Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.055
Filter
1.
J Ethnopharmacol ; 336: 118661, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39159837

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Shuangdan Jiedu Decoction (SJD) is a formula composed of six Chinese herbs with heat-removing and detoxifying, antibacterial, and anti-inflammatory effects, which is clinically used in the therapy of various inflammatory diseases of the lungs including COVID-19, but the therapeutic material basis of its action as well as its molecular mechanism are still unclear. AIM OF THE STUDY: The study attempted to determine the therapeutic effect of SJD on LPS-induced acute lung injury (ALI), as well as to investigate its mechanism of action and assess its therapeutic potential for the cure of inflammation-related diseases in the clinical setting. MATERIALS AND METHODS: We established an ALI model by tracheal drip LPS, and after the administration of SJD, we collected the bronchoalveolar lavage fluid (BALF) and lung tissues of mice and examined the expression of inflammatory factors in them. In addition, we evaluated the effects of SJD on the cyclic guanosine monophosphate-adenosine monophosphate synthase -stimulator of interferon genes (cGAS-STING) and inflammasome by immunoblotting and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: We demonstrated that SJD was effective in alleviating LPS-induced ALI by suppressing the levels of pro-inflammatory cytokines in the BALF, improving the level of lung histopathology and the number of neutrophils, as well as decreasing the inflammatory factor-associated gene expression. Importantly, we found that SJD could inhibit multiple stimulus-driven activation of cGAS-STING and inflammasome. Further studies showed that the Chinese herbal medicines in SJD had no influence on the cGAS-STING pathway and inflammasome alone at the formulated dose. By increasing the concentration of these herbs, we observed inhibitory effects on the cGAS-STING pathway and inflammasome, and the effect exerted was maximal when the six herbs were combined, indicating that the synergistic effects among these herbs plays a crucial role in the anti-inflammatory effects of SJD. CONCLUSIONS: Our research demonstrated that SJD has a favorable protective effect against ALI, and its mechanism of effect may be associated with the synergistic effect exerted between six Chinese medicines to inhibit the cGAS-STING and inflammasome abnormal activation. These results are favorable for the wide application of SJD in the clinic as well as for the development of drugs for ALI from herbal formulas.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , Inflammasomes , Lipopolysaccharides , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Lipopolysaccharides/toxicity , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Nucleotidyltransferases/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Male , Signal Transduction/drug effects , Mice, Inbred C57BL , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal , Lung/drug effects , Lung/pathology , Lung/metabolism , Bronchoalveolar Lavage Fluid/cytology
2.
J Colloid Interface Sci ; 677(Pt B): 331-341, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39151226

ABSTRACT

Anchoring Pt onto multi-heteroatom doped carbon materials has been recognized as an effective approach to improve the performance of electrocatalytic methanol oxidation. However, distinct contributions and specific behavior mechanisms of different heteroatoms, notably N and P, the specific behavior mechanisms in synergistically promoting Pt NPs remain elusive. In this work, we construct 1D N and P co-doped carbon nanotube (N, P-CNTs) supports with abundant defect anchors for Pt. The as-prepared Pt/N, P-CNTs exhibit outstanding activity and exceptional stability in methanol oxidation reaction (MOR), achieving high mass activity up to 6481.3 mA mg-1Pt. Moreover, they can retain 90.5 % of their initial current density even after 800 cycles tests. Detailed characterizations and theoretical calculations indicate that the robust strong metal-support interactions (SMSI) effect caused by N doping within the unique N and P co-doped coordination structure controllably regulate the coordination environment of Pt, reduce the d-band center of Pt, thus promoting the adsorption and decomposition of CH3OH. However, P doping weakens the adsorption strength of CO on the Pt active site by sacrificing partial electron transfer, accelerating the oxidative conversion of the CO-like poisoning species (COads). Significantly, the synergistic mechanism of N and P species on the modification of Pt's electronic structure and its subsequent impact on the electrocatalytic methanol oxidation behaviors on the Pt surface was thoroughly elucidated, providing a constructive route for designing robust MOR electrocatalysts with high MOR activity and durability.

3.
J Colloid Interface Sci ; 677(Pt A): 459-469, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39098279

ABSTRACT

High working voltage, large theoretical capacity and cheapness render Mn3O4 promising cathode candidate for aqueous zinc ion batteries (AZIBs). Unfortunately, poor electrochemical activity and bad structural stability lead to low capacity and unsatisfactory cycling performance. Herein, Mn3O4 material was fabricated through a facile precipitation reaction and divalent copper ions were introduced into the crystal framework, and ultra-small Cu-doped Mn3O4 nanocrystalline cathode materials with mixed valence states of Mn2+, Mn3+ and Mn4+ were obtained via post-calcination. The presence of Cu acts as structural stabilizer by partial substitution of Mn, as well as enhance the conductivity and reactivity of Mn3O4. Significantly, based on electrochemical investigations and ex-situ XPS characterization, a synergistic effect between copper and manganese was revealed in the Cu-doped Mn3O4, in which divalent Cu2+ can catalyze the transformation of Mn3+ and Mn4+ to divalent Mn2+, accompanied by the translation of Cu2+ to Cu0 and Cu+. Benefitting from the above advantages, the Mn3O4 cathode doped with moderate copper (abbreviated as CMO-2) delivers large discharge capacity of 352.9 mAh g-1 at 100 mA g-1, which is significantly better than Mn3O4 (only 247.8 mAh g-1). In addition, CMO-2 holds 203.3 mAh g-1 discharge capacity after 1000 cycles at 1 A g-1 with 98.6 % retention, and after 1000 cycles at 5 A g-1, it still performs decent discharge capacity of 104.2 mAh g-1. This work provides new ideas and approaches for constructing manganese-based AZIBs with long lifespan and high capacity.

4.
J Colloid Interface Sci ; 677(Pt A): 548-556, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39111090

ABSTRACT

Designing efficient and stable oxygen evolution reaction (OER) catalyst is the basis for the development of sustainable electrolytic water energy techniques. In this work, we presented a heterogeneous-structured electrocatalyst composed of bimetallic oxides-modified RuO2 nanosheets supported on nikel foam (Co2CrO4/RuO2) using a hybrid hydrothermal, ion-exchange and calcination method. The unique synergy and interfacial coupling between Co2CrO4/RuO2 heterostructures are favorable for optimizing the electronic configuration at this interface and strengthening the charge transport capacity, thus strengthening the catalytic activity of the Co2CrO4/RuO2 catalyst. The experimental data demonstrate that Cr leaching facilitates the rapid reconstruction of the catalyst into oxyhydroxides (CoOOH), which are acknowledged to be the real active species of OER. Theoretical calculations show that the Co2CrO4/RuO2 heterostructure increases the density state at the Fermi energy level and lowers the d-band center, thereby strengthening the catalytic activity. The synthesized Co2CrO4/RuO2 catalyst exhibited OER performance with an overpotential of 209 mV at 10 mA cm-2 and displayed a low Tafel slope of 78.2 mV dec-1, which outperforms most reported advanced alkaline OER catalysts. This work contributes to a new tactic for the design and development of ruthenium oxide/bimetallic oxides electrocatalysts.

5.
J Environ Sci (China) ; 150: 332-339, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306408

ABSTRACT

NH3-SCR (SCR: Selective catalytic reduction) is an effective technology for the de-NOx process from both mobile and stationary pollution sources, and the most commonly used catalysts are the vanadia-based catalysts. An innovative V2O5-CeO2/TaTiOx catalyst for NOx removal was prepared in this study. The influences of Ce and Ta in the V2O5-CeO2/TaTiOx catalyst on the SCR performance and physicochemical properties were investigated. The V2O5-CeO2/TaTiOx catalyst not only exhibited excellent SCR activity in a wide temperature window, but also presented strong resistance to H2O and SO2 at 275 ℃. A series of characterization methods was used to study the catalysts, including H2-temperature programmed reduction, X-ray photoelectron spectroscopy, NH3-temperature programmed desorption, etc. It was discovered that a synergistic effect existed between Ce and Ta species. The introduction of Ce and Ta enlarged the specific surface area, increased the amount of acid sites and the ratio of Ce3+, (V3++V4+) and Oα, and strengthened the redox capability which were related to synergistic effect between Ce and Ta species, significantly improving the NH3-SCR activity.


Subject(s)
Ammonia , Cerium , Titanium , Vanadium Compounds , Catalysis , Cerium/chemistry , Titanium/chemistry , Ammonia/chemistry , Vanadium Compounds/chemistry , Air Pollutants/chemistry , Oxidation-Reduction , Air Pollution/prevention & control
6.
Food Chem ; 462: 141010, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39217745

ABSTRACT

In this study, we investigated how different proportions blends of Rhamnogalacturonan-I pectic polysaccharides and hesperidin impact the gut microbiota and metabolites using an in vitro simulated digestion and fermentation model. The results indicated that both of them could modulate the gut microbiota and produce beneficial metabolites. However, their blends in particular proportions (such as 1:1) exhibited remarkable synergistic effects on modulating the intestinal microenvironment, surpassing the effects observed with individual components. Specifically, these blends could benefit the host by increasing short-chain fatty acids production (such as acetate), improving hesperidin bioavailability, producing more metabolites (such as hesperetin, phenolic acids), and promoting the growth of beneficial bacteria. This synergistic and additive effect was inseparable from the role of gut microbiota. Certain beneficial bacteria, such as Blautia, Faecalibacterium, and Prevotella, exhibited strong preferences for those blends, thereby contributing to host health through participating in carbohydrate and flavonoid metabolism.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Hesperidin , Pectins , Hesperidin/pharmacology , Hesperidin/metabolism , Gastrointestinal Microbiome/drug effects , Bacteria/metabolism , Bacteria/genetics , Bacteria/drug effects , Bacteria/classification , Bacteria/isolation & purification , Humans , Pectins/metabolism , Pectins/chemistry , Pectins/pharmacology , Fermentation , Polysaccharides/pharmacology , Polysaccharides/metabolism , Polysaccharides/chemistry , Fatty Acids, Volatile/metabolism , Digestion , Models, Biological
7.
Food Chem ; 462: 141011, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39226643

ABSTRACT

Chlorogenic acid (CGA) is a well-known plant secondary metabolite exhibiting multiple physiological functions. The present study focused on screening for synergistic antibacterial combinations containing CGA. The combination of CGA and p-coumaric acid (pCA) exhibited remarkably enhanced antibacterial activity compared to that when administering the treatment only. Scanning electron microscopy revealed that a low-dose combination treatment could disrupt the Shigella dysenteriae cell membrane. A comprehensive analysis using nucleic acid and protein leakage assay, conductivity measurements, and biofilm formation inhibition experiments revealed that co-treatment increased the cell permeability and inhibited the biofilm formation substantially. Further, the polyacrylamide protein- and agarose gel-electrophoresis indicated that the proteins and DNA genome of Shigella dysenteriae severely degraded. Finally, the synergistic bactericidal effect was established for fresh-cut tomato preservation. This study demonstrates the remarkable potential of strategically selecting antibacterial agents with maximum synergistic effect and minimum dosage exhibiting excellent antibacterial activity in food preservation.


Subject(s)
Anti-Bacterial Agents , Chlorogenic Acid , Coumaric Acids , Drug Synergism , Shigella dysenteriae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Coumaric Acids/pharmacology , Coumaric Acids/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/chemistry , Shigella dysenteriae/drug effects , Microbial Sensitivity Tests , Biofilms/drug effects , Propionates/pharmacology , Solanum lycopersicum/chemistry , Solanum lycopersicum/microbiology , Food Preservation/methods
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124981, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39154405

ABSTRACT

The bimetallic nanostructure of Au and Ag can integrate two distinct properties into a novel substrate compared to single metal nanostructures. This work presents a rapid and sensitive surface-enhanced Raman scattering (SERS) substrate for detecting illegal food additives and dyes of crystal violet (CV) and alkali blue 6B (AB 6B). Au-Ag alloy nanoparticles/Ag nanowires (Au-Ag ANPs/Ag NWs) were prepared by solid-state ionics method and vacuum thermal evaporation method at 5µA direct current electric field (DCEF), the molar ratio of Au to Ag was 1:18.34. Many 40 nm-140 nm nanoparticles regularly existed on the surface of Ag NWs with the diameters from 80 nm to 150 nm. The fractal dimension of Au-Ag ANPs/Ag NWs is 1.69 due to macroscopic dendritic structures. Compared with single Ag NWs, the prepared Au-Ag ANPs/Ag NWs substrates show superior SERS performance because of higher surface roughness, the SERS active of Ag NWs and bimetallic synergistic effect caused by Au-Ag ANPs, so the limit of detections (LOD) of Au-Ag ANPs/Ag NWs SERS substrates toward detection of CV and AB 6B were as low as 10-16mol/L and 10-9mol/L, respectively. These results indicate that Au-Ag ANPs/Ag NWs substrates can be used for rapid and sensitive detection of CV and AB 6B and have great development potential for detection of illegal food additives and hazardous substances in the fields of environmental monitoring and food safety.

9.
Sci Rep ; 14(1): 22856, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354063

ABSTRACT

Vacuum residue (VR) was copyrolysed with polyethylene (PE) or polystyrene (PS) in a batch reactor to investigate the corresponding synergistic pyrolytic interactions. The synergistic interactions between VR and plastic pyrolysates enhanced liquid and gas production while reducing coke formation, as compared with VR-only and plastic-only pyrolysis. The pyrolysis of 9:1 w/w VR: PE3M (PE with Mw = 3 MDa) and 9:1 w/w VR/PS350K (PS with Mw ≈ 350 kDa) mixtures produced oil in yields of 28.6 and 38.4 wt%, respectively, which exceeded those expected in the absence of synergistic interactions 1.12- and 1.29-fold, respectively. The corresponding coke yields were ~ 0.9 times lower than those expected in the absence of synergistic interactions. Moreover, copyrolysis synergistically increased the yields of oil-phase paraffins and olefins while decreasing that of aromatic compounds and was therefore concluded to enable effective VR utilisation and plastic recycling by enhancing liquid and gas production.

10.
Front Endocrinol (Lausanne) ; 15: 1403717, 2024.
Article in English | MEDLINE | ID: mdl-39355615

ABSTRACT

Background: Patients with type 2 diabetes mellitus (DM) have a high prevalence of chronic kidney disease (CKD). Energy imbalance and inflammation may be involved in the pathogenesis of CKD. We examined the effects of brain-derived neurotrophic factor (BDNF) and vascular cell adhesion molecule-1 (VCAM-1) on CKD in patients with type 2 DM. Methods: Patients with type 2 DM were enrolled for this cross-sectional study. Fasting serum was prepared to measure the BDNF and VCAM-1 levels. An estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 was used as the criterion for identifying patients with CKD. Results: Of the 548 enrolled participants, 156 had CKD. Patients with CKD exhibited significantly lower BDNF (median of 21.4 ng/mL, interquartile range [IQR]: 17.0-27.0 ng/mL vs. median of 25.9 ng/mL, IQR: 21.0-30.4 ng/mL, P <0.001) and higher VCAM-1 (median of 917 ng/mL, IQR: 761-1172 ng/mL vs. median of 669 ng/mL, IQR: 552-857 ng/mL, P <0.001) levels than those without CKD. Serum BDNF levels were inversely correlated with VCAM-1 levels (Spearman's rank correlation coefficient = -0.210, P <0.001). The patients were divided into four subgroups based on median BDNF and VCAM-1 levels (24.88 ng/mL and 750 ng/mL, respectively). Notably, patients in the high VCAM-1 and low BDNF group had the highest prevalence (50%) of CKD. Multivariate logistic regression revealed a significantly higher odds ratio (OR) of CKD in the high VCAM-1 and low BDNF group (OR = 3.885, 95% CI: 1.766-8.547, P <0.001), followed by that in the high VCAM-1 and high BDNF group (OR = 3.099, 95% CI: 1.373-6.992, P =0.006) compared with that in the low VCAM-1 and high BDNF group. However, the risk of CKD in the low VCAM-1 and low BDNF group was not significantly different from that in the low VCAM-1 and high BDNF group (P =0.266). Conclusion: CKD in patients with type 2 DM is associated with low serum BDNF and high VCAM-1 levels. BDNF and VCAM-1 have a synergistic effect on CKD. Thus, BDNF and VCAM-1 can be potential biomarkers for CKD risk stratification in patients with type 2 DM.


Subject(s)
Brain-Derived Neurotrophic Factor , Diabetes Mellitus, Type 2 , Renal Insufficiency, Chronic , Vascular Cell Adhesion Molecule-1 , Humans , Brain-Derived Neurotrophic Factor/blood , Vascular Cell Adhesion Molecule-1/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Male , Female , Cross-Sectional Studies , Middle Aged , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/complications , Aged , Biomarkers/blood , Glomerular Filtration Rate
11.
Article in English | MEDLINE | ID: mdl-39357010

ABSTRACT

Doping modifications and surface coatings are effective methods to slow volume dilatation and boost the conductivity in silicon (Si) anodes for lithium-ion batteries (LIBs). Herein, using low-cost ferrosilicon from industrial production as the energy storage material, a bread-like nitrogen-doped carbon shell-coated porous Si embedded with the titanium nitride (TiN) nanoparticle composite (PSi/TiN@NC) was synthesized by simple ball milling, etching, and self-assembly growth processes. Remarkably, the porous Si structure formed by etching the FeSi2 phase in ferrosilicon alloys can provide buffer space for significant volume expansion during lithiation. Highly conductive and stable TiN particles can act as stress absorption sites for Si and improve the electronic conductivity of the material. Furthermore, the nitrogen-doped porous carbon shell further helps to sustain the structural stability of the electrode material and boost the migration rate of Li-ions. Benefiting from its unique synergistic effect of components, the PSi/TiN@NC anode exhibits a reversible discharge capacity up to 1324.2 mAh g-1 with a capacity retention rate of 91.5% after 100 cycles at 0.5 A g-1 (vs fourth discharge). Simultaneously, the electrode also delivers good rate performance and a stable discharge capacity of 923.6 mAh g-1 over 300 cycles. This research can offer a potential economic strategy for the development of high-performance and inexpensive Si-based anodes for LIBs.

12.
J Agric Food Chem ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39361812

ABSTRACT

The limited expression of cellobiose 2-epimerase poses a significant constraint on the industrial enzymatic production of lactulose. Extensive modifications to the expression cassette offer a means to enhance the yield of recombinant proteins. In this study, an integrated strategy, combining individual and collaborative approaches, is proposed to fine-tune each stage of the CsCE overexpression program. This strategy involves the multidimensional integration of standardized genetic elements at various levels, including transcription, translation, folding, and three-dimensional structure. The volumetric activity of the final recombinant strain was markedly increased by 12-fold compared to the wild-type strain, reaching 2260.62 U/L. The protein expression in the newly developed high-yield recombinant strain exhibited a significant enhancement, with a higher proportion of soluble protein compared to that of inclusion bodies. Our findings offer insights into the multifaceted synergistic regulation of protein expression processes, holding promising implications for the production of heterologous recombinant proteins.

13.
Free Radic Biol Med ; 225: 275-285, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39388970

ABSTRACT

The dual-target inhibitors (ZINC000008876351 and ZINC000253403245) were identified by utilizing an advanced computational drug discovery method by targeting two critical enzymes such as FeSODA (Iron superoxide dismutase) and TryR (Trypanothione reductase) within the antioxidant defense system of Leishmania donovani (Ld). In vitro enzyme inhibition kinetics reveals that both the compound's ability to inhibit the function of enzyme LdFeSODA and LdTryR with inhibition constant (Ki) value in the low µM range. Flow cytometry analysis, specifically at IC50 and 2X IC50 doses of both the compounds, the intracellular ROS was significantly increased as compared to the untreated control. The compounds ZINC000253403245 and ZINC000008876351 exhibited strong anti-leishmanial activity in a dose-dependent manner against both the promastigote and amastigote stages of the parasite. The data indicate that these molecules hold promise as potential anti-leishmanial agents for developing new treatments against visceral leishmaniasis, specifically targeting the LdFeSODA and LdTryR enzymes. Additionally, the in vitro MTT assay shows that combining these compounds with miltefosine produces a synergistic effect compared to miltefosine alone. This suggests that the compounds can boost miltefosine's effectiveness by synergistically inhibiting the growth of L. donovani promastigotes. Given the emergence of miltefosine resistance in some Leishmania strains, these findings are particularly significant.

14.
Materials (Basel) ; 17(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39336253

ABSTRACT

Limestone calcined clay cement (LC3) presents a promising alternative material due to its reduced CO2 emissions and superior mechanical properties compared to traditional Portland cement (PC). This study investigates the synergistic effect of calcined coal-series kaolinite (CCK) and limestone (LS) on the hydration behavior of cement, specifically focusing on varying mass ratios. The combination of CCK and LS promotes the formation of strätlingite and carboaluminates, which enhances early-age strength development. Additionally, the inclusion of CCK facilitates the formation of carboaluminates during later stages of hydration. After 56 days of hydration, the content of carboaluminates is over 10%wt. This stimulation of secondary hydration products significantly refines the evolution of pore structure, with the harmful large pores gradually transformed into harmless medium pores and gel pores, leading to marked improvements in compressive strength from 7 to 28 days. Replacing 45% PC with CCK and LS at mass ratio of 7 to 2, the compressive strength of blends reaches 47.2 MPa at 28 days. Overall, the synergistic interaction between CCK and LS presents unique opportunities to minimize the CO2 footprint of the cement industry without compromising early and long-term performance.

15.
Nutrients ; 16(17)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39275332

ABSTRACT

Exceeding a healthy weight significantly elevates the likelihood of developing type 2 diabetes (T2DM). A commercially available singular constituent, available as either purified vitexin or iso-vitexin, has been associated with a decreased risk of T2DM, but its synergistic effect has not been reported yet. Vitexin and iso-vitexin were extracted using an ethanol-based solvent from mung bean seed coat (MBCE) and subsequently purified using preparative liquid chromatography (Prep-LC). Eleven mixture ratios of vitexin and/or iso-vitexin were determined for their antioxidant and antihyperglycemic activities. The 1:1.5 ratio of vitexin to iso-vitexin from MBCE demonstrated the most synergistic effects for enzyme inhibition and glucose uptake in HepG2 cells within an insulin-resistant system, while these ratios exhibited a significantly lower antioxidant capacity than that of each individual component. In a gut model system, the ratio of 1:1.5 (vitexin and iso-vitexin) regulated the gut microbiota composition in overweight individuals by decreasing the growth of Enterobacteriaceae and Enterococcaceae, while increasing in Ruminococcaceae and Lachnospiraceae. The application of vitexin/iso-vitexin for 24 h fermentation enhanced a high variety of abundances of 21 genera resulting in five genera of Parabacteroides, Ruminococcus, Roseburia, Enterocloster, and Peptacetobacter, which belonged to the phylum Firmicutes, exhibiting high abundant changes of more than 5%. Only two genera of Proteus and Butyricicoccus belonging to Proteobacteria and Firmicutes decreased. The findings suggest that these phytochemicals interactions could have synergistic effects in regulating glycemia, through changes in antihyperglycemic activity and in the gut microbiota in overweight individuals. This optimal ratio can be utilized by industries to formulate more potent functional ingredients for functional foods and to create nutraceutical supplements aimed at reducing the risk of T2DM in overweight individuals.


Subject(s)
Apigenin , Gastrointestinal Microbiome , Hypoglycemic Agents , Overweight , Seeds , Vigna , Apigenin/pharmacology , Gastrointestinal Microbiome/drug effects , Humans , Hypoglycemic Agents/pharmacology , Seeds/chemistry , Male , Hep G2 Cells , Diabetes Mellitus, Type 2 , Antioxidants/pharmacology , Plant Extracts/pharmacology , Female
16.
Hereditas ; 161(1): 29, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223679

ABSTRACT

BACKGROUND: Small cell lung carcinoma (SCLC) is characterized by -poor prognosis, -high predilection for -metastasis, -proliferation, and -absence of newer therapeutic options. Elucidation of newer pathways characterizing the disease may allow for development of targeted therapies and consequently favorable outcomes. METHODS: The current study explored the combinatorial action of arsenic trioxide (ATO) and apatinib (APA) in vitro and in vivo. In vitro models were tested using -H446 and -H196 SCLC cell lines. The ability of drugs to reduce -metastasis, -cell proliferation, and -migration were assessed. Using bioinformatic analysis, differentially expressed genes were determined. Gene regulation was assessed using gene knock down models and confirmed using Western blots. The in vivo models were used to confirm the resolution of pathognomic features in the presence of the drugs. Growth factor receptor bound protein (GRB) 10 expression levels of human small cell lung cancer tissues and adjacent tissues were detected by IHC. RESULTS: In combination, ATO and APA were found to significantly reduce -cell proliferation, -migration, and -metastasis in both the cell lines. Cell proliferation was found to be inhibited by activation of Caspase-3, -7 pathway. In the presence of drugs, it was found that expression of GRB10 was stabilized. The silencing of GRB10 was found to negatively regulate the VEGFR2/Akt/mTOR and Akt/GSK-3ß/c-Myc signaling pathway. Concurrently, absence of metastasis and reduction of tumor volume were confirmed in vivo. The immunohistochemical results confirmed that the expression level of GRB10 in adjacent tissues was significantly higher than that in human small cell lung cancer tissues. CONCLUSIONS: Synergistically, ATO and APA have a more significant impact on inhibiting cell proliferation than each drug independently. ATO and APA may be mediating its action through the stabilization of GRB10 thus acting as a tumor suppressor. We thus, preliminarily report the impact of GRB10 stability as a target for SCLC treatment.


Subject(s)
Arsenic Trioxide , Cell Proliferation , Drug Synergism , Lung Neoplasms , Proto-Oncogene Proteins c-akt , Pyridines , Signal Transduction , Small Cell Lung Carcinoma , TOR Serine-Threonine Kinases , Vascular Endothelial Growth Factor Receptor-2 , Arsenic Trioxide/therapeutic use , Arsenic Trioxide/pharmacology , Humans , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Cell Proliferation/drug effects , Animals , Pyridines/pharmacology , Pyridines/therapeutic use , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , GRB10 Adaptor Protein/genetics , Mice , Gene Expression Regulation, Neoplastic/drug effects , Cell Movement/drug effects , Xenograft Model Antitumor Assays , Down-Regulation , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
17.
Sci Total Environ ; 953: 176034, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39236812

ABSTRACT

PURPOSE: To explore the mechanisms of tolerance of Brassica napus to ultra-high concentration cadmium pollution and the synergistic effects of biochar (BC) and Arbuscular mycorrhizal fungi (AMF) on plant growth under cadmium (Cd) stress. RESULTS: The application of 5 % BC and inoculation with 10 g AMF significantly promoted the growth and development of B. napus. The combined application of BC and AMF (BC1A and BC2A) was better than the single application. At the Cd 200 mg/kg level, BC1A increased the fresh weight and Cd content of the above-ground parts of B. napus by 35.5 % and decreased by 21.20 %. The SOD and POD activities increased by 30.63 % and 73.37 %. The MDA and H2O2 contents decreased by 40.8 % and 69.99 %, soluble sugar content increased by 37.96 %. At the Cd 300 mg/kg level, BC1A increased the fresh weight and Cd content of the above-ground parts of B. napus by 32.8 % and decreased by 15.99 %. The SOD and POD activities increased by 39.06 % and 93.56 %. The MDA and H2O2 contents decreased by 28.39 % and 72.45 %, and the soluble sugar content increased by 21.16 %. Overall, both BC and AMF treatments alone or in combination (BC1A) were able to alleviate Cd stress and promote plant growth, with the combination of biochar and AMF being the most effective. Furthermore, transcriptome analyses indicated that BC may improve cadmium resistance in B. napus by significantly up-regulating the expression of genes related to peroxidase, photosynthesis, and plant MAPK signaling pathways. AMF may alleviate the toxicity of Cd stress on B. napus by up-regulating the expression of genes related to peroxisomes, phytohormone signaling, and carotenoid biosynthesis. The results of the study will provide support for ecological restoration technology in extremely heavy metal-polluted environments and provide some reference for the application and popularization of BC and AMF conjugation technology.


Subject(s)
Brassica napus , Cadmium , Charcoal , Mycorrhizae , Soil Pollutants , Brassica napus/drug effects , Brassica napus/microbiology , Cadmium/toxicity , Mycorrhizae/physiology , Soil Pollutants/toxicity
18.
Sci Total Environ ; 953: 176138, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39260476

ABSTRACT

In an era marked by unprecedented anthropogenic change, marine systems are increasingly subjected to interconnected and dynamic external stressors, which profoundly reshape the behavior and resilience of marine ecological components. Nevertheless, despite widespread recognition of the significance of stressor interactions, there persist notable knowledge deficits in quantifying their interactions and the specific biological consequences that result. To bridge this crucial gap, this research detected and examined the causal relationships between five key exogenous stressors in a complex estuarine ecosystem. Furthermore, a Bayesian Hierarchical Spatio-temporal modeling framework was proposed to quantitatively evaluate the distinct, interactive, and globally sensitive effects of multiple stressors on the population dynamics of a crucial fish species: Harpadon nehereus. The results showed that interactions were detected between fisheries pressure (FP), the Pacific Decadal Oscillation index (PDO), runoff volume (RV), and sediment load (SL), with five of these interactions producing significant synergistic effects on H. nehereus biomass. The SL*PDO and RV*PDO interactions had positive synergistic effects, albeit through differing processes. The former interaction amplified the individual effects of each stressor, while the latter reversed the direction of the original impact. Indeed overall, the synergistic effect of multiple stressors was not favorable, with FP in particular posing the greatest threat to H. nehereus population. This threat was more pronounced at high SL or negative PDO phases. Therefore, local management efforts aimed at addressing multiple stressors and protecting resources should consider the findings. Additionally, although the velocity of climate change (VoCC) failed to produce significant interactions, changes in this stressor had the most sensitive impacts on the response of H. nehereus population. This research strives to enhance the dimensionality, generalizability, and flexibility of the quantification framework for marine multi-stressor interactions, aiming to foster broader research collaboration and jointly tackle the intricate pressures facing marine ecosystems.


Subject(s)
Estuaries , Animals , Environmental Monitoring , Ecosystem , Population Dynamics , Fisheries , Bayes Theorem , Stress, Physiological
19.
ACS Appl Mater Interfaces ; 16(38): 50602-50613, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39265050

ABSTRACT

Electrochemical approaches for generating hydrogen from water splitting can be more promising if the challenges in the anodic oxygen evolution reaction (OER) can be harnessed. The interface heterostructure materials offer strong electronic coupling and appropriate charge transport at the interface regions, promoting accessible active sites to prompt kinetics and optimize the adsorption-desorption of active species. Herein, we have designed an efficient multi-interface-engineered Ni3Fe1 LDH/Ni3S2/TW heterostructure on in situ generated titanate web layers from the titanium foam. The synergistic effects of the multi-interface heterostructure caused the exposure of rich interfacial electronic coupling, fast reaction kinetics, and enhanced accessible site activity and site populations. The as-prepared electrocatalyst demonstrates outstanding OER activity, demanding a low overpotential of 220 mV at a high current density of 100 mA cm-2. Similarly, the designed Ni3Fe1 LDH/Ni3S2/TW electrocatalyst exhibits a low Tafel slope of 43.2 mV dec-1 and excellent stability for 100 h of operation, suggesting rapid kinetics and good structural stability. Also, the electrocatalyst shows a low overpotential of 260 mV at 100 mA cm-2 for HER activity. Moreover, the integrated electrocatalyst exhibits an incredible OER activity in simulated seawater with an overpotential of 370 mV at 100 mA cm-2 and stability for 100 h of operation, indicating good OER selectivity. This work might benefit further fabricating effective and stable self-sustained electrocatalysts for water splitting in large-scale applications.

20.
J Agric Food Chem ; 72(39): 21585-21593, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39291433

ABSTRACT

Two endophytes from the same Ginkgo biloba host were isolated and cultured separately. Three new eremophilane sesquiterpenoids (1-3), three new furan derivates (6, 8-9), one new polyketide (10), and four known compounds (4, 5, 7, 11) from Paraphaeosphaeria sp. and two new 10-membered macrolides (12-13), a new liner polyketide (14), a new benzofuran (15), and six known compounds (16-21) from Nigrospora oryzae were isolated. The structures of the isolated compounds were determined by spectroscopic methods, NMR calculations, and ECD calculations. The compounds 3-7, 9-10, 12, and 14-17 showed significant antiphytopathogenic effects against mycotoxigenic Alternaria sp. comparable to the activity of nystatin (positive control). Compounds 2, 6, 8, 9, and 18 indicated inhibitions against phytopathogen Fusarium asiaticum with MICs < 10 µg/mL. In addition, the compounds with weak antifungal activities from two endophytes were mixed to test their antifungal activity. The results showed that the metabolites from two endophytes had synergistic antifungal effects, and the beneficial interactions between natural products can induce more antifungal effects against plant pathogens than that of single compounds.


Subject(s)
Ascomycota , Endophytes , Ginkgo biloba , Plant Diseases , Endophytes/chemistry , Endophytes/metabolism , Ginkgo biloba/microbiology , Ginkgo biloba/chemistry , Ascomycota/chemistry , Ascomycota/drug effects , Ascomycota/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Molecular Structure , Fusarium/drug effects , Alternaria/drug effects , Alternaria/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL