Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
J Stroke Cerebrovasc Dis ; 33(1): 107474, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38006767

ABSTRACT

OBJECTIVES: Stroke is a devastating clinical outcome that significantly contributes to the morbidity and mortality of sickle cell anemia (SCA) patients. Despite its advantages in predicting stroke risk, transcranial Doppler screening has limitations that restrict its applicability, highlighting the need for emerging prognostic tools. Thrombospondin-1 plays a crucial role in endothelial injury, platelet adhesion, and nitric oxide metabolism and may be implicated in stroke pathophysiology. Here, we aimed to evaluate the association of THBS1 genetic variations with the occurrence of stroke in SCA patients MATERIALS AND METHODS: By real-time PCR, 512 SCA patients were fully genotyped for THBS1 A-296G (rs1478605) polymorphism RESULTS: THBS1 GG genotype was associated with a lower risk for stroke occurrence [odds ratio (OR): 0.30; 95% confidence interval (CI): 0.11-0.78; P = 0.011], although these findings were not consistent with multivariate logistic regression analysis (OR: 0.73, 95% CI: 0.12 - 4.37; P = 0.736). In agreement, the cumulative incidence of stroke for patients with AG/AA genotypes was higher when compared to the GG genotype (P = 0.018). However, the association was not maintained in the multivariate proportional hazards model (hazard ratio: 0.67, 95% CI: 0.12-3.61; P = 0.643) CONCLUSIONS: In summary, the present study shows that the THBS1 A-296G (rs1478605) polymorphism may be a potential modifier for stroke in SCA.


Subject(s)
Anemia, Sickle Cell , Stroke , Humans , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/diagnosis , Anemia, Sickle Cell/epidemiology , Brazil/epidemiology , Genotype , Polymorphism, Genetic , Stroke/diagnosis , Stroke/epidemiology , Stroke/genetics
2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;54(4): e10692, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153536

ABSTRACT

Fibrosis caused by the increase in extracellular matrix in cardiac fibroblasts plays an important role in the occurrence and development of atrial fibrillation (AF). The aim of this study was to investigate the role of hsa-miR-4443 in AF, human cardiac fibroblast (HCFB) proliferation, and extracellular matrix remodeling. TaqMan Stem-loop miRNA assay was used to measure hsa-miR-4443 expression in patients with persistent AF (n=123) and healthy controls (n=100). Patients with AF were confirmed to have atrial fibrosis by late gadolinium enhancement. At the cellular level, after hsa-miR-4443 mimic and inhibitor were transfected with HCFBs, proliferation, apoptosis, migration, and invasion were analyzed. Lastly, hsa-miR-4443-targeted gene and transforming growth factor (TGF)-β1/α-SMA/collagen pathway were evaluated by dual-luciferase reporter assay and western blot, respectively. In patients with AF, hsa-miR-4443 decreased significantly and collagen metabolism level increased significantly. Logistic regression analysis showed that low hsa-miR-4443 level was a risk factor of AF (P<0.001). The receiver operating characteristic curve revealed that hsa-miR-4443 was useful for predicting AF (area under the curve: 0.828, sensitivity: 0.71, specificity: 0.78, P<0.001). In HCFBs, hsa-miR-4443 targeted thrombospondin-1 (THBS1) and downregulated TGF-β1/α-SMA/collagen pathway. The inhibition of hsa-miR-4443 expression promoted HCFB proliferation, migration, invasion, myofibroblast differentiation, and collagen production. The significant reduction of hsa-miR-4443 can be used as a biomarker for AF. hsa-miR-4443 protected AF by targeting THBS1 and regulated TGF-β1/α-SMA/collagen pathway to inhibit HCFB proliferation and collagen synthesis.


Subject(s)
Humans , Atrial Fibrillation , MicroRNAs/genetics , Fibrosis , Collagen , Contrast Media , Thrombospondin 1/genetics , Cell Proliferation , Transforming Growth Factor beta1 , Fibroblasts , Gadolinium
3.
Clin Transl Oncol ; 22(10): 1730-1740, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32052380

ABSTRACT

OBJECTIVE: Liver metastasis is one of the major causes of cancer-related death in patients with colorectal cancer (CRC). The purpose of this study was to identify specific molecules which are involved in colorectal liver metastasis (CRLM). MATERIALS AND METHODS: In this study, we employed TMT (tandem mass tags)-labeling combined with liquid chromatography-mass spectrometry technology to do comparative analyses of proteomics between the primary tumor specimens derived from colorectal cancer patients with or without liver metastasis. Pathway enrichment analyses were performed using DAVID database. The crucial molecules were identified through protein-protein interaction network. Immunohistochemistry (IHC) was employed to analyze the expression of THBS1 (thrombospondin-1) in CRC tissues. Finally, transwell cell migration and invasion assays were performed to explore the roles of THBS1 in CRC cell migration and invasion. RESULTS: We found that the expression of 311 proteins was dysregulated in CRLM using quantitative proteomics. Among these proteins, we identified FN1, TIMP1, THBS1, POSTN and VCAN as five crucial proteins in CRLM by analysis in silico. IHC assay revealed that increased THBS1 expression was significantly correlated with liver metastasis as well as poor prognosis of CRC patients. GEO data analysis also suggests that upregulated mRNA level of THBS1 is also associated with shorter overall survival of CRC patients. Moreover, THBS1 depletion inhibited migration and invasion of CRC cells through attenuating epithelial-mesenchymal transition. Co-expression analyses with TCGA data indicated that THBS1 is co-expressed with mesenchymal markers, including Vimentin, N-cadherin, Snail1 and Twist1 in CRC tissues. CONCLUSIONS: By collecting the omics data with functional studies, the present results reveal that THBS1 facilitates colorectal liver metastasis through promoting epithelial-mesenchymal transition. This understanding of molecular roles of THBS1 in CRLM may be promising to develop targeted therapies to prolong survival in CRC patients.


Subject(s)
Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition , Liver Neoplasms/secondary , Thrombospondin 1/physiology , Cell Line, Tumor , Cell Movement , Colorectal Neoplasms/mortality , Humans , Immunohistochemistry , Neoplasm Invasiveness , Protein Interaction Maps
SELECTION OF CITATIONS
SEARCH DETAIL