic films by the casting method. In summary, the results demonstrated that the addition of CTAB surfactant to the TEMPO-oxidized suspension was critical to achieving the most effective redispersion. The experimental results obtained using micrographs, optical (UV-Vis), mechanical, water vapor barrier properties, and the quality index confirmed that the addition of CTAB to the TEMPO-oxidized suspension favored the redispersion of spray-dried aggregates, development of cellulosic films with attractive properties, offering possibilities for the elaboration of new products, for example, in the production of bionanocomposites with higher mechanical performance. This research brings interesting insights into the redispersion and application of SD-MFC/CNFs aggregates, strengthening the commercialization of MFC/CNFs for industrial use.
Subject(s)
Biofilms , Cellulose , Suspensions , CetrimoniumABSTRACT
INTRODUCTION: Skin cancer is the most common form of cancer worldwide, with increasing incidence rates in recent years. Although conventional chemotherapy and radiation therapy have been used for its treatment, these therapies have several limitations such as lack of selectivity and significant side effects. Targeted nanocarriers have emerged as a promising approach for the treatment of skin cancer. AREAS COVERED: This review article provides an overview of targeted nanocarriers for skin cancer treatment. It covers the various types of targeted nanocarriers, including liposomes, polymeric nanoparticles, dendrimers, and inorganic nanoparticles. EXPERT OPINION: There are still several challenges that need to be addressed before the clinical translation of targeted nanoparticles, such as optimization of their properties, development of reliable and robust characterization methods, and evaluation of their safety and efficacy in clinical trials. Another key aspect for the advancement of these studies is the need to improve regulatory aspects related to the toxicity and regulation of nanomedicines targeting skin cancer. Overall, targeted nanocarriers hold great potential for the development of safe and effective treatments for skin cancer, which can contribute to a better prognosis and overall patients' life quality.
Subject(s)
Nanoparticles , Skin Neoplasms , Humans , Drug Carriers , Drug Delivery Systems , Skin Neoplasms/drug therapy , Skin , LiposomesABSTRACT
The topography and chemical composition modification of titanium (Ti) implants play a decisive role in improving biocompatibility and bioactivity, accelerating osseointegration, and, thus, determining clinical success. In spite of the development of surface modification strategies, bacterial contamination is a common cause of failure. The use of systemic antibiotic therapy does not guarantee action at the contaminated site. In this work, we proposed a surface treatment for Ti implants that aim to improve their osseointegration and reduce bacterial colonization in surgery sites due to the local release of antibiotic. The Ti discs were hydrothermally treated with 3M NaOH solution to form a nanostructured layer of titanate on the Ti surface. Metronidazole was impregnated on these nanostructured surfaces to enable its local release. The samples were coated with poly(vinyl alcohol)-PVA films with different thickness to evaluate a possible control of drug release. Gamma irradiation was used to crosslink the polymer chains to achieve hydrogel layer formation and to sterilize the samples. The samples were characterized by XRD, SEM, FTIR, contact angle measurements, "in vitro" bioactivity, and drug release analysis. The alkaline hydrothermal treatment successfully produced intertwined, web-like nanostructures on the Ti surface, providing wettability and bioactivity to the Ti samples (Ti + TTNT samples). Metronidazole was successfully loaded and released from the Ti + TTNT samples coated or not with PVA. Although the polymeric film acted as a physical barrier to drug delivery, all groups reached the minimum inhibitory concentration for anaerobic bacteria. Thus, the surface modification method presented is a potential approach to improve the osseointegration of Ti implants and to associate local drug delivery with dental implants, preventing early infections and bone failure.
ABSTRACT
The global orthopedic market is forecasted to reach US$79.5 billion by the end of this decade. Factors driving the increase in this market are population aging, sports injury, road traffic accidents, and overweight, which justify a growing demand for orthopedic implants. Therefore, it is of utmost importance to develop bone implants with superior mechanical and biological properties to face the demand and improve patients' quality of life. Today, metallic implants still hold a dominant position in the global orthopedic implant market, mainly due to their superior mechanical resistance. However, their performance might be jeopardized due to the possible release of metallic debris, leading to cytotoxic effects and inflammatory responses in the body. Poly (ether-ether-ketone) (PEEK) is a biocompatible, high-performance polymer and one of the most prominent candidates to be used in manufacturing bone implants due to its similarity to the mechanical properties of bone. Unfortunately, the bioinert nature of PEEK culminates in its diminished osseointegration. Notwithstanding, PEEK's bioactivity can be improved through surface modification techniques and by the development of bioactive composites. This paper overviews the advantages of using PEEK for manufacturing implants and addresses the most common strategies to improve the bioactivity of PEEK in order to promote enhanced biomechanical performance.
ABSTRACT
Among the different surface modification techniques, micro-arc oxidation (MAO) is explored for its ability to enhance the surface properties of Ti alloys by creating a controlled and durable oxide layer. The incorporation of Cu ions during the MAO process introduces additional functionalities to the surface, offering improved corrosion resistance and antimicrobial activity. In this study, the ß-metastable Ti-30Nb-5Mo alloy was oxidated through the MAO method to create a Cu-doped TiO2 coating. The quantity of Cu ions in the electrolyte was changed (1.5, 2.5, and 3.5 mMol) to develop coatings with different Cu concentrations. X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron and atomic force microscopies, contact angle, and Vickers microhardness techniques were applied to characterize the deposited coatings. Cu incorporation increased the antimicrobial activity of the coatings, inhibiting the growth of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa bacteria strains, and Candida albicans fungus by approximately 44%, 37%, 19%, and 41%, respectively. Meanwhile, the presence of Cu did not inhibit the growth of Escherichia coli. The hardness of all the deposited coatings was between 4 and 5 GPa. All the coatings were non-cytotoxic for adipose tissue-derived mesenchymal stem cells (AMSC), promoting approximately 90% of cell growth and not affecting the AMSC differentiation into the osteogenic lineage.
ABSTRACT
Magnesium (Mg) alloys have great potential in biomedical applications due to their incomparable properties regarding other metals, such as stainless steels, Co-Cr alloys, and titanium (Ti) alloys. However, when Mg engages with body fluids, its degradation rate increases, inhibiting the complete healing of bone tissue. For this reason, it has been necessary to implement protective coatings to control the rate of degradation. This review focuses on natural biopolymer coatings used on Mg alloys for resorbable biomedical applications, as well as some modification techniques implemented before applying natural polymer coatings to improve their performance. Issues such as improving the corrosion resistance, cell adhesion, proliferation, and biodegradability of natural biopolymers are discussed through their basic comparison with inorganic-type coatings. Emphasis is placed on the expected biological behavior of each natural polymer described, to provide basic information as a reference on this topic.
ABSTRACT
Genistein is an isoflavone with antioxidant, anti-inflammatory, and anticancer properties. That said, its use in the industry is limited by its low solubility in aqueous systems. In this work, bacterial nanocellulose (BNC) and BNC modified with cetyltrimethylammonium (BNC-CTAB) were evaluated as genistein-encapsulating materials for their controlled release in cancer chemoprevention. Thin films were obtained and characterized by contact angle, AFM, TEM, UV-Vis spectroscopy FTIR, and TGA techniques to verify surface modification and genistein encapsulation. The results show a decrease in hydrophilization degree and an increase in diameter after BNC modification. Furthermore, the affinity of genistein with the encapsulating materials was determined in the context of monolayer and multilayer isotherms, thermodynamic parameters and adsorption kinetics. Spontaneous, endothermic and reversible adsorption processes were found for BNC-GEN and BNC-CTAB-GEN. After two hours, the maximum adsorption capacity corresponded to 4.59 mg GENâg-1 BNC and 6.10 mg GENâg-1 BNC-CTAB; the latter was a more stable system. Additionally, in vitro release assays performed with simulated gastrointestinal fluids indicated controlled and continuous desorption in gastric and colon fluids, with a release of around 5% and 85%, respectively, for either system. Finally, the IC50 tests made it possible to determine the amounts of films required to achieve therapeutic concentrations for SW480 and SW620 cell lines.
Subject(s)
Cellulose , Colorectal Neoplasms , Humans , Cellulose/chemistry , Adsorption , Genistein/pharmacology , Cetrimonium , Bacteria/chemistry , Drug Delivery Systems , Colorectal Neoplasms/prevention & controlABSTRACT
Metal-organic frameworks are crystalline nanostructures formed by a metal interspersed by an organic binder. These metal-organic materials are examples of nanomaterials applied to textile material in search of new functionalized textiles. Cotton is a cellulosic fiber of great commercial importance, and has good absorption capacity and breathability; however, due to these characteristics, it is susceptible to the development of microorganisms on its surface. This work aims to analyze how the direct synthesis of HKUST-1 in cotton fabric modifies the chemical and physical properties. The material obtained was characterized by scanning electron microscopy to obtain its morphology, by spectrophotometry CIE L*a*b* to verify the color change, by a biological test to verify its resistance to microorganisms and, finally, by a unidirectional traction test to verify the change in its mechanical resistance. Thereby, it was possible to observe the formation of MOFs with the morphology of nanorods, and also, with regard to HKUST-1 in the cotton fabric, when applied, an elimination percentage higher than 99% was observed for both bacteria, E. coli and S. aureus. The presence of MOF was detected even after washing, however, the loss of 75% in the mechanical resistance of the material makes its potential for textile finishing unworkable.
ABSTRACT
Physical surface modification is an approach that has been investigated over the last decade to reduce bacterial adhesion and improve cell attachment to biomaterials. Many techniques have been reported to modify surfaces, including the use of natural sources as inspiration to fabricate topographies on artificial surfaces. Biomimetics is a tool to take advantage of nature to solve human problems. Physical surface modification using animal and vegetal topographies as inspiration to reduce bacterial adhesion and improve cell attachment has been investigated in the last years, and the results have been very promising. However, just a few animal and plant surfaces have been used to modify the surface of biomaterials with these objectives, and only a small number of bacterial species and cell types have been tested. The purpose of this review is to present the most current results on topographic surface modification using animal and plant surfaces as inspiration to modify the surface of biomedical materials with the objective of reducing bacterial adhesion and improving cell behavior.