Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
1.
J Med Case Rep ; 18(1): 374, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39113087

ABSTRACT

BACKGROUND: First- and second-generation anti-epithelial growth factor receptor tyrosine kinase inhibitors have shown great efficacy in the treatment of advanced adenocarcinoma with epithelial growth factor receptor mutations, but this efficacy is limited by certain resistance mechanisms, in particular the T790M mutation, which must be screened before second-line treatment with osimertinib is indicated. The search for this mutation is sometimes difficult, especially in cases of intracranial relapse, through this case report we attempt to discuss the possibility of initiating treatment with osimertinib despite an unknown T790M mutation in such situation. CASE REPORT: We present the case of a 70-year-old Moroccan male patient diagnosed with non-small cell lung carcinoma initially metastatic to the pleura with an epithelial growth factor receptor mutation who received gefitinib in first line with a complete response, he subsequently presented with cerebral oligo-progression with extra cranial stability. The patient was started on osimertinib with unknown T790M status, as it was impossible to perform a cerebral biopsy, the evolution was characterized by a partial response followed by stereotactic radiotherapy then a complete response for 2 years. CONCLUSION: We can discuss osimertinib as an option for patients with stage IV non-small cell lung cancer with brain oligo-progression on prior tyrosine kinase inhibitors and unknown T790M status, further studies are needed in this area.


Subject(s)
Acrylamides , Aniline Compounds , Antineoplastic Agents , Brain Neoplasms , ErbB Receptors , Gefitinib , Lung Neoplasms , Mutation , Pleural Neoplasms , Humans , Male , Aniline Compounds/therapeutic use , Acrylamides/therapeutic use , Aged , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Gefitinib/therapeutic use , ErbB Receptors/genetics , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Antineoplastic Agents/therapeutic use , Pleural Neoplasms/secondary , Pleural Neoplasms/drug therapy , Pleural Neoplasms/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Protein Kinase Inhibitors/therapeutic use , Disease Progression , Treatment Outcome , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/secondary , Indoles , Pyrimidines
2.
Bioorg Chem ; 147: 107390, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691904

ABSTRACT

Mobocertinib, as a structural analog of the third generation TKI Osimertinib, can selectively act on the EGFRex20 mutation. We have structurally modified Mobocertinib to obtain new EGFR inhibitors. In this paper, we chose Mobocertinib as a lead compound for structural modification to investigate the effect of Mobocertinib derivatives on EGFRT790M mutation. We designed and synthesized 63 Mobocertinib derivatives by structural modification using the structural similarity strategy and the bioelectronic isoarrangement principle. Then, we evaluated the in vitro antitumor activity of the 63 Mobocertinib derivatives and found that the IC50 of compound H-13 against EGFRL858R/T790M mutated H1975 cells was 3.91 µM, and in further kinase activity evaluation, the IC50 of H-13 against EGFRL858R/T790M kinase was 395.2 nM. In addition, the preferred compound H-13 was able to promote apoptosis of H1975 tumor cells and block the proliferation of H1975 cells in the G0/G1 phase; meanwhile, it was able to significantly inhibit the migratory ability of H1975 tumor cells and inhibit the growth of H1975 cells in a time-concentration-dependent manner. In the in vivo anti-tumor activity study, the preferred compound H-13 had no obvious toxicity to normal mice, and the tumor inhibition effect on H1975 cell-loaded nude mice was close to that of Mobocertinib. Finally, molecular dynamics simulations showed that the binding energy between compound H-13 and 3IKA protein was calculated to be -162.417 ± 14.559 kJ/mol. In summary, the preferred compound H-13 can be a potential third-generation EGFR inhibitor.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors , Protein Kinase Inhibitors , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Animals , Apoptosis/drug effects , Mice , Mice, Nude , Cell Line, Tumor , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism
3.
Clin Respir J ; 18(4): e13748, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584122

