Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Sci Total Environ ; 950: 175412, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39127218

ABSTRACT

The continuous permafrost in the valleys of Svalbard is dotted by pingos, which are small hills formed by the near surface freezing of ascending groundwater. In this study, we used 3H and Ra isotopes to inquire into the sub-surface residence time of groundwater discharging at these pingos. While its low 3H suggests that the pingo-associated groundwater is basically not modern (i.e. older than 60 years), Ra isotopes imply that most water has an underground residence time of several hundred years. This is deduced from the lower than equilibrium ratios (activity ratios<21.7) of the long-lived to short-lived 226Ra/223Ra. Since the freezing age of the main body of permafrost in this area is >4000 years, the presence of younger water at depth suggests that the aquifer has been recharged after permafrost formation, which could take place via faults or through the non-frozen base of wet glaciers. This active hydrology suggests that permafrost in the valleys of Svalbard was at least locally discontinuous during the Late Holocene, with likely further implications to the release of greenhouse gases during the pre-industrial period.

2.
Sci Rep ; 14(1): 14984, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951587

ABSTRACT

Sea-ice microalgae are a key source of energy and nutrient supply to polar marine food webs, particularly during spring, prior to open-water phytoplankton blooms. The nutritional quality of microalgae as a food source depends on their biomolecular (lipid:protein:carbohydrate) composition. In this study, we used synchrotron-based Fourier transform infra-red microspectroscopy (s-FTIR) to measure the biomolecular content of a dominant sea-ice taxa, Nitzschia frigida, from natural land-fast ice communities throughout the Arctic spring season. Repeated sampling over six weeks from an inner (relatively stable) and an outer (relatively dynamic) fjord site revealed high intra-specific variability in biomolecular content, elucidating the plasticity of N. frigida to adjust to the dynamic sea ice and water conditions. Environmental triggers indicating the end of productivity in the ice and onset of ice melt, including nitrogen limitation and increased water temperature, drove an increase in lipid and fatty acids stores, and a decline in protein and carbohydrate content. In the context of climate change and the predicted Atlantification of the Arctic, dynamic mixing and abrupt warmer water advection could truncate these important end-of-season environmental shifts, causing the algae to be released from the ice prior to adequate lipid storage, influencing carbon transfer through the polar marine system.


Subject(s)
Ice Cover , Seasons , Arctic Regions , Climate Change , Microalgae/metabolism , Diatoms/metabolism , Diatoms/physiology , Spectroscopy, Fourier Transform Infrared/methods , Phytoplankton/metabolism , Phytoplankton/physiology
3.
Sci Total Environ ; 945: 174130, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38909820

ABSTRACT

Svalbard, located between 76°30'N and 80°50'N, is among the regions in the world with the most rapid temperature increase. We processed a cloud-free time-series of MODIS-NDVI for Svalbard. The dataset is interpolated to daily data during the 2000-2022 period with 232 m pixel resolution. The onset of growth, with a clear phenological definition, has been mapped each year. Then the integrated NDVI from the onset (O) of growth each year to the time of average (2000-2022) peak (P) of growth (OP NDVI) have been calculated. OP NDVI has previously shown high correlation with field-based tundra productivity. Daily mean temperature data from 11 meteorological stations are compared with the NDVI data. The OP NDVI values show very high and significant correlation with growing degree days computed from onset to time of peak of growth for all the meteorological stations used. On average for the entire Svalbard, the year 2016 first had the highest greening (OP NDVI values) recorded since the year 2000, then the greening in 2018 surpassed 2016, then 2020 surpassed 2018, and finally 2022 was the year with the overall highest greening by far for the whole 2000-2022 period. This shows a rapid recent greening of Svalbard very strongly linked to temperature increase, although there are regional differences: the eastern parts of Svalbard show the largest variability between years, most likely due to variability in the timing of sea-ice break-up in adjacent areas. Finally, we find that areas dominated by manured moss-tundra in the polar desert zone require new methodologies, as moss does not share the seasonal NDVI dynamics of tundra communities.

4.
Environ Pollut ; 357: 124387, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38897275

ABSTRACT

Despite its reputation as one of the cleanest regions globally, recent studies have identified the presence of various persistent toxic substances (PTSs) in the environmental matrices collected from Svalbard. This study investigated the chronological distribution and potential sources of 81 PTSs in soils from the glacier foreland of Midtre Lovénbreen. Soil samples (n = 45) were categorized by age based on exposure to the atmosphere due to glacier retreat in July 2014 into five age groups: 80-100 years (n = 7), 60-80 years (n = 12), 40-60 years (n = 16), 20-40 years (n = 7), and <20 years (n = 3). Concentrations of polychlorinated biphenyls (PCBs, n = 32) in soils varied with age, ranging from 0.29 to 0.74 ng g-1 dw. In addition, the concentrations of polycyclic aromatic hydrocarbons (PAHs, n = 28), perylene, and alkyl-PAHs (n = 20) in soils ranged from 21 to 80 ng g-1 dw, 2.9-62 ng g-1 dw, and 73-420 ng g-1 dw, respectively. The concentrations of PTSs were observed to be greater in older soils. Principal component analysis revealed that PCBs in soils originated from various product sources. Positive matrix factorization modeling estimated the association of PAHs in soils with potential origins, such as diesel emissions, petroleum and coal combustion, and coal. Potential sources of PAHs were mainly coal in younger soils and diesel emissions and petroleum combustion in older soils. Alkyl-PAH compositions in the soil were similar to those of bituminous coal, with a noteworthy degree of weathering observed in older soils. The accumulation rate and flux of PTSs in soils exhibited compound-specific patterns, reflecting factors such as long-range transport, fate, origin, and recent inputs. These findings can serve as baseline data for protecting and preserving polar environments.


Subject(s)
Environmental Monitoring , Ice Cover , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Polychlorinated Biphenyls/analysis , Ice Cover/chemistry , Hazardous Substances/analysis
5.
Article in English | MEDLINE | ID: mdl-38722773

ABSTRACT

A yellow pigmented, Gram-stain-positive, motile, facultatively anaerobic and irregular rod-shaped bacteria (strain M0-14T) was isolated from a till sample collected from the foreland of a high Arctic glacier near the settlement of Ny-Ålesund in the Svalbard Archipelago, Norway. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that M0-14T formed a lineage within the family Cellulomonadaceae, suborder Micrococcineae. M0-14T represented a novel member of the genus Pengzhenrongella and had highest 16S rRNA gene sequence similarity to Pengzhenrongella sicca LRZ-2T (97.3 %). Growth occurred at 4-25 °C (optimum 4-18 °C), at pH 6.0-9.0 (optimum pH 7.0), and in the presence of 0-5 % (w/v) NaCl. The predominant menaquinone was MK-9(H4) and the major fatty acids were anteiso-C15 : 0, C16 : 0 and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c). The major polar lipids were phosphatidylglycerol, phosphatidylinositol mannosides, phosphatidylinositol, one undefined phospholipid and five undefined phosphoglycolipids. The cell-wall diamino acid was l-ornithine whereas rhamnose and mannose were the cell-wall sugars. Polyphosphate particles were found inside the cells of M0-14T. Polyphosphate kinase and polyphosphate-dependent glucokinase genes were detected during genomic sequencing of M0-14. In addition, the complete pstSCAB gene cluster and phnCDE synthesis genes, which are important for the uptake and transport of phosphorus in cells, were annotated in the genomic data. According to the genomic data, M0-14T has a metabolic pathway related to phosphorus accumulation. The DNA G+C content of the genomic DNA was 70.8 %. On the basis of its phylogenetic relationship, phenotypic properties and chemotaxonomic distinctiveness, strain M0-14T represents a novel species of the genus Pengzhenrongella, for which the name Pengzhenrongella phosphoraccumulans sp. nov. is proposed. The type strain is M0-14T (= CCTCC AB 2012967T = NRRL B-59105T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Ice Cover , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Arctic Regions , Fatty Acids/chemistry , Vitamin K 2/analogs & derivatives , DNA, Bacterial/genetics , Ice Cover/microbiology , Phospholipids , Svalbard
6.
Antonie Van Leeuwenhoek ; 117(1): 60, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517574

ABSTRACT

The microbial diversity associated with terrestrial groundwater seepage through permafrost soils is tightly coupled to the geochemistry of these fluids. Terrestrial alkaline methane seeps from Lagoon Pingo, Central Spitsbergen (78°N) in Norway, with methane-saturated and oxygen-limited groundwater discharge providing a potential habitat for methanotrophy. Here, we report on the microbial community's comparative analyses and distribution patterns at two sites close to Lagoon Pingo's methane emission source. To target methane-oxidizing bacteria from this system, we analysed the microbial community pattern of replicate samples from two sections near the main methane seepage source. DNA extraction, metabarcoding and subsequent sequencing of 16S rRNA genes revealed microbial communities where the major prokaryotic phyla were Pseudomonadota (42-47%), Gemmatimonadota (4-14%) and Actinobacteriota (7-11%). Among the Pseudomonadota, members of the genus Methylobacter were present at relative abundances between 1.6 and 4.7%. Enrichment targeting the methane oxidising bacteria was set up using methane seep sediments as inoculum and methane as the sole carbon and energy source, and this resulted in the isolation of a novel psychrophilic methane oxidizer, LS7-T4AT. The optimum growth temperature for the isolate was 13 °C and the pH optimum was 8.0. The morphology of cells was short rods, and TEM analysis revealed intracytoplasmic membranes arranged in stacks, a distinctive feature for Type I methanotrophs in the family Methylomonadaceae of the class Gammaproteobacteria. The strain belongs to the genus Methylobacter based on high 16S rRNA gene similarity to the psychrophilic species of Methylobacter psychrophilus Z-0021T (98.95%), the psychrophilic strain Methylobacter sp. strain S3L5C (99.00%), and the Arctic mesophilic species of Methylobacter tundripaludum SV96T (99.06%). The genome size of LS7-T4AT was 4,338,157 bp with a G + C content of 47.93%. The average nucleotide identities (ANIb) of strain LS7-T4AT to 10 isolated strains of genus Methylobacter were between 75.54 and 85.51%, lower than the species threshold of 95%. The strain LS7-T4AT represents a novel Arctic species, distinct from other members of the genus Methylobacter, for which the name Methylobacter svalbardensis sp. nov. is proposed. The type of strain is LS7-T4AT (DSMZ:114308, JCM:39463).


Subject(s)
Methane , Methylococcaceae , Methane/analysis , Svalbard , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Fatty Acids/analysis , Phylogeny , DNA, Bacterial/genetics , DNA, Bacterial/chemistry
7.
Sci Total Environ ; 923: 171298, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38431174

ABSTRACT

Although water temperature is one of the most important factors influencing hydrochemistry and river ecology, long-term monitoring and modelling of stream thermal temporal variability are uncommon. There is sparse research regarding the thermal regimes of Arctic rivers, especially in Svalbard, a geographical hotspot affected by extreme climate change and Arctic amplification. There is a need for improvement and better understanding of the factors influencing the stream water temperature regime. To address this research gap, we present a study of the non-glaciated arctic catchment, Fuglebekken (Spitsbergen, Svalbard). We propose methods for reconstructing the thermal regime of the Arctic stream based on available in-situ data. This study evaluates different sets of input variables with hourly time steps required to explain the variability in water temperature. The study comprises two modelling approaches, a stochastic transfer function Multiple Input Single Output and a supervised machine learning technique, Gaussian Process Regression, to simulate the water temperature in the years 2005-2022. The ground temperature at a depth of 20 cm and total solar radiation were found to be the main forcings that explain most of the water temperature variability. The outputs of both models showed similar tendencies and patterns. A diurnal warming trend of 0.5-3.5 °C per decade has been detected in stream water temperature throughout the summer season. The highest increase of 6.0 °C in the water temperature in 2005-2022 was found to be present in the second part of June. The outcomes prove that the thermal regime of the Fuglebekken stream is sensitive to ongoing climatic changes. This variability is an important factor with many environmental implications.

8.
Chemosphere ; 355: 141721, 2024 May.
Article in English | MEDLINE | ID: mdl-38522675

ABSTRACT

For decades, the northern fulmar (Fulmarus glacialis) has been found to ingest and accumulate high loads of plastic due to its feeding ecology and digestive tract morphology. Plastic ingestion can lead to both physical and toxicological effects as ingested plastics can be a pathway for hazardous chemicals into seabirds' tissues. Many of these contaminants are ubiquitous in the environment and the contribution of plastic ingestion to the uptake of those contaminants in seabirds' tissues is poorly known. In this study we aimed at quantifying several plastic-related chemicals (PRCs) -PBDE209, several dechloranes and several phthalate metabolites- and assessing their relationship with plastic burdens (both mass and number) to further investigate their potential use as proxies for plastic ingestion. Blood samples from fulmar fledglings and liver samples from both fledgling and non-fledgling fulmars were collected for PRC quantification. PBDE209 and dechloranes were quantified in 39 and 33 livers, respectively while phthalates were quantified in plasma. Plastic ingestion in these birds has been investigated previously and showed a higher prevalence in fledglings. PBDE209 was detected in 28.2 % of the liver samples. Dechlorane 602 was detected in all samples while Dechloranes 601 and 604 were not detected in any sample. Dechlorane 603 was detected in 11 individuals (33%). Phthalates were detected in one third of the analysed blood samples. Overall, no significant positive correlation was found between plastic burdens and PRC concentrations. However, a significant positive relationship between PBDE209 and plastic number was found in fledglings, although likely driven by one outlier. Our study shows the complexity of PRC exposure, the timeline of plastic ingestion and subsequent uptake of PRCs into the tissues in birds, the additional exposure of these chemicals via their prey, even in a species ingesting high loads of plastic.


Subject(s)
Environmental Monitoring , Phthalic Acids , Plastics , Humans , Animals , Plastics/analysis , Birds , Gastrointestinal Tract/chemistry , Eating
9.
ISME Commun ; 4(1): ycad010, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38328449

ABSTRACT

Arctic sea-ice diatoms fuel polar marine food webs as they emerge from winter darkness into spring. Through their photosynthetic activity they manufacture the nutrients and energy that underpin secondary production. Sea-ice diatom abundance and biomolecular composition vary in space and time. With climate change causing short-term extremes and long-term shifts in environmental conditions, understanding how and in what way diatoms adjust biomolecular stores with environmental perturbation is important to gain insight into future ecosystem energy production and nutrient transfer. Using synchrotron-based Fourier transform infrared microspectroscopy, we examined the biomolecular composition of five dominant sea-ice diatom taxa from landfast ice communities covering a range of under-ice light conditions during spring, in Svalbard, Norway. In all five taxa, we saw a doubling of lipid and fatty acid content when light transmitted to the ice-water interface was >5% but <15% (85%-95% attenuation through snow and ice). We determined a threshold around 15% light transmittance after which biomolecular synthesis plateaued, likely because of photoinhibitory effects, except for Navicula spp., which continued to accumulate lipids. Increasing under-ice light availability led to increased energy allocation towards carbohydrates, but this was secondary to lipid synthesis, whereas protein content remained stable. It is predicted that under-ice light availability will change in the Arctic, increasing because of sea-ice thinning and potentially decreasing with higher snowfall. Our findings show that the nutritional content of sea-ice diatoms is taxon-specific and linked to these changes, highlighting potential implications for future energy and nutrient supply for the polar marine food web.

10.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38365229

ABSTRACT

Coastal shelf sediments are hot spots of organic matter mineralization. They receive up to 50% of primary production, which, in higher latitudes, is strongly seasonal. Polar and temperate benthic bacterial communities, however, show a stable composition based on comparative 16S rRNA gene sequencing despite different microbial activity levels. Here, we aimed to resolve this contradiction by identifying seasonal changes at the functional level, in particular with respect to algal polysaccharide degradation genes, by combining metagenomics, metatranscriptomics, and glycan analysis in sandy surface sediments from Isfjorden, Svalbard. Gene expressions of diverse carbohydrate-active enzymes changed between winter and spring. For example, ß-1,3-glucosidases (e.g. GH30, GH17, GH16) degrading laminarin, an energy storage molecule of algae, were elevated in spring, while enzymes related to α-glucan degradation were expressed in both seasons with maxima in winter (e.g. GH63, GH13_18, and GH15). Also, the expression of GH23 involved in peptidoglycan degradation was prevalent, which is in line with recycling of bacterial biomass. Sugar extractions from bulk sediments were low in concentrations during winter but higher in spring samples, with glucose constituting the largest fraction of measured monosaccharides (84% ± 14%). In porewater, glycan concentrations were ~18-fold higher than in overlying seawater (1107 ± 484 vs. 62 ± 101 µg C l-1) and were depleted in glucose. Our data indicate that microbial communities in sandy sediments digest and transform labile parts of photosynthesis-derived particulate organic matter and likely release more stable, glucose-depleted residual glycans of unknown structures, quantities, and residence times into the ocean, thus modulating the glycan composition of marine coastal waters.


Subject(s)
Microbiota , Seawater , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Bacteria/genetics , Glucose , Geologic Sediments/microbiology
11.
Article in English | MEDLINE | ID: mdl-38265430

ABSTRACT

Identified as a newly described species from a biocrust in Svalbard, Norway (78° 54' 8.27″ N 12° 01' 20.34″ E), isolate PAP01T has different characteristics from any known predatory bacteria. The isolate was vibrio-shaped strain that employed flagellar motility. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate clustered within the genus Bdellovibrio in the family Bdellovibrionaceae. 16S rRNA gene sequence similarities between strain PAP01T and the type strain (Bdellovibrio bacteriovorus HD100) was 95.7 %. The PAP01T genome has a size of 3.898 Mbp and possesses 3732 genes and a G+C content of 45.7 mol%. The results of genetic and physiological tests indicated the phenotypic differentiation of strain PAP01T from the two other Bdellovibrio species with validly published names. Based on the physiological and phylogenetic data, as well as the prey range spectrum and osmolality sensitivities, isolate PAP01T represents a novel species within the genus Bdellovibrio, for which the name Bdellovibrio svalbardensis sp. nov. is proposed. The type strain is PAP01T (=KCTC 92583T=DSM 115080T).


Subject(s)
Bdellovibrio , Svalbard , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Fatty Acids/chemistry , Norway
12.
Mol Ecol ; 33(5): e17274, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279681

ABSTRACT

Overharvest can severely reduce the abundance and distribution of a species and thereby impact its genetic diversity and threaten its future viability. Overharvest remains an ongoing issue for Arctic mammals, which due to climate change now also confront one of the fastest changing environments on Earth. The high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus), endemic to Svalbard, experienced a harvest-induced demographic bottleneck that occurred during the 17-20th centuries. Here, we investigate changes in genetic diversity, population structure, and gene-specific differentiation during and after this overharvesting event. Using whole-genome shotgun sequencing, we generated the first ancient and historical nuclear (n = 11) and mitochondrial (n = 18) genomes from Svalbard reindeer (up to 4000 BP) and integrated these data with a large collection of modern genome sequences (n = 90) to infer temporal changes. We show that hunting resulted in major genetic changes and restructuring in reindeer populations. Near-extirpation followed by pronounced genetic drift has altered the allele frequencies of important genes contributing to diverse biological functions. Median heterozygosity was reduced by 26%, while the mitochondrial genetic diversity was reduced only to a limited extent, likely due to already low pre-harvest diversity and a complex post-harvest recolonization process. Such genomic erosion and genetic isolation of populations due to past anthropogenic disturbance will likely play a major role in metapopulation dynamics (i.e., extirpation, recolonization) under further climate change. Our results from a high-arctic case study therefore emphasize the need to understand the long-term interplay of past, current, and future stressors in wildlife conservation.


Subject(s)
Reindeer , Animals , Reindeer/genetics , Animals, Wild , Gene Frequency , Genetic Drift , Svalbard
13.
Open Res Eur ; 3: 124, 2023.
Article in English | MEDLINE | ID: mdl-37969247

ABSTRACT

Background: The Billefjorden area in central Spitsbergen hosts thick Lower-lowermost Upper Devonian, late-post-Caledonian collapse deposits presumably deformed during the Late Devonian Svalbardian Orogeny. These rocks are juxtaposed against Proterozoic basement rocks along the Billefjorden Fault Zone and are overlain by uppermost Devonian-early Permian deposits of the Billefjorden Trough, a N-S-trending Carboniferous rift basin bounded by the Billefjorden Fault Zone. Methods: We interpreted seismic reflection (also depth-converted), bathymetric, and exploration well data. Results: The data show abundant Early Devonian, WNW-ESE-striking (oblique-slip) normal faults segmenting the Billefjorden Trough, and a gradual decrease in tectonic activity from the Early Devonian (collapse phase) to early Permian (post-rift phase). Early Devonian-Middle Pennsylvanian WNW-ESE-striking faults were mildly reactivated and overprinted and accommodated strain partitioning and decoupling in the early Cenozoic. This resulted in intense deformation of Lower Devonian sedimentary rocks and in the formation of bedding-parallel décollements, e.g., between the Lower Devonian Wood Bay and the uppermost Pennsylvanian-lowermost Permian Wordiekammen formations. This suggests that intense deformation within Devonian rocks in Dickson Land can be explained by Eurekan deformation alone. Eurekan deformation also resulted in the formation of WNW-ESE- and N-S- to NNE-SSW-trending, kilometer-wide, open folds such as the Petuniabukta Syncline, and in inversion and/or overprinting of Early Devonian to Early Pennsylvanian normal faults by sinistral-reverse Eurekan thrusts. WNW-ESE-striking faults merge at depth with similarly trending and dipping ductile shear zone fabrics in Proterozoic basement rocks, which likely formed during the Timanian Orogeny. Conclusions: A NNE-dipping shear zone, which is part of a large system of Timanian thrusts in the Barents Sea, controlled the formation of WNW-ESE-striking Devonian-Mississippian normal faults and syn-tectonic sedimentary rocks in Billefjorden. Eurekan strain partitioning and decoupling suggest that the Svalbardian Orogeny did not occur in Svalbard.

14.
Microb Genom ; 9(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37937832

ABSTRACT

The rapid warming of the Arctic is threatening the demise of its glaciers and their associated ecosystems. Therefore, there is an urgent need to explore and understand the diversity of genomes resident within glacial ecosystems endangered by human-induced climate change. In this study we use genome-resolved metagenomics to explore the taxonomic and functional diversity of different habitats within glacier-occupied catchments. Comparing different habitats within such catchments offers a natural experiment for understanding the effects of changing habitat extent or even loss upon Arctic microbiota. Through binning and annotation of metagenome-assembled genomes (MAGs) we describe the spatial differences in taxon distribution and their implications for glacier-associated biogeochemical cycling. Multiple taxa associated with carbon cycling included organisms with the potential for carbon monoxide oxidation. Meanwhile, nitrogen fixation was mediated by a single taxon, although diverse taxa contribute to other nitrogen conversions. Genes for sulphur oxidation were prevalent within MAGs implying the potential capacity for sulphur cycling. Finally, we focused on cyanobacterial MAGs, and those within cryoconite, a biodiverse microbe-mineral granular aggregate responsible for darkening glacier surfaces. Although the metagenome-assembled genome of Phormidesmis priestleyi, the cyanobacterium responsible for forming Arctic cryoconite was represented with high coverage, evidence for the biosynthesis of multiple vitamins and co-factors was absent from its MAG. Our results indicate the potential for cross-feeding to sustain P. priestleyi within granular cryoconite. Taken together, genome-resolved metagenomics reveals the vulnerability of glacier-associated microbiota to the deletion of glacial habitats through the rapid warming of the Arctic.


Subject(s)
Ice Cover , Microbiota , Humans , Ice Cover/chemistry , Ice Cover/microbiology , Metagenome , Microbiota/genetics , Biodiversity , Sulfur
15.
Open Vet J ; 13(8): 1037-1043, 2023 08.
Article in English | MEDLINE | ID: mdl-37701662

ABSTRACT

Background: Reindeer are becoming popular animals within petting farms. Few case reports describe the sedation of domesticated reindeer, but none describe the use of ocular local anesthetic blocks in this species. Case Description: A 9-year-old, female, Svalbard reindeer (Rangifer tarandus platyrhynchus) presenting for removal of a squamous cell carcinoma involving the third eyelid. Standing sedation was performed using initial boluses of medetomidine and butorphanol via intramuscular injection before catheter placement and maintenance with a variable rate infusion of medetomidine. Supraorbital, auriculopalpebral, infratrochlear blocks and local infiltration of the base of the third eyelid were performed using mepivacaine. Following the surgical removal of the third eyelid, atipamazole was administered intramuscularly to antagonize the effects of medetomidine. The patient recovered without complications. Conclusion: Medetomidine-butorphanol in combination with local anesthetic blocks provided a sufficient plane of sedation and analgesia for extra ocular surgery in a domesticated reindeer.


Subject(s)
Reindeer , Female , Animals , Anesthetics, Local , Butorphanol/therapeutic use , Medetomidine , Nictitating Membrane , Anesthesia, Local/veterinary
16.
FEMS Microbiol Ecol ; 99(8)2023 07 21.
Article in English | MEDLINE | ID: mdl-37349965

ABSTRACT

The Arctic Ocean is particularly affected by climate change with unknown consequences for primary productivity. Diazotrophs-prokaryotes capable of converting atmospheric nitrogen to ammonia-have been detected in the often nitrogen-limited Arctic Ocean but distribution and community composition dynamics are largely unknown. We performed amplicon sequencing of the diazotroph marker gene nifH from glacial rivers, coastal, and open ocean regions and identified regionally distinct Arctic communities. Proteobacterial diazotrophs dominated all seasons, epi- to mesopelagic depths and rivers to open waters and, surprisingly, Cyanobacteria were only sporadically identified in coastal and freshwaters. The upstream environment of glacial rivers influenced diazotroph diversity, and in marine samples putative anaerobic sulphate-reducers showed seasonal succession with highest prevalence in summer to polar night. Betaproteobacteria (Burkholderiales, Nitrosomonadales, and Rhodocyclales) were typically found in rivers and freshwater-influenced waters, and Delta- (Desulfuromonadales, Desulfobacterales, and Desulfovibrionales) and Gammaproteobacteria in marine waters. The identified community composition dynamics, likely driven by runoff, inorganic nutrients, particulate organic carbon, and seasonality, imply diazotrophy a phenotype of ecological relevance with expected responsiveness to ongoing climate change. Our study largely expands baseline knowledge of Arctic diazotrophs-a prerequisite to understand underpinning of nitrogen fixation-and supports nitrogen fixation as a contributor of new nitrogen in the rapidly changing Arctic Ocean.


Subject(s)
Betaproteobacteria , Cyanobacteria , Cyanobacteria/genetics , Proteobacteria/genetics , Nitrogen Fixation/genetics , Rivers , Betaproteobacteria/genetics , Nitrogen
17.
J Hazard Mater ; 452: 131317, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37003004

ABSTRACT

The primary environmental concern related to nuclear power is the production of radioactive waste hazardous to humans and the environment. The main scientific and technological problems to address this are related to the storage and disposal of the nuclear waste and monitoring the dispersion of radioactive species into the environment. In this work, we determined an anomalously high 14C activity, well above the modern natural background, on surface and seasonal snow sampled in early May 2019 on glaciers in the Hornsund fjord area (Svalbard). Due to the lack of local sources, the high snow concentrations of 14C suggest long-range atmospheric transport of nuclear waste particles from lower latitudes, where nuclear power plants and treatment stations are located. The analysis of the synoptic and local meteorological data allowed us to associate the long-range transport of this anomalous 14C concentration to an intrusion event of a warm and humid air mass that likely brought pollutants from Central Europe to the Arctic in late April 2019. Elemental and organic carbon, trace element concentration data, and scanning electron microscopy morphological analysis were performed on the same snow samples to better constrain the transport process that might have led to the high 14C radionuclide concentrations in Svalbard. In particular, the highest 14C values found in the snowpack (> 200 percent of Modern Carbon, pMC) were associated with the lowest OC/EC ratios (< 4), an indication of an anthropogenic industrial source, and with the presence of spherical particles rich in iron, zirconium, and titanium which, altogether, suggest an origin related to nuclear waste reprocessing plants. This study highlights the role of long-range transport in exposing Arctic environments to human pollution. Given that the frequency and intensity of these atmospheric warming events are predicted to increase due to ongoing climate change, improving our knowledge of their possible impact to Arctic pollution is becoming urgent.

18.
Mar Pollut Bull ; 189: 114759, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36857993

ABSTRACT

This study provided new data on shell mineralogy in 23 Arctic bivalve species. The majority of examined species had purely aragonitic shells. Furthermore, we measured concentrations of Al, Ba, Ca, Fe, K, Mg, Mn, Na, P, S, Sr and Zn in 542 shells representing 25 Arctic bivalve species. Species-related differences in concentrations of specific elements were significant and occurred regardless of locations and water depths. This observation implies the dominance of biological processes regulating elemental uptake into the skeleton over factors related to the variability of abiotic environmental conditions. Analysis of the present study and literature data revealed that the highest concentrations of metals were observed in bivalves collected in the temperate zone, with intermediate levels in the tropics and the lowest levels in polar regions. This trend was ascribed mainly to the presence of higher anthropogenic pressure at temperate latitudes being a potential source of human-mediated metal pollution.


Subject(s)
Bivalvia , Trace Elements , Animals , Humans , Metals/analysis , Calcium Carbonate/analysis , Arctic Regions , Environmental Monitoring , Trace Elements/analysis
19.
Ecol Evol ; 13(3): e9892, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36950366

ABSTRACT

For many arctic species, the spatial (re-)colonization patterns after the last Pleistocene glaciation have been described. However, the temporal aspects of their colonization are largely missing. Did one route prevail early, while another was more important later? The high Arctic archipelago Svalbard represents a good model system to address timeframe of postglacial plant colonization. Svalbard was almost fully glaciated during last glacial maximum and (re-)colonization of vascular plants began in early Holocene. Early Holocene climatic optimum (HCO) supported an expanded establishment of a partly thermophilic vegetation. Today, we find remnants of this vegetation in sheltered regions referred to as "Arctic biodiversity hotspots". The oldest record of postglacial plant colonization to Svalbard is found in Ringhorndalen-Flatøyrdalen. Even though thermophilic species could establish also later in Holocene, only HCO was favorable for vast colonization, and only hotspots offered stable conditions for thermophilic populations throughout Holocene. Thus, these relic populations may reflect colonization patterns of HCO. We investigate whether the colonization direction of thermophilic plants (Arnica angustifolia, Campanula uniflora, Pinguicula alpina, Tofieldia pusilla, and Vaccinium uliginosum ssp. microphyllum) in Ringhorndalen-Flatøyrdalen was uniform and different from later colonization events in other localities and non-thermophilic plants (Arenaria humifusa, Bistorta vivipara, Juncus biglumis, Oxyria digyna, and Silene acaulis). We analyzed plastid haplotypes of the 10 taxa from Ringhorndalen-Flatøyrdalen, from later-colonized localities in Svalbard, and from putative source regions outside Svalbard. Only rare and thermophilic taxa Campanula uniflora and Vaccinium uliginosum ssp. microphyllum provided results suggesting at least two colonization events from different source regions. Tofieldia pusilla and all the non-thermophilic plants showed no clear phylogeographically differentiation within Svalbard. Two of the thermophilic species showed no sequence variation. Based on the results, a uniform colonization direction to Svalbard in early Holocene is not probable; several source areas and dispersal directions were contemporarily involved.

20.
Mar Pollut Bull ; 189: 114740, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36841213

ABSTRACT

Distribution and sources of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in the glacimarine sediments (35 sites) of Svalbard were investigated. PCBs (32 congeners), traditional PAHs (15 homologs), emerging PAHs (11 homologs), and alkylated PAHs (16 homologs) were widely distributed in the Svalbard sediments (ranges: below method detection limit to 20, 21 to 3600, 1.0 to 1400, and 31 to 15,000 ng g-1 dry weight, respectively). Compositional analysis indicated that PCBs mainly originated from combustion sources, with PAHs being strongly influenced by local sources. Positive matrix factorization analysis showed that PAHs were associated with vehicle and petroleum combustion, coal, and coal combustion. Coal-derived PAHs contributed significantly to the sediments of Van Mijenfjorden. Remnants of coal mining activity trapped in the permafrost appear to enter the coastal environments as ground ice melts. Consequently, PAHs are currently emerging as the most significant contributors to potential risks in the Svalbard ecosystems.


Subject(s)
Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Svalbard , Ecosystem , Geologic Sediments/analysis , Environmental Monitoring/methods , Coal/analysis , Water Pollutants, Chemical/analysis , China
SELECTION OF CITATIONS
SEARCH DETAIL