Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Biochem ; 174(6): 533-548, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37725528

ABSTRACT

Sterile alpha and Toll/interleukin receptor motif-containing protein 1 (SARM1) is a NAD+ hydrolase that plays a key role in axonal degeneration and neuronal cell death. We reported that c-Jun N-terminal kinase (JNK) activates SARM1 through phosphorylation at Ser-548. The importance of SARM1 phosphorylation in the pathological process of Parkinson's disease (PD) has not been determined. We thus conducted the present study by using rotenone (an inducer of PD-like pathology) and neurons derived from induced pluripotent stem cells (iPSCs) from healthy donors and a patient with familial PD PARK2 (FPD2). The results showed that compared to the healthy neurons, FPD2 neurons were more vulnerable to rotenone-induced stress and had higher levels of SARM1 phosphorylation. Similar cellular events were obtained when we used PARK2-knockdown neurons derived from healthy donor iPSCs. These events in both types of PD-model neurons were suppressed in neurons treated with JNK inhibitors, Ca2+-signal inhibitors, or by a SARM1-knockdown procedure. The degenerative events were enhanced in neurons overexpressing wild-type SARM1 and conversely suppressed in neurons overexpressing the SARM1-S548A mutant. We also detected elevated SARM1 phosphorylation in the midbrain of PD-model mice. The results indicate that phosphorylated SARM1 plays an important role in the pathological process of rotenone-induced neurodegeneration.


Subject(s)
Parkinson Disease , Rotenone , Humans , Animals , Mice , Rotenone/pharmacology , Rotenone/metabolism , Neurons/metabolism , Parkinson Disease/metabolism , Cell Death , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism
2.
Front Genet ; 13: 1004307, 2022.
Article in English | MEDLINE | ID: mdl-36568392

ABSTRACT

Dopa-responsive dystonia (DRD), also known as Segawa syndrome, is a rare neurotransmitter disease. The decrease in dopamine caused by tyrosine hydroxylase (TH) gene mutation may lead to dystonia, tremor and severe encephalopathy in children. Although the disease caused by recessive genetic mutation of the tyrosine hydroxylase (TH) gene is rare, we found that the clinical manifestations of seven children with tyrosine hydroxylase gene mutations are similar to dopa-responsive dystonia. To explore the clinical manifestations and possible pathogenesis of the disease, we analyzed the clinical data of seven patients. Next-generation sequencing showed that the TH gene mutation in three children was a reported homozygous mutation (c.698G>A). At the same time, two new mutations of the TH gene were found in other children: c.316_317insCGT, and c.832G>A (p.Ala278Thr). We collected venous blood from four patients with Segawa syndrome and their parents for real-time quantitative polymerase chain reaction analysis of TH gene expression. We predicted the structure and function of proteins on the missense mutation iterative thread assembly refinement (I-TASSER) server and studied the conservation of protein mutation sites. Combined with molecular biology experiments and related literature analysis, the qPCR results of two patients showed that the expression of the TH gene was lower than that in 10 normal controls, and the expression of the TH gene of one mother was lower than the average expression level. We speculated that mutation in the TH gene may clinically manifest by affecting the production of dopamine and catecholamine downstream, which enriches the gene pool of Segawa syndrome. At the same time, the application of levodopa is helpful to the study, diagnosis and treatment of Segawa syndrome.

3.
JACC Basic Transl Sci ; 7(9): 915-930, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36317132

ABSTRACT

Myocardial infarction (MI) triggers an inflammatory response that transitions from pro-inflammatory to reparative over time. Restoring sympathetic nerves in the heart after MI prevents arrhythmias. This study investigated if reinnervation altered the immune response after MI. This study used quantitative multiplex immunohistochemistry to identify the immune cells present in the heart 2 weeks after ischemia-reperfusion. Two therapeutics stimulated reinnervation, preventing arrhythmias and shifting the immune response from inflammatory to reparative, with fewer pro-inflammatory macrophages and more regulatory T cells and reparative macrophages. Treatments did not alter macrophage phenotype in vitro, which suggested reinnervation contributed to the altered immune response.

4.
Saudi Pharm J ; 30(6): 863-873, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35812142

ABSTRACT

Sodium-glucose co-transporter 2 (SGLT 2) inhibitors are a relatively new antidiabetic drug with antioxidant and anti-inflammatory properties. Therefore, this study aimed to investigate whether SGLT 2 inhibitors have a neuroprotective effect in PD. Twenty-four Wistar rats were randomized into four groups. The first one (control group) received dimethyl sulfoxide (DMSO) as a vehicle (0.2 mL/48 hr, S.C). The second group (positive control) received rotenone (ROT) (2.5 mg/kg/48 hr, S.C) for 20 successive days, whereas the third and fourth groups received empagliflozin (EMP) (1 and 2 mg/kg/day, orally), respectively. The two groups received rotenone (2.5 mg/kg/48 hr S.C) concomitantly with EMP for another 20 days on the fifth day. By the end of the experimental period, behavioral examinations were done. Subsequently, rats were sacrificed, blood samples and brain tissues were collected for analysis. ROT significantly elevated oxidative stress and proinflammatory markers as well as α-synuclein. However, dopamine (DP), antioxidants, tyrosine hydroxylase (TH), and Parkin were significantly decreased. Groups of (EMP + ROT) significantly maintained oxidative stress and inflammatory markers elevation, maintained α-synuclein and Parkin levels, and elevated TH activity and dopamine level. In both low and high doses, EMP produced a neuroprotective effect against the PD rat model, with the high dose inducing a more significant effect.

5.
IBRO Neurosci Rep ; 12: 411-418, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35746971

ABSTRACT

The dopamine mesolimbic system is a major circuit involved in controlling goal-directed behaviors. Dopamine D2 receptors (D2R) and kappa opioid receptors (KOR) are abundant Gi protein-coupled receptors in the mesolimbic system. D2R and KOR share several functions in dopamine mesencephalic neurons, such as regulation of dopamine release and uptake, and firing of dopamine neurons. In addition, KOR and D2R modulate each other functioning. This evidence indicates that both receptors functionally interact, however, their colocalization in the mesostriatal system has not been addressed. Immunofluorescent assays were performed in cultured dopamine neurons and adult mice's brain tissue to answer this question. We observed that KOR and D2R are present in similar density in dendrites and soma of cultured dopamine neurons, but in a segregated manner. Interestingly, KOR immunolabelling was observed in the first part of the axon, colocalizing with Ankyrin in 20% of cultured dopamine neurons, indicative that KOR is present in the axon initial segment (AIS) of a group of dopaminergic neurons. In the adult brain, KOR and D2R are also segregated in striatal tissue. While the KOR label is in fiber tracts such as the striatal streaks, corpus callosum, and anterior commissure, D2R is located mainly within the striatum and nucleus accumbens, surrounding fiber tracts. D2R is also localized in some fibers that are mostly different from those positives for KOR. In conclusion, KOR and D2R are present in the soma and dendrites of mesencephalic dopaminergic neurons, but KOR is also found in the AIS of a subpopulation of these neurons.

6.
IBRO Neurosci Rep ; 13: 38-46, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35711244

ABSTRACT

Hindbrain A2 noradrenergic neurons assimilate estrogenic and metabolic cues. In female mammals, negative- versus positive-feedback patterns of estradiol (E) secretion impose divergent regulation of the gonadotropin-releasing hormone (GnRH)-pituitary-gonadal (HPG) neuroendocrine axis. Current research used retrograde tracing, dual-label immunocytochemistry, single-cell laser-microdissection, and multiplex qPCR methods to address the premise that E feedback modes uniquely affect metabolic regulation of A2 neurons involved in HPG control. Ovariectomized female rats were given E replacement to replicate plasma hormone levels characteristic of positive (high-E dose) or negative (low-E dose) feedback. Animals were either full-fed (FF) or subjected to short-term, e.g., 18-h food deprivation (FD). After FF or FD, rostral preoptic area (rPO)-projecting A2 neurons were characterized by the presence or absence of nuclear glucokinase regulatory protein (nGKRP) immunostaining. FD augmented or suppressed mRNAs encoding the catecholamine enzyme dopamine-beta-hydroxylase (DßH) and the metabolic-sensory biomarker glucokinase (GCK), relative to FF controls, in nGKRP-immunoreactive (ir)-positive A2 neurons from low-E or high-E animals, respectively. Yet, these transcript profiles were unaffected by FD in nGKRP-ir-negative A2 neurons at either E dosage level. FD altered estrogen receptor (ER)-alpha and ATP-sensitive potassium channel subunit sulfonylurea receptor-1 gene expression in nGKRP-ir-positive neurons from low-E, but not high-E animals. Results provide novel evidence that distinct hindbrain A2 neuron populations exhibit altered versus unaffected transmission to the rPO during FD-associated metabolic imbalance, and that the direction of change in this noradrenergic input is controlled by E feedback mode. These A2 cell types are correspondingly distinguished by FD-sensitive or -insensitive GCK, which correlates with the presence versus absence of nGKRP-ir. Further studies are needed to determine how E signal volume regulates neurotransmitter and metabolic sensor responses to FD in GKRP-expressing A2 neurons.

7.
Food Chem (Oxf) ; 4: 100088, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35415676

ABSTRACT

Carotenoids, fat-soluble pigments found ubiquitously in plants and fruits, have been reported to exert significant neuroprotective effects against free radicals. However, the neuroprotective effects of total mixed carotenes complex (TMC) derived from virgin crude palm oil have not been studied extensively. Therefore, the present study was designed to establish the neuroprotective role of TMC on differentiated human neural cells against 6-hydroxydopamine (6-OHDA)-induced cytotoxicity. The human neural cells were differentiated using retinoic acid for six days. Then, the differentiated neural cells were pre-treated for 24 hr with TMC before exposure to 6-OHDA. TMC pre-treated neurons showed significant alleviation of 6-OHDA-induced cytotoxicity as evidenced by enhanced activity of the superoxide dismutase (SOD) and catalase (CAT) enzymes. Furthermore, TMC elevated the levels of intra-neuronal dopamine and tyrosine hydroxylase (TH) in differentiated neural cells. The 6-OHDA induced overexpression of α-synuclein was significantly hindered in neural cells pre-treated with TMC. In proteomic analysis, TMC altered the expression of ribosomal proteins, α/ß isotypes of tubulins, protein disulphide isomerases (PDI) and heat shock proteins (HSP) in differentiated human neural cells. The natural palm phytonutrient TMC is a potent antioxidant with significant neuroprotective effects against free radical-induced oxidative stress.

8.
Mater Today Bio ; 13: 100219, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35243294

ABSTRACT

Organ-on-a-chip models have emerged as a powerful tool to model cancer metastasis and to decipher specific crosstalk between cancer cells and relevant regulators of this particular niche. Recently, the sympathetic nervous system (SNS) was proposed as an important modulator of breast cancer bone metastasis. However, epidemiological studies concerning the benefits of the SNS targeting drugs on breast cancer survival and recurrence remain controversial. Thus, the role of SNS signaling over bone metastatic cancer cellular processes still requires further clarification. Herein, we present a novel humanized organ-on-a-chip model recapitulating neuro-breast cancer crosstalk in a bone metastatic context. We developed and validated an innovative three-dimensional printing based multi-compartment microfluidic platform, allowing both selective and dynamic multicellular paracrine signaling between sympathetic neurons, bone tropic breast cancer cells and osteoclasts. The selective multicellular crosstalk in combination with biochemical, microscopic and proteomic profiling show that synergistic paracrine signaling from sympathetic neurons and osteoclasts increase breast cancer aggressiveness demonstrated by augmented levels of pro-inflammatory cytokines (e.g. interleukin-6 and macrophage inflammatory protein 1α). Overall, this work introduced a novel and versatile platform that could potentially be used to unravel new mechanisms involved in intracellular communication at the bone metastatic niche.

9.
JACC Basic Transl Sci ; 7(2): 101-112, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35257036

ABSTRACT

Recently, we designed a renal denervation with cryoablation (Cryo-RDN) system using liquid nitrogen and proved its short-term safety and effectiveness. In this study, we first conducted a 6-month follow-up in a swine model. Renal sympathetic nerve activity remained at a significantly lower level than that of the control group after 6 months. In patients with resistant hypertension, Cryo-RDN demonstrated preliminary safety. Renal function fluctuations and vascular-related complications were not detected. In addition, the average 24-hour systolic and diastolic blood pressure decreased by 12.17 ± 8.35 mm Hg and 8.50 ± 3.83 mm Hg at the 6-month follow-up, respectively, compared with their baseline values.

10.
Biomolecules ; 13(1)2022 12 27.
Article in English | MEDLINE | ID: mdl-36671436

ABSTRACT

The G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) gene is associated with late-onset Parkinson's disease (PD). Although PD affects men and women differently, longitudinal studies examining sex- and age-dependent alterations in mice carrying the G2019S mutation are limited. We examined if behavioral and neurochemical dysfunctions, as well as neurodegeneration, occur in male and female BAC LRRK2-hG2019S (G2019S) mice, compared to their age-matched wild type littermates, at four age ranges. In the open field test, hyperlocomotion was observed in 10-12 month old male and 2-4.5 months old female G2019S mice. In the pole test, motor coordination was impaired in male G2019S mice from 15 months of age and in 20-21 months old female G2019S mice. In the striatum of G2019S male and female mice, the amounts of tyrosine hydroxylase (TH), measured with Western blotting, were unaltered. However, we found a decreased expression of the dopamine transporter in 20-21 month old male G2019S mice. The number of TH-positive neurons in the substantia nigra compacta was unaltered in 20-21 month old male and female G2019S mice. These results identify sex- and age-dependent differences in the occurrence of motor and neurochemical deficits in BAC LRRK2-hG2019S mice, and no degeneration of DA neurons.


Subject(s)
Protein Serine-Threonine Kinases , Substantia Nigra , Animals , Female , Male , Mice , Corpus Striatum/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mice, Transgenic , Mutation , Protein Serine-Threonine Kinases/metabolism , Substantia Nigra/metabolism
11.
Comput Struct Biotechnol J ; 19: 5348-5359, 2021.
Article in English | MEDLINE | ID: mdl-34667532

ABSTRACT

Alpha-synuclein (αSyn) is often described as a predominantly disordered protein that has a propensity to self-assemble into toxic oligomers that are found in patients with Parkinson's and Alzheimer's diseases. αSyn's chaperone behavior and tetrameric structure are proposed to be protective against toxic oligomerization. In this paper, we extended the previously proposed similarity between αSyn and 14-3-3 proteins to the α-helical tetrameric species of αSyn in detail. 14-3-3 proteins are a family of well-folded proteins with seven human isoforms, and function in signal transduction and as molecular chaperones. We investigated protein homology, using sequence alignment, amyloid, and disorder prediction, as well as three-dimensional visualization and protein-interaction networks. Our results show sequence homology and structural similarity between the aggregation-prone non-amyloid-ß component (NAC) residues Val-52 to Gly-111 in αSyn and 14-3-3 sigma residues Leu-12 to Gly-78. We identified an additional region of sequence homology in the C-terminal region of αSyn (residues Ser-129 to Asp-135) and a C-terminal loop of 14-3-3 between helix αH and αI (residues Ser-209 to Asp-215). This data indicates αSyn shares conserved domain architecture with small heat shock proteins. We show predicted regions of high amyloidogenic propensity and intrinsic structural disorder in αSyn coincide with amyloidogenic and disordered predictions for 14-3-3 proteins. The homology in the NAC region aligns with residues involved in dimer- and tetramerization of the non-amyloidogenic 14-3-3 proteins. Because 14-3-3 proteins are generally not prone to misfolding, our results lend further support to the hypothesis that the NAC region is critical to the assembly of αSyn into the non-toxic tetrameric state.

12.
Acta Pharm Sin B ; 11(9): 2859-2879, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34589401

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease, but none of the current treatments for PD can halt the progress of the disease due to the limited understanding of the pathogenesis. In PD development, the communication between the brain and the gastrointestinal system influenced by gut microbiota is known as microbiota-gut-brain axis. However, the explicit mechanisms of microbiota dysbiosis in PD development have not been well elucidated yet. FLZ, a novel squamosamide derivative, has been proved to be effective in many PD models and is undergoing the phase I clinical trial to treat PD in China. Moreover, our previous pharmacokinetic study revealed that gut microbiota could regulate the absorption of FLZ in vivo. The aims of our study were to assess the protective effects of FLZ treatment on PD and to further explore the underlying microbiota-related mechanisms of PD by using FLZ as a tool. In the current study, chronic oral administration of rotenone was utilized to induce a mouse model to mimic the pathological process of PD. Here we revealed that FLZ treatment alleviated gastrointestinal dysfunctions, motor symptoms, and dopaminergic neuron death in rotenone-challenged mice. 16S rRNA sequencing found that PD-related microbiota alterations induced by rotenone were reversed by FLZ treatment. Remarkably, FLZ administration attenuated intestinal inflammation and gut barrier destruction, which subsequently inhibited systemic inflammation. Eventually, FLZ treatment restored blood-brain barrier structure and suppressed neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra (SN). Further mechanistic research demonstrated that FLZ treatment suppressed the TLR4/MyD88/NF-κB pathway both in the SN and colon. Collectively, FLZ treatment ameliorates microbiota dysbiosis to protect the PD model via inhibiting TLR4 pathway, which contributes to one of the underlying mechanisms beneath its neuroprotective effects. Our research also supports the importance of microbiota-gut-brain axis in PD pathogenesis, suggesting its potential role as a novel therapeutic target for PD treatment.

13.
Mol Genet Metab Rep ; 27: 100762, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33996491

ABSTRACT

BACKGROUND: Aromatic L-amino acid decarboxylase (AADC) deficiency and tyrosine hydroxylase (TH) deficiency are rare inherited disorders of monoamine neurotransmitter synthesis which are typically diagnosed using cerebrospinal fluid examination of monoamine neurotransmitter metabolites. Until now, it has not been systematically studied whether analysis of monamine neurotransmitter metabolites in blood or urine has diagnostic value as compared to cerebrospinal fluid examination, or whether monoamine neurotransmitter metabolites in these peripheral body fluids is useful to monitor treatment efficacy. METHODS: Assessment, both by literature review and retrospective analysis of our local university hospital database, of monoamine neurotransmitter metabolites in urine, blood and cerebrospinal fluid, and serum prolactin levels, before and during treatment in patients with AADC and TH deficiency. RESULTS: In AADC deficiency, 3-O-methyldopa in serum or dried blood spots was reported in 34 patients and found to be (strongly) increased in all, serotonin in serum was decreased in 7/7 patients. Serum prolactin was increased in 34/37 and normal in 3 untreated patients. In urine, dopamine was normal or increased in 21/24 patients, 5-hydroxyindoleacetic acid was decreased in 9/10 patients, and vanillactic acid was increased in 19/20 patients. No significant changes were seen in monoamine neurotransmitter metabolites after medical treatment, except for an increase of homovanillic acid in urine and cerebrospinal fluid after levodopa therapy, sometimes even in absence of a clinical response. After gene therapy, cerebrospinal fluid homovanillic acid increased in most patients (8/12), but 5-hydroxyindoleacetic acid remained unchanged in 9/12 patients.In TH deficiency, serum prolactin was increased in 12/14 and normal in the remaining untreated patients. Urinary dopamine was decreased in 2/8 patients and normal in 6. Homovanillic acid concentrations in cerebrospinal fluid increased upon levodopa treatment, even in the absence of a clear treatment response. CONCLUSIONS: This study confirms that cerebrospinal fluid is the most informative body fluid to measure monoamine neurotransmitter metabolites when AADC or TH deficiency is suspected, and that routine follow-up of cerebrospinal fluid measurements to estimate treatment response is not needed. 3-O-methyldopa in dried blood spots and vanillactic acid in urine are promising peripheral biomarkers for diagnosis of AADC deficiency. However, in many patients with TH or AADC deficiency dopamine in urine is normal or increased thereby not reflecting the metabolic block. The value of serum prolactin for follow-up of AADC and TH deficiency should be further studied.

14.
Epilepsy Behav Rep ; 15: 100430, 2021.
Article in English | MEDLINE | ID: mdl-33604535

ABSTRACT

Polyglucosan bodies have been reported in the context of hypoxic-ischaemic perinatal brain injury, mainly in the pallidum but with rare reports in brainstem neurons. We report a case of a five-year-old boy with cerebral palsy and complex neurological features including epilepsy who experienced sudden nocturnal death. At post-mortem long-standing bilateral necrosis of basal ganglia and hippocampal atrophy was identified in keeping with hypoxic-ischaemic perinatal injury. In addition numerous polyglucosan bodies, which were PAS, p62 and ubiquitin positive, were noted in brainstem neurones and dendrites, primarily involving the ventrolateral and dorsomedial medulla. Immunohistochemistry confirmed relative preservation of medullary neuronal populations in the reticular formation, including catecholaminergic (tyrosine hydroxylase, TH), serotonergic (tryptophan hydroxylase) and neurokinin1 receptor/somatostatin positive neurones. The polyglucosan bodies predominated in catecholaminergic neurones which could indicate their selective vulnerability and a functional deficiency, which during a critical peri-ictal period contributed to the sudden unexpected death in epilepsy.

15.
IBRO Rep ; 9: 258-269, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33089002

ABSTRACT

Huntingtin-associated protein 1 (HAP1) is a polyglutamine (polyQ) length-dependent interactor with causal agents in several neurodegenerative diseases and has been regarded as a protective factor against neurodegeneration. In normal rodent brain and spinal cord, HAP1 is abundantly expressed in the areas that are spared from neurodegeneration while those areas with little HAP1 are frequent targets of neurodegeneration. We have recently showed that HAP1 is highly expressed in the spinal dorsal horn and may participate in modification/protection of certain sensory functions. Neurons in the dorsal root ganglia (DRG) transmits sensory stimuli from periphery to spinal cord/brain stem. Nevertheless, to date HAP1 expression in DRG remains unreported. In this study, the expression of HAP1 in cervical, thoracic, lumbar and sacral DRG in adult male mice and its relationships with different chemical markers for sensory neurons were examined using Western blot and immunohistochemistry. HAP1-immunoreactivity was detected in the cytoplasm of DRG neurons, and the percentage of HAP1-immunoreactive (ir) DRG neurons was ranged between 28-31 %. HAP1-immunoreactivity was comparatively more in the small cells (47-58 %) and medium cells (40-44 %) than that in the large cells (9-11 %). Double-immunostaining for HAP1 and markers for nociceptive or mechanoreceptive neurons showed that about 70-80 % of CGRP-, SP-, CB-, NOS-, TRPV1-, CR- and PV-ir neurons expressed HAP1. In contrast, HAP1 was completely lacking in TH-ir neurons. Our current study is the first to clarify that HAP1 is highly expressed in nociceptive/proprioceptive neurons but absent in light-touch-sensitive TH neurons, suggesting the potential importance of HAP1 in pain transduction and proprioception.

16.
IBRO Rep ; 8: 28-35, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31909290

ABSTRACT

Parkinson´s disease is the most important neuromotor pathology due to the prominent loss of dopaminergic neurons in the substantia nigra pars compacta. There is an inherent deficiency of dopamine in Parkinson´s disease, which is aggravated when neuroinflammatory processes are present. Several biomolecules are interesting candidates for the regulation of inflammation and possible neuroprotection, such as valerenic acid, one of the main components of Valeriana officinalis. A 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced mouse model of Parkinson's disease was developed to evaluate the motor effects of valerenic acid. The evaluation was carried out with four tests (an invert screen test for muscle strength, cross beam test, open field mobility test and lifting on hind legs test). Subsequently, the neuroinflammatory process was evaluated through ELISA of pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α and IFN-γ). The decreases in the inflammatory and neurodegenerative processes were evaluated by Western blot and immunohistochemistry analyses of the tissues, which included an evaluation of the tyrosine hydroxylase and GFAP proteins. Finally, the predicted mechanism of action of valerenic acid was supported by molecular docking calculations with the 5-HT5A receptor. The results indicate that the use of valerenic acid as a co-treatment decreases the neuroinflammation in Parkinson's disease induced by MPTP and provides evidence of a decrease in the evaluated pro-inflammatory cytokines and in the amount of GFAP in the mesencephalic area. Valerenic acid prevents neuroinflammation in a Parkinson's disease mouse model, which might reflect the neuroprotection of dopaminergic neurons with the recovery of motor ability.

17.
Regen Ther ; 15: 332-339, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33426236

ABSTRACT

Neurodegenerative disorders such as Parkinson's and Alzheimer's disease, are fundamental health concerns all around the world. The development of novel treatments and new techniques to address these disorders, are being actively studied by researchers and medical personnel. In the present review we will discuss the application of induced Pluripotent Stem Cells (iPSCs) for cell-therapy replacement and disease modelling. The aim of iPSCs is to restore the functionality of the damaged tissue by replacing the impaired cells with competitive ones. To achieve this objective, iPSCs can be properly differentiated into virtually any cell fate and can be strongly translated into human health via in vitro and in vivo disease modeling for the development of new therapies, the discovery of biomarkers for several disorders, the elaboration and testing of new drugs as novel treatments, and as a tool for personalized medicine.

18.
Neurobiol Stress ; 11: 100179, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31304199

ABSTRACT

The impact of psychological stressors on the progression of motor and non-motor disturbances observed in Parkinson's disease (PD) has received little attention. Given that PD likely results from many different environmental "hits", we were interested in whether a chronic unpredictable stressor regimen would act additively or possibly even synergistically to augment the impact of the toxicant, paraquat, which has previously been linked to PD. Our findings support the contention that paraquat itself acted as a systemic stressor, with the pesticide increasing plasma corticosterone, as well as altering glucocorticoid receptor (GR) expression in the hippocampus. Furthermore, stressed mice that also received paraquat displayed synergistic motor coordination impairment on a rotarod test and augmented signs of anhedonia (sucrose preference test). The individual stressor and paraquat treatments also caused a range of non-motor (e.g. open field, Y and plus mazes) deficits, but there were no signs of an interaction (neither additive nor synergistic) between the insults. Similarly, paraquat caused the expected loss of substantia nigra dopamine neurons and microglial activation, but this effect was not further influenced by the chronic stressor. Taken together, these results indicate that paraquat has many effects comparable to that of a more traditional stressor and that at least some behavioral measures (i.e. sucrose preference and rotarod) are augmented by the combined pesticide and stress treatments. Thus, although psychological stressors might not necessarily increase the neurodegenerative effects of the toxicant exposure, they may promote co-morbid behaviors pathology.

19.
Saudi J Biol Sci ; 26(8): 1948-1955, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31889778

ABSTRACT

OBJECTIVE: Acupuncture is a commonly used method to provide motor-symptomatic relief for patients with Parkinson s disease (PD). Our objective was to evaluate protective effects of acupuncture treatment and potential underlying mechanisms according to the "gut-brain axis" theory. METHODS: We employed a 6-OHDA-induced PD rat model. The effects of acupuncture on disease development were assessed by behavioural tests and immunohistochistry (IHC). ELISA, qPCR and western blot (WB) were employed to measure inflammatory parameters and Fe metabolism in the substantia nigra (SN), striatum, duodenum and blood, respectively. RESULTS: Our data show that acupuncture can significantly increase the expression of tyrosine hydroxylase (TH), compared with untreated and madopa treated rats (P < 0.01 and P < 0.05, respectively). Furthermore we could observe significantly decreased levels of pro-inflammatory markers in the duodenum and serum (P < 0.05), reduced deposition of Fe in the substantia nigra (P < 0.05) and but no change in transferrin expression after acupuncture treatment. The mRNA ratio of DMT1/Fpn1 in the SN of acupuncture treated rats (1.1) was comparable to that of the sham group (1.0) which differed both significantly from the untreated and madopa treated groups (P < 0.05). Furthermore, after acupuncture expression of α-synuclein was decreased in the duodenum. CONCLUSIONS: Acupuncture can reduce iron accumulation in the SN and protect the loss of dopamine neurons by promoting balanced expression of the iron importer DMT1 and the iron exporter Fpn1. Furthermore CNS iron homeostasis may be affected by reduced systemic and intestinal inflammation.

20.
IBRO Rep ; 4: 14-17, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30135947

ABSTRACT

Current treatments for Parkinson's disease (PD) are primarily symptomatic, leaving a need for treatments that mitigate disease progression. One emerging neuroprotective strategy is remote tissue conditioning, in which mild stress in a peripheral tissue (e.g. a limb) induces protection of life-critical organs such as the brain. We evaluated the potential of two remote tissue conditioning interventions - mild ischemia and photobiomodulation - in protecting the brain against the parkinsonian neurotoxin MPTP. Further, we sought to determine whether combining these two interventions provided any added benefit. Male C57BL/6 mice (n = 10/group) were pre-conditioned with either ischemia of the leg (4 × 5 min cycles of ischemia/reperfusion), or irradiation of the dorsum with 670 nm light (50 mW/cm2, 3 min), or both interventions, immediately prior to receiving two MPTP injections 24 hours apart (50 mg/kg total). Mice were sacrificed 6 days later and brains processed for tyrosine hydroxylase immunohistochemistry. Stereological counts of functional dopaminergic neurons in the substantia nigra pars compacta revealed that both remote ischemia and remote photobiomodulation rescued around half of the neurons that were compromised by MPTP (p < 0.001). Combining the two interventions provided no added benefit, rescuing only 40% of vulnerable neurons (p < 0.01). The present results suggest that remote tissue conditioning, whether ischemia of a limb or photobiomodulation of the torso, induces protection of brain centers critical in PD. The lack of additional benefit when combining these two interventions suggests they may share common mechanistic pathways. Further research is needed to identify these pathways and determine the conditioning doses that yield optimal neuroprotection.

SELECTION OF CITATIONS
SEARCH DETAIL