ABSTRACT

BACKGROUND: Previous studies have suggested that loss of the EGFR T790M gene mutation may contribute to the development of resistance to Osimertinib in non-small cell lung cancer (NSCLC). AIMS: This study aims to assess the relationship between the clinical effectiveness of Osimertinib in NSCLC patients and the T790M mutation status following resistance to Osimertinib and examine differences between plasma and tissue tests and between Asian and non-Asian groups. METHODS: The PubMed, Web of Science, Cochrane, and EMBASE databases were comprehensively searched for studies on the association between T790M mutation status and the efficacy of Osimertinib between January 2014 and November 2023. Meta-analysis was carried out using Review Manager 5.4 software. RESULTS: After evaluating 2727 articles, a total of 14 studies were included in the final analysis. Positive correlations between EGFR T790M mutation status after Osimertinib resistance and longer PFS (HR: 0.44, 95% CI: 0.30-0.66), longer OS (HR: 0.3, 95% CI: 0.10-0.86), longer TTD (HR: 0.69, 95% CI: 0.45-1.07), and improved clinical outcomes including PFS and TTD subgroups (HR: 0.58, 95% CI: 0.47-0.73) were observed. Subgroup analysis revealed that, compared with the blood tests, the results of the T790M mutation tests by the tissue are more significant (HR: 0.24, 95% CI: 0.11-0.52 for tissue tests; HR: 0.47, 95% CI: 0.22-1.00 for plasma tests), and the PFS of Osimertinib were similar for Asian and non-Asian patients (HR: 0.46, 95% CI: 0.31-0.68 for Asians; HR: 0.12, 95% CI: 0.01-1.27 for non-Asians). CONCLUSIONS: Persistence of the T790M gene mutation after the development of Osimertinib resistance is associated with higher therapeutic benefits of Osimertinib in NSCLC patients. The results of tissue detection are more significant than those of plasma detection.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Pyrimidines , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , ErbB Receptors/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
4.
Lung Cancer ; 190: 107528, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461768

ABSTRACT

INTRODUCTION: The literature on de novo EGFRT790M-mutant patients diagnosed with lung cancer is limited, and there is currently no consensus concerning the most effective treatment protocols. This study aimed to investigate the genomic characteristics of de novoEGFRT790M-mutant non-small cell lung cancer (NSCLC) and provide insights into its clinical response and resistance mechanism to third-generation EGFR-TKIs. METHODS: Next-generation sequencing was utilized to screen a substantial cohort of 4,228 treatment-naïve patients from the Mygene genomic database to identifythe de novo EGFR-T790M mutation. Meanwhile, we recruited 83 individuals diagnosed with lung cancer who harbored de novo EGFRT790M mutation in the real world. In addition, 166 patients who acquired EGFR-T790M mutation after becoming resistant to first- or second-generation EGFR-TKIs were included as a comparison cohort. RESULTS: De novo EGFRT790M mutation identified by next-generation sequencing is rare (∼1.3 %) in Chinese lung cancer patients. The relative variant allele frequency (VAF) of de novo EGFRT790M mutation was either comparable to or significantly lower than those of EGFR-activating mutations. Patients with de novo-T790M mutations exhibited less favorable clinical outcomes when administered third-generation EGFR-TKIs as first-line therapy thanthose with 19del mutationsdue to a high overlap rate in EGFR p.L858R mutation. In patients with a de novo EGFRT790M mutation, no correlation was observed between T790M clonality and treatment outcomes with third-generation EGFR-TKIs. In contrast, the sub-clonality of the T790M mutation detrimentally affected the third-generation EGFR-TKI treatment efficacy in patients with acquired T790M mutation. Potential resistance mechanisms of third-generation EGFR TKIs in NSCLC patients with de novo or acquired EGFRT790M mutations included EGFR p.C797S in cis or EGFR p.E709X mutation, as well as activation of bypass pathways. CONCLUSIONS: The present study characterized the uncommon but unique de novo EGFRT790M-mutant NSCLC and laid a foundation for designing future clinical trials in the setting of uncommon EGFR mutation.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Drug Resistance, Neoplasm/genetics , Mutation , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology
5.
Curr Med Imaging ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38523520

ABSTRACT

OBJECTIVE: To develop and validate a radiomics-clinical nomogram for the detection of the acquired T790M mutation in patients with advanced non-small cell lung cancer (NSCLC) with resistance after the duration of first-line epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) treatment. MATERIALS AND METHODS: Thoracic CT was collected from 120 advanced NSCLC patients who suffered progression on first- or second-generation TKIs. Radiomics signatures were retrieved from the entire tumor. Pearson correlation and the least absolute shrinkage and selection operator (LASSO) regression method were adopted to choose the most suitable radiomics features. Clinical and radiological factors were assessed using univariate and multivariate analysis. Three Machine Learning (ML) models were constructed according to three classifiers, including Logistic Regression (LR), Support Vector Machine (SVM), and RandomForest (RF), combining clinical and radiomic features. A nomogram combining clinical features and the rad score signature was built. The predictive ability of the nomogram was assessed by the ROC curve, calibration curve, and decision curve analysis (DCA). RESULTS: Multivariate regression analysis showed that two clinicopathological characteristics and two radiological features were highly correlated with the acquired T790M mutation, including the progression-free survival (PFS) of first-line EGFR TKIs (P = 0.029), the initial EGFR profile (P = 0.01), vascular convergence (P = 0.043), and air bronchogram (P = 0.030). The AUCs of clinical, radiomics, and combined models using RF classifiers for T790M mutation detection were 0.951 (95% confidence interval [CI] 0.911,0.991), 0.917 (95%CI 0.856,0.978), and 0.961 (95%CI 0.927,0.995) in the training cohort, respectively, higher than those of other classifier models.The calibration curve and Hosmer-Lemeshow Test showed good calibration power, and the DCA demonstrated a significant net benefit. CONCLUSION: A radiomics-clinical nomogram based on CT radiomics proved valuable in non-invasively and efficiently predicting the acquired T790M mutation in patients who suffered progression on first-line TKIs.

6.
Expert Rev Anticancer Ther ; 24(3-4): 183-192, 2024.
Article in English | MEDLINE | ID: mdl-38526910

ABSTRACT

OBJECTIVES: We hypothesize that digital droplet polymerase chain reaction (ddPCR) would optimize the treatment strategies in epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) relapsed patients. In this study, we compared the efficacy of third-generation TKIs with various T790M statuses via ddPCR and next-generation sequencing (NGS). METHODS: NGS was performed on blood samples of patients progressed from previous EGFR-TKIs for resistance mechanism. T790M-negative patients received further liquid biopsy using ddPCR for T790M detection. RESULTS: A cohort of 40 patients were enrolled, with 30.0% (12/40) T790M-positive via NGS (Group A). In another 28 T790M-negative patients by NGS, 11 (39.3%) were T790M-positive (Group B) and 17 (60.7%) were T790M-negative (Group C) via ddPCR. A relatively longer progression-free survival (PFS) was observed in group A (NR) and group B (10.0 months, 95% CI 7.040-12.889) than in group C (7.0 months, 95% CI 0.000-15.219), with no significant difference across all three groups (p = 0.196), or between group B and C (p = 0.412). EGFR-sensitive mutation correlated with inferior PFS (p = 0.041) and ORR (p = 0.326), and a significantly lower DCR (p = 0.033) in T790M-negative patients via NGS (n = 28). CONCLUSION: This study indicates that ddPCR may contribute as a supplement to NGS in liquid biopsies for T790M detection in EGFR-TKIs relapsed patients and help to optimize the treatment strategies, especially for those without coexistence of EGFR-sensitive mutation. TRIAL REGISTRATION: www.clinicaltrials.gov identifier is NCT05458726.

7.
Pathol Res Pract ; 255: 155213, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38394807

ABSTRACT

BACKGROUND: Digital platforms for mutation detection yield higher sensitivity than non-digital platforms but lack universal positive cut-off values that correlate with the outcome of osimertinib treatment. This study determined compared droplet digital polymerase chain reaction (ddPCR) to the standard cobas assay for epithelial growth factor receptor (EGFR) T790M mutation detection in patients with non-small cell lung cancer. METHODS: Study patients had EGFR-mutant tumours with disease progression on first/second generation EGFR tyrosine kinase inhibitors, and osimertinib treatment after T790M mutation detection. T790M status was tested by cobas assay using liquid biopsy, and only by ddPCR if an EGFR mutation was identified but T790M was negative. Clinical efficacy of osimertinib was compared between patients with T790M detected by cobas vs. only by ddPCR. A positive cut-off value for ddPCR was determined by assessing efficacy with osimertinib. RESULTS: 61 patients had tumors with an acquired T790M mutation, 38 detected by cobas and an additional 23 only by ddPCR. The median progression-free survival (PFS) for the cobas- and ddPCR-positive groups was 9.5 and 7.8 months, respectively (p=0.43). For ddPCR, a fractional abundance (FA) of 0.1% was used as a cut-off value. The median PFS of patients with FA ≥0.1% and <0.1% was 8.3 and 4.6 months, respectively (p=0.08). FA ≥0.1% was independently associated with a longer PFS. CONCLUSION: Using ddPCR to follow up the cobas assay yielded more cases (38% of total) with a T790M mutation. A cut-off value of FA ≥0.1% identified patients who responded as well to osimertinib as those identified by cobas assay. This sequential approach should detect additional patients who might benefit from osimertinib treatment.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Pyrimidines , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , ErbB Receptors , Real-Time Polymerase Chain Reaction , Protein Kinase Inhibitors/therapeutic use , Mutation/genetics , Liquid Biopsy
8.
J Pathol Clin Res ; 10(2): e354, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38284983

ABSTRACT

This study analyzed whether extended molecular profiling can predict the development of epidermal growth factor receptor (EGFR) gene T790M mutation, which is the most frequent resistance alteration in non-small cell lung cancer (NSCLC) after treatment with the first-/second-generation (1G/2G) EGFR inhibitors (tyrosine kinase inhibitors [TKIs]), but only weakly associated with clinical characteristics. Whole exome sequencing (WES) was performed on pretreatment tumor tissue with matched normal samples from NSCLC patients with (n = 25, detected in tissue or blood rebiopsies) or without (n = 14, negative tissue rebiopsies only) subsequent EGFR p.T790M mutation after treatment with 1G/2G EGFR TKI. Several complex genetic biomarkers were assessed using bioinformatic methods. After treatment with first-line afatinib (44%) or erlotinib/gefitinib (56%), median progression-free survival and overall survival were 12.1 and 33.7 months, respectively. Clinical and tumor genetic characteristics, including age (median, 66 years), sex (74% female), smoking (69% never/light smokers), EGFR mutation type (72% exon 19 deletions), and TP53 mutations (41%) were not significantly associated with T790M mutation (p > 0.05). By contrast, complex biomarkers including tumor mutational burden, the clock-like mutation signature SBS1 + 5, tumor ploidy, and markers of subclonality including mutant-allele tumor heterogeneity, subclonal copy number changes, and median tumor-adjusted variant allele frequency were significantly higher at baseline in tumors with subsequent T790M mutation (all p < 0.05). Each marker alone could predict subsequent development of T790M with an area under the curve (AUC) of 0.72-0.77, but the small number of cases did not allow confirmation of better performance for biomarker combinations in leave-one-out cross-validated logistic regression (AUC 0.69, 95% confidence interval: 0.50-0.87). Extended molecular profiling with WES at initial diagnosis reveals several complex biomarkers associated with subsequent development of T790M resistance mutation in NSCLC patients receiving first-/second-generation TKIs as the first-line therapy. Larger prospective studies will be necessary to define a forecasting model.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Female , Aged , Male , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Prospective Studies , Mutation , Protein Kinase Inhibitors/therapeutic use , Genomics , Biomarkers
9.
Clin Transl Oncol ; 26(6): 1395-1406, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38190033

ABSTRACT

PURPOSE: This study aimed to identify the impact of epidermal growth factor receptor (EGFR) T790M mutations on clinical characteristics and prognosis. METHODS: Retrospective analyses were conducted on the differences on clinicopathological features and prognosis between primary and acquired T790M mutations. Subgroup analyses were performed for primary T790M coexisting with other mutations. RESULTS: Patients with primary T790M mutations showed a 60.53% (23/38) incidence of concurrent L858R mutations, 18.42% (7/38) for 19del mutations and a 21.05% (8/38) occurrence of brain metastases. Conversely, those with acquired T790M mutations demonstrated respective frequencies of 36.53% (61/167), 58.68% (98/167) and 44.31% (74/167), with all comparisons yielding p < 0.05. The median overall survival differed significantly between the two groups, with a duration of 33 months for patients with primary T790M mutations as compared to 48 months for those with acquired mutations (p = 0.030). Notably, among patients with L858R co-mutations, when treated with third-generation EGFR-TKIs, those with acquired T790M mutations experienced a significantly prolonged median time to treatment failure compared to those with primary mutations (17 months vs. 9 months, p = 0.009). CONCLUSION: Patients with primary T790M have unique molecular features and had worse prognosis compared with acquired T790M. Resistance to third-generation EGFR-TKIs seems to be associated with the presence of EGFR co-mutations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Mutation , Humans , ErbB Receptors/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Male , Female , Retrospective Studies , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Prognosis , Middle Aged , Aged , Adult , Brain Neoplasms/genetics , Brain Neoplasms/secondary , Brain Neoplasms/mortality , Aged, 80 and over , Protein Kinase Inhibitors/therapeutic use , Survival Rate
10.
Cancer Biomark ; 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38108344

ABSTRACT

BACKGROUND: Liquid biopsy (LB) is used to detect epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) and has been demonstrated to have prognostic and predictive value. OBJECTIVE: To associate the rates of EGFR and T790M mutations detected by LB during disease progression after first- or second-generation EGFR-TKIs with clinical characteristics and survival outcomes. METHODS: From January 2018 to December 2021, 295 patients with advanced EGFR mutant (EGFRm) NSCLC treated with first- or second-generation EGFR-TKIs were retrospectively analyzed. LB was collected at the time of progression. The frequency of EGFRT790M mutations, overall survival (OS), and the clinical characteristics associated with LB positivity were determined. RESULTS: The prevalence of EGFRT790M mutation detected using LB was 44%. In patients with negative vs. positive LB, the median OS was 45.0 months vs. 25.0 months (p= 0.0001), respectively. Patients with a T790M mutation receiving osimertinib had a median OS of 44 months (95% CI [33.05-54.99]). Clinical characteristics associated with positive LB at progression extra-thoracic involvement, > 3 metastatic sites, and bone metastases. CONCLUSIONS: Our findings showed that LB positivity was associated with worse survival outcomes and specific clinical characteristics. This study also confirmed the feasibility and detection rate of T790M mutation in a Latin American population.

11.
Cancers (Basel) ; 15(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37686506

ABSTRACT

BACKGROUND: Osimertinib was first approved for the treatment of non-small cell lung cancer (NSCLC) in patients who have developed the epidermal growth factor receptor (EGFR) T790M mutation after treatment with EGFR tyrosine kinase inhibitors (TKIs). We routinely evaluated the plasma of NSCLC patients with the T790M mutation to more rapidly detect an increase in disease activity and resistance to treatment. METHODS: Eligible patients received osimertinib after resistance to the first- or second-generation of EGFR-TKIs in NSCLC harboring T790M mutation detectable in tumor tissue or plasma. Plasma samples were collected every 8 weeks during osimertinib treatment. The plasma analysis was performed using an improved PNA-LNA PCR clamp method. We tested samples for a resistance mechanism, including EGFR-activating, T790M, and C797S mutations, and assessed the association between the mutations and osimertinib treatment. RESULTS: Of the 60 patients enrolled in the study, 58 were eligible for this analysis. In plasma collected before osimertinib treatment, activating mutations were detected in 47 of 58 patients (81.0%) and T790M was detected in 44 patients (75.9%). Activating mutations were cleared in 60.9% (28/46) and T790M was cleared in 93.0% (40/43). Of these, 71.4% (20/28) of activating mutations and 87.5% (35/40) of T790M mutation were cleared within 8 weeks of treatment. The total response rate (RR) was 53.4% (31/58). The median duration of treatment was 259 days, with a trend toward longer treatment duration in patients who experienced the clearance of activating mutations with osimertinib. At the time of disease progression during osimertinib treatment, C797S was detected in 3 of 37 patients (8.1%). CONCLUSION: Plasma EGFR mutation analysis was effective in predicting the effect of osimertinib treatment.

12.
Front Oncol ; 13: 1204041, 2023.
Article in English | MEDLINE | ID: mdl-37554157

ABSTRACT

Multiple primary malignant neoplasms (MPMNs) are difficult to identify from the metastasis or recurrence of malignant tumors. Additionally, the genetic mutations in each primary tumor vary from each other; therefore, it is critical to explore potential abnormal genes. Next-generation sequencing (NGS) technology has emerged as a reliable approach for detecting mutated genes in primary tumors and can provide several targeted therapeutic options for patients with MPMNs. Here, we report a case of metachronous multiple primary malignant neoplasm (MMPMN) patient with primary ovarian and breast cancer. Targeted NGS genetic profiling revealed a rare EGFR T790M mutation in this patient's primary breast tumor tissue, which has only been reported previously in breast cancer (BC). Based on the NGS results, osimertinib was recommended for this patient. Although this patient did not receive osimertinib because of gastrointestinal hemorrhage, this case highlights the significance of NGS technology in the diagnosis and treatment of MPMNs.

13.
Cancers (Basel) ; 15(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37444638

ABSTRACT

BACKGROUND: The detection of the EGFR T790M (T790M) mutation in non-small cell lung cancer (NSCLC) patients who progressed under treatment with first- or second-generation EGFR-tyrosine kinase inhibitors (TKIs) is important to offer a subsequent therapy with a third-generation EGFR-TKI. Liquid biopsy is a powerful tool to determine the T790M mutation status. Several liquid biopsy platforms with varying degrees of accuracy are available to test for T790M mutations, and sensitivities may differ among these methods. METHODS: As no standard exists for the testing of T790M mutation in liquid biopsy, we performed a collaborative study to describe and compare the sensitivity of different in-house liquid biopsy platforms for the detection of the T790M mutation, EGFR exon 19 deletion (del19) and EGFR L858R mutation (L858R) across multiple participating laboratories in seven Central and Eastern European countries. RESULTS: Of the 25 invited laboratories across Central and Eastern Europe, 21 centers participated and received 10 plasma samples spiked with cell-line DNA containing the T790M, del19, or L858R mutation in different concentrations. In-house PCR-based and NGS-based methods were used accordingly, and results were reported as in routine clinical practice. Two laboratories, which used the AmoyDx® EGFR 29 Mutations Detection Kit (AmoyDx) with Cobas® cfDNA Sample Preparation Kit and QX200 Droplet Digital PCR (ddPCR) with the QIAamp Circulating Nucleic Acid Kit identified all ten samples correctly. Cobas® EGFR Mutation Test v2 (Cobas), the NGS methods, and the IdyllaTM detection method used in this study performed within the known sensitivity range of each detection method. CONCLUSIONS: If a negative result was obtained from methods with lower sensitivity (e.g., Cobas), repeated liquid biopsy testing and/or tissue biopsy analysis should be performed whenever possible, to identify T790M-positive patients to allow them to receive the optimal second-line treatment with a third-generation EGFR TKI.

14.
Mol Cell Proteomics ; 22(9): 100624, 2023 09.
Article in English | MEDLINE | ID: mdl-37495186

ABSTRACT

Secondary mutation, T790M, conferring tyrosine kinase inhibitors (TKIs) resistance beyond oncogenic epidermal growth factor receptor (EGFR) mutations presents a challenging unmet need. Although TKI-resistant mechanisms are intensively investigated, the underlying responses of cancer cells adapting drug perturbation are largely unknown. To illuminate the molecular basis linking acquired mutation to TKI resistance, affinity purification coupled mass spectrometry was adopted to dissect EGFR interactome in TKI-sensitive and TKI-resistant non-small cell lung cancer cells. The analysis revealed TKI-resistant EGFR-mutant interactome allocated in diverse subcellular distribution and enriched in endocytic trafficking, in which gefitinib intervention activated autophagy-mediated EGFR degradation and thus autophagy inhibition elevated gefitinib susceptibility. Alternatively, gefitinib prompted TKI-sensitive EGFR translocating toward cell periphery through Rab7 ubiquitination which may favor efficacy to TKIs suppression. This study revealed that T790M mutation rewired EGFR interactome that guided EGFR to autophagy-mediated degradation to escape treatment, suggesting that combination therapy with TKI and autophagy inhibitor may overcome acquired resistance in non-small cell lung cancer.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Gefitinib/pharmacology , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mutation/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor
15.
Front Oncol ; 13: 1176868, 2023.
Article in English | MEDLINE | ID: mdl-37265791

ABSTRACT

Background: The epidermal growth factor receptor (EGFR) p.Thr790Met (T790M) mutation was discovered as a resistance mechanism in patients with lung cancer treated with first- and second-generation tyrosine kinase inhibitors. Further studies revealed the EGFR T790M mutation in treatment-naive non-small cell lung carcinoma (NSCLC) and as a rare germline mutation strongly associated with NSCLC. Somatic EGFR T790M mutations have been reported in a limited population of patients with triple-negative breast cancer. There are no previous reports of a germline EGFR T790M mutation found in a patient with breast cancer. Case presentation: We present a rare case of a 42-year-old woman with a rapidly progressing 8 cm mass in the right lateral breast. An additional right breast mass with multiple lymph nodes characteristic or suspicious of metastasis was found. Ultrasound-guided biopsy showed high-grade, poorly differentiated invasive neuroendocrine carcinoma of the right breast and metastatic carcinoma of a right axillary lymph node. Genetic testing revealed a germline EGFR T790M mutation. The patient underwent neoadjuvant chemotherapy, right mastectomy with lymph node dissection, adjuvant radiation to the right chest wall and axilla, and adjuvant chemotherapy. Conclusion: This is the first reported case of a patient with high-grade neuroendocrine carcinoma, triple-negative breast cancer and a germline EGFR T790M mutation. Further investigation is needed to find a possible correlation between the cancer in this patient and her mutation. Since there are no current guidelines, further research is also needed to define screening protocols for patients with germline EGFR T790M mutations. Additional treatment options and cancer risk could also be found with further research, which would benefit all patients with a germline EGFR T790M mutation.

16.
Lung Cancer ; 180: 107194, 2023 06.
Article in English | MEDLINE | ID: mdl-37163774

ABSTRACT

BACKGROUND: Rezivertinib (BPI-7711) is a novel third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) which revealed the systematic and central nervous system (CNS) antitumor activities for EGFR T790M-mutated advanced NSCLC in previous clinical studies and is further analyzed here. METHODS: Eligible patients from the previous phase I and phase IIb studies of rezivertinib were included for pooled analysis. Post-progressive patients who received a prescribed dosage (≥180 mg) of rezivertinib orally once daily were included in full analysis set (FAS), while those with stable, asymptomatic CNS lesions, including measurable and non-measurable ones at baseline were included in CNS full analysis set (cFAS). Patients with measurable CNS lesions were included in CNS evaluable for response set (cEFR). BICR-assessed CNS objective response rate (CNS-ORR), CNS disease control rate (CNS-DCR), CNS duration of response (CNS-DoR), CNS progression-free survival (CNS-PFS), and CNS depth of response (CNS-DepOR) were evaluated. RESULTS: 355 patients were included in FAS, among whom 150 and 45 patients were included in cFAS and cEFR. This pooled analysis showed the CNS-ORR was 32.0% (48/150; 95% CI: 24.6-40.1%) and the CNS-DCR was 42.0% (63/150; 95% CI: 34.0-50.3%) in cFAS, while that in cEFR were 68.9% (31/45; 95% CI: 53.4-81.8%) and 100% (45/45; 95% CI: 92.1-100.0%). In cEFR, the median CNS-DepOR and the mean of CNS-DepOR were -52.0% (range: -100.0 to 16.1%) and -46.8% (95% CI: -55.5 to -38.1%). In cFAS, the median CNS-DoR and CNS-PFS were 13.8 (95% CI: 9.6-not calculable [NC]) and 16.5 (95% CI: 13.7-NC) months. CONCLUSIONS: Rezivertinib demonstrated encouraging clinical CNS efficacy among advanced NSCLC patients with EGFR T790M mutation and CNS metastases.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Aniline Compounds/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Central Nervous System/pathology , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology
17.
J Cancer Res Clin Oncol ; 149(11): 9243-9252, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37198447

ABSTRACT

PURPOSE: EGFR tyrosine kinase inhibitor (TKI) therapy in EGFR-mutated lung cancer is limited by acquired resistance. In half of the patients treated with first/second-generation (1st/2nd gen) TKI, resistance is associated with EGFR p.T790M mutation. Sequential treatment with osimertinib is highly active in such patients. Currently, there is no approved targeted second-line option for patients receiving first-line osimertinib, which thus may not be the best choice for all patients. The present study aimed to evaluate the feasibility and efficacy of a sequential TKI treatment with 1st/2nd gen TKI, followed by osimertinib in a real-world setting. METHODS: Patients with EGFR-mutated lung cancer treated at two major comprehensive cancer centers were retrospectively analyzed by the Kaplan-Meier method and log rank test. RESULTS: A cohort of 150 patients, of which 133 received first-line treatment with a first/second gen EGFR TKI, and 17 received first-line osimertinib, was included. Median age was 63.9 years, 55% had ECOG performance score of ≥ 1. First-line osimertinib was associated with prolonged progression-free survival (P = 0.038). Since the approval of osimertinib (February 2016), 91 patients were under treatment with a 1st/2nd gen TKI. Median overall survival (OS) of this cohort was 39.3 months. At data cutoff, 87% had progressed. Of those, 92% underwent new biomarker analyses, revealing EGFR p.T790M in 51%. Overall, 91% of progressing patients received second-line therapy, which was osimertinib in 46%. Median OS with sequenced osimertinib was 50 months. Median OS of patients with p.T790M-negative progression was 23.4 months. CONCLUSION: Real-world survival outcomes of patients with EGFR-mutated lung cancer may be superior with a sequenced TKI strategy. Predictors of p.T790M-associated resistance are needed to personalize first-line treatment decisions.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Middle Aged , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/chemically induced , ErbB Receptors/genetics , Protein Kinase Inhibitors/pharmacology , Retrospective Studies , Mutation , Aniline Compounds/therapeutic use , Aniline Compounds/pharmacology
18.
Anticancer Res ; 43(5): 2243-2258, 2023 May.
Article in English | MEDLINE | ID: mdl-37097667

ABSTRACT

BACKGROUND/AIM: Real-world data on the EGFR mutational profile upon progression after first/second-generation EGFR-TKI treatment in patients with advanced non-small-cell lung cancer (NSCLC) and treatment strategies employed thereon are needed. PATIENTS AND METHODS: This observational study was conducted in 23 hospital-based lung cancer Centers in Greece (protocol code: D133FR00126). Ninety-six eligible patients were consecutively enrolled between July-2017 and September-2019. Re-biopsy was performed in 18 of 79 patients who tested T790M-negative in liquid biopsy after progression in the first-line (1L) setting. RESULTS: Of the study population, 21.9% tested T790M-positive, while 72.9% proceeded to 2L treatment, mainly comprising of a third-generation EGFR-TKI (48.6%), a switch to chemotherapy (30.0%), or chemo-immunotherapy (17.1%). The objective response rate (ORR) in 2L was 27.9% in T790M-negative and 50.0% in T790M-positive patients. Of evaluable patients, 67.2% experienced disease progression; median progression-free survival (PFS) was 5.7 and 10.0 months among T790M-negative and positive patients, respectively. Among T790M-negative patients, longer median PFS and post-progression survival were observed with third-generation EGFR-TKI treatment. CONCLUSION: Mutational status and treatment strategy were identified as critical determinants of clinical outcomes in the 2L-setting of EGFR-mutated NSCLC patients in real-world settings in Greece, with early diagnosis, appropriate molecular testing and high-efficacy treatments at first lines positively affecting ORR and PFS.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , ErbB Receptors/genetics , ErbB Receptors/therapeutic use , Mutation , Protein Kinase Inhibitors/therapeutic use
19.
Acad Radiol ; 30(11): 2574-2587, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36941156

ABSTRACT

RATIONALE AND OBJECTIVES: We aim to explore the value of chest CT radiomics in predicting the epidermal growth factor receptor (EGFR)-T790M resistance mutation of advanced non-small cell lung cancer (NSCLC) patients after the failure of first-line EGFR-tyrosine kinase inhibitor (EGFR-TKI). MATERIALS AND METHODS: A total of 211 and 135 advanced NSCLC patients with tumor tissue-based (Cohort-1) or circulating tumor DNA (ctDNA)-based (Cohort-2) EGFR-T790M testing were included, respectively. Cohort-1 was used for modeling and Cohort-2 was for models' validation. Radiomic features were extracted from tumor lesions on chest nonenhanced CT (NECT) and/or contrast-enhanced CT (CECT). We used eight feature selectors and eight classifier algorithms to establish radiomic models. Models were evaluated by area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA). RESULTS: CT morphological manifestations of peripheral location and pleural indentation sign were associated with EGFR-T790M. For NECT, CECT, and NECT+CECT radiomic features, the feature selector and classifier algorithms of LASSO and Stepwise logistic regression, Boruta and SVM, and LASSO and SVM were chosen to develop the optimal model, respectively (AUC: 0.844, 0.811, and 0.897). All models performed well in calibration curves and DCA. Independent validation of models in Cohort-2 revealed that both NECT and CECT models individually had limited power for predicting EGFR-T790M mutation detected by ctDNA (AUC: 0.649, 0.675), while the NECT+CECT radiomic model had a satisfactory AUC (0.760). CONCLUSION: This study proved the feasibility of using CT radiomic features to predict the EGFR-T790M resistance mutation, which could be helpful in guiding personalized therapeutic strategies.

20.
Asia Pac J Clin Oncol ; 19(6): 715-722, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36756895

ABSTRACT

BACKGROUND: Osimertinib could effectively target epidermal growth factor receptor (EGFR) T790M resistance mutations in non-small cell lung cancer (NSCLC), indicating that rebiopsy may be particularly important. However, the clinical benefit of repeat rebiopsy in T790M-negative patients with NSCLC detected by the first rebiopsy is still unclear, and data on the efficacy and safety of osimertinib in patients with NSCLC who are T790M-positive patients on a repeat rebiopsy remain rare. METHODS: We retrospectively collected the clinical data of advanced NSCLC patients with common EGFR mutation who were treated with 1/2-generation (1/2G) EGFR-tyrosine kinase inhibitors (TKIs) in first-line therapy in our center from January 2018 to December 2020. The detection rate of T790M by first and repeat rebiopsy was recorded, and we also analyzed the efficacy and safety of osimertinib for T790M-positive patients. RESULTS: Among 190 common EGFR-mutant patients who received 1/2G EGFR-TKIs with advanced NSCLC in the first-line treatment, 141 patients developed progressive disease. In total, 110 of 141 accepted the first rebiopsy, with a T790M prevalence of 50.9% (56/110). In total, 43 T790M-positive patients who received osimertinib were included in first rebiopsy group. Of 54 T790M-negative patients detected by the first rebiopsy, 28 underwent repeated rebiopsy in subsequent clinical treatment, and 10 (35.7%) T790M-positive cases were confirmed. In total, eight T790M-positive patients treated with osimertinib were included in repeat rebiopsy group. Overall, 66 (60%) of 110 patients acquired a T790M mutation. In patients with the T790M mutation discovered by the first and repeat rebiopsy, osimertinib resulted in median progression-free survival of 7 (95% confidence interval [CI]: 5.3-8.7) and 6 (95% CI: 4.7-7.3) months, respectively (p = .656). The median overall survival since osimertinib initiation for T790M-positive patients at first rebiopsy was 20 (95% CI: 15.1-24.9) months and 19 (95% CI: 16.9-21.1) months, for those at repeated rebiopsy (p = .888). Adverse events of grade 3 or higher were similar in the two groups (25.6% vs. 12.5%, p = .616). There was no treatment-related death in the two groups. CONCLUSIONS: Repeat rebiopsy can increase the T790M mutation positivity rate. Osimertinib showed similar efficacy and safety in T790M-positive patients whether detected by the first or repeat rebiopsy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , ErbB Receptors/genetics , Retrospective Studies , Mutation , Protein Kinase Inhibitors/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL