Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters











Publication year range
1.
ESMO Open ; 9(8): 103643, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39088985

ABSTRACT

BACKGROUND: LHC165 is a Toll-like receptor (TLR)-7 agonist that generates an effective tumor antigen-specific T-cell adaptive immune response as well as durable antitumor responses. We aimed to evaluate the safety, tolerability, efficacy, dose-limiting toxicities, and pharmacokinetics (PK) of LHC165 single agent (SA) ± spartalizumab [PDR001; anti-programmed cell death protein 1 (PD-1)] in adult patients with advanced solid tumors. MATERIALS AND METHODS: In this phase I/Ib, open-label, dose-escalation/expansion study, patients received LHC165 SA 100-600 µg biweekly through intratumoral (IT) injection and LHC165 600 µg biweekly + spartalizumab 400 mg Q4W through intravenous (IV) infusion. RESULTS: Forty-five patients were enrolled: 21 patients received LHC165 SA, and 24 patients received LHC165 + spartalizumab. The median duration of exposure was 8 weeks (range 2-129 weeks). No maximum tolerated dose was reached. Recommended dose expansion was established as LHC165 600 µg biweekly as SA and in combination with spartalizumab 400 mg Q4W. The most common drug-related adverse events (AEs) were pyrexia (22.2%), pruritus (13.3%), chills (11.1%), and asthenia (4.4%). The only serious AE (SAE) suspected to be related to the study drug was grade 3 pancreatitis (n = 1). Across all tumor types, overall response rate and disease control were 6.7% and 17.8%, respectively. Overall median progression-free survival (PFS) and immune-related PFS was 1.7 months. LHC165 serum PK demonstrated an initial rapid release followed by a slower release due to continued release of LHC165 from the injection site. CONCLUSIONS: LHC165 demonstrated acceptable safety and tolerability both as SA and in combination with spartalizumab, and evidence of limited antitumor activity was seen in adult patients with relapsed/refractory or metastatic solid tumors.


Subject(s)
Antibodies, Monoclonal, Humanized , Neoplasms , Humans , Female , Male , Neoplasms/drug therapy , Middle Aged , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacokinetics , Adult , Maximum Tolerated Dose , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Aged, 80 and over
2.
Heliyon ; 10(13): e33837, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39050425

ABSTRACT

Because of the tumor's recurrence and significant metastasis, the standard single-therapy paradigm has failed to meet clinical requirements. Recently, researchers have focused their emphasis on phototherapy and immunogenic cell death (ICD) techniques. In response to the current problems of immunotherapy, a multifunctional drug delivery nanosystem (PDA-IMQ@CaCO3-blinatumomab, PICB) was constructed by using high physiological compatibility of polydopamine (PDA) and calcium carbonate (CaCO3). Toll-like receptor 7 (TLR7) agonist imiquimod (IMQ) and bispecific antibody (BsAb) blinatumomab were loaded onto PDA-CaCO3 nanoparticles (NPs). The findings revealed that the system exhibited the advantages of good dispersion, high stability, excellent physiological compatibility, low toxicity, and high drug loading rate. Compared to the control group, it resulted in a 2.4-fold decrease in FOXP3+ regulatory T-cells within the tumor and a 5.0-fold increase in CD4+ effector T-cells, and promoted the production of damage-related molecular patterns to reinvigorate the ICD effect. PICB had a strong inhibitory effect on tumor growth in 4T1 tumor-bearing mice, and has no toxicity to other organs. Therefore, the multifunctional drug delivery nanosystem constructed in this study could effectively exert the properties of various components in vivo, fully demonstrate the synergistic effect between immunotherapy and photothermal therapy, thus significantly improving the tumor therapeutic efficacy, and has a promising clinical application.

3.
BMC Immunol ; 25(1): 48, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054418

ABSTRACT

BACKGROUND: TLR7 is a key player in the antiviral immunity. TLR7 signaling activates antigen-presenting cells including DCs and macrophages. This activation results in the adaptive immunity including T cells and B cells. Therefore, TLR7 is an important molecule of the immune system. Based on these observations, TLR7 agonists considered to become a therapy weaponize the immune system against cancer. Radiation therapy (RT) is one of the standard cancer therapies and is reported to modulate the tumor immune response. In this study, we aimed to investigate the anti-tumor activity in combination of TLR7 agonist, DSP-0509, with RT and underlying mechanism. RESULT: We showed that anti-tumor activity is enhanced by combining RT with the TLR7 agonist DSP-0509 in the CT26, LM8, and 4T1 inoculated mice models. We found that once- weekly (q1w) dosing of DSP-0509 rather than biweekly (q2w) dosing is needed to achieve superior anti-tumor activities in CT26 model. Spleen cells from the mice in RT/DSP-0509 combination treatment group showed increased tumor lytic activity, inversely correlated with tumor volume, as measured by the chromium-release cytotoxicity assay. We also found the level of cytotoxic T lymphocytes (CTLs) increased in the spleens of completely cured mice. When the mice completely cured by combination therapy were re-challenged with CT26 cells, all mice rejected CT26 cells but accepted Renca cells. This rejection was not observed with CD8 depletion. Furthermore, levels of splenic effector memory CD8 T cells were increased in the combination therapy group. To explore the factors responsible for complete cure by combination therapy, we analyzed peripheral blood leukocytes (PBLs) mRNA from completely cured mice. We found that Havcr2low, Cd274low, Cd80high, and Il6low were a predictive signature for the complete response to combination therapy. An analysis of tumor-derived mRNA showed that combination of RT and DSP-0509 strongly increased the expression of anti-tumor effector molecules including Gzmb and Il12. CONCLUSION: These data suggest that TLR7 agonist, DSP-0509, can be a promising concomitant when used in combination with RT by upregulating CTLs activity and gene expression of effector molecules. This combination can be an expecting new radio-immunotherapeutic strategy in clinical trials.


Subject(s)
Toll-Like Receptor 7 , Animals , Toll-Like Receptor 7/agonists , Mice , Cell Line, Tumor , Female , Lymphocyte Activation/drug effects , Mice, Inbred BALB C , Membrane Glycoproteins/agonists , Combined Modality Therapy , Humans , Mice, Inbred C57BL , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , Disease Models, Animal , T-Lymphocytes/immunology , T-Lymphocytes/drug effects
4.
Eur J Med Chem ; 275: 116575, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38865744

ABSTRACT

Hepatitis B virus (HBV) infection, as a serious global public health issue, is closely related to the immune dysfunction. Herein, thirty-seven 1-(indolin-1-yl)-2-(thiazol-4-yl)ethan-1-one derivatives were prepared as potential immunomodulatory anti-HBV agents. Anti-HBV activity evaluation confirmed compound 11a could significantly suppress the HBV DNA replication in both wild and resistant HBV stains, with IC50 values of 0.13 µM and 0.36 µM, respectively. Preliminary action mechanism studies showed that 11a had an inhibitory effect on cellular HBsAg secretion and could effectively activate TLR7, thereby inducing the secretion of TLR7-regulated cytokines IL-12, TNF-α and IFN-α in human PBMC cells. SPR analysis confirmed that 11a could bind to TLR7 protein with an affinity of 7.06 µM. MD simulation predicted that 11a could form tight interactions with residues in the binding pocket of TLR7. Physicochemical parameters perdition and pharmacokinetic analysis indicated that 11a displayed relatively favorable drug-like properties. Considering all the results, compound 11a might be a promising lead for developing novel immunomodulatory anti-HBV agents.


Subject(s)
Antiviral Agents , Hepatitis B virus , Toll-Like Receptor 7 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Hepatitis B virus/drug effects , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/agonists , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Virus Replication/drug effects , Microbial Sensitivity Tests , Animals , Hep G2 Cells
5.
J Transl Med ; 22(1): 341, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594751

ABSTRACT

BACKGROUND: Chemoimmunotherapy has shown promising advantages of eliciting immunogenic cell death and activating anti-tumor immune responses. However, the systemic toxicity of chemotherapy and tumor immunosuppressive microenvironment limit the clinical application. METHODS: Here, an injectable sodium alginate hydrogel (ALG) loaded with nanoparticle albumin-bound-paclitaxel (Nab-PTX) and an immunostimulating agent R837 was developed for local administration. Two murine hepatocellular carcinoma and breast cancer models were established. The tumor-bearing mice received the peritumoral injection of R837/Nab-PTX/ALG once a week for two weeks. The antitumor efficacy, the immune response, and the tumor microenvironment were investigated. RESULTS: This chemoimmunotherapy hydrogel with sustained-release character was proven to have significant effects on killing tumor cells and inhibiting tumor growth. Peritumoral injection of our hydrogel caused little harm to normal organs and triggered a potent antitumor immune response against both hepatocellular carcinoma and breast cancer. In the tumor microenvironment, enhanced immunogenic cell death induced by the combination of Nab-PTX and R837 resulted in 3.30-fold infiltration of effector memory T cells and upregulation of 20 biological processes related to immune responses. CONCLUSIONS: Our strategy provides a novel insight into the combination of chemotherapy and immunotherapy and has the potential for clinical translation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Mice , Animals , Hydrogels/pharmacology , Hydrogels/therapeutic use , Imiquimod/pharmacology , Imiquimod/therapeutic use , Immunogenic Cell Death , Cell Line, Tumor , Liver Neoplasms/drug therapy , Immunotherapy/methods , Immunity , Tumor Microenvironment
6.
Eur J Pharmacol ; 967: 176383, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38311281

ABSTRACT

Toll-like receptor (TLR) 7, a transmembrane signal transduction receptor expressed on the surface of endosomes, has become an attractive target for antiviral and cancer immunotherapies. TLR7 can induce signal transduction by recognizing single-stranded RNA or its analogs, leading to the release of cytokines such as IL-6, IL-12, TNF-α and type-I IFN. Activation of TLR7 helps to enhance immunogenicity and immune memory by stimulating immune cells. Herein, we identified a novel selective TLR7 agonist, GY101, and determined its ability to activate TLR7. In summary, in vitro, compound GY101 significantly induced the secretion of IL-6, IL-12, TNF-α and IFN-γ in mouse splenic lymphocytes; in vivo, peritumoral injection of GY101 significantly suppressed colon cancer CT26, as well as poorly immunogenic B16-F10 and 4T1 cancer cell-derived tumor growth by activating the infiltration of lymphocytes and polarization of M2-like macrophages into M1-like macrophages. These results demonstrate that GY101, as a potent TLR7 agonist, holds great potential for cancer immunotherapy.


Subject(s)
Colonic Neoplasms , Toll-Like Receptor 7 , Animals , Mice , Toll-Like Receptor 7/agonists , Tumor Necrosis Factor-alpha , Interleukin-6 , Interleukin-12 , Adjuvants, Immunologic , Colonic Neoplasms/drug therapy
7.
Biomed Chromatogr ; 38(1): e5769, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37937618

ABSTRACT

Sample preparation is essential for low-level compound determination. In the present work, supported liquid extraction (SLE) was used as sample preparation for the low-level determination of a new TLR7 agonist imiquimod compound, LFX453. Samples were extracted on ISOLUTE® SLE 96-well plates using tert-butyl-methyl ether followed by evaporation and dry residue reconstitution with 150 µl of a mixture of 0.1% formic acid in acetonitrile-water (50/50, v/v). Samples were eluted using a flow rate of 0.750 ml/min on a C18 column (50 × 2.1 mm, 2.7 µm) with a mobile phase consisting of 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B). Tandem mass spectrometry was used to analyze the samples in positive mode. The method run time was 6.5 min, and the low limit of quantification was 1.00 pg/ml with 0.100 ml of minipig plasma. Intra-run and inter-run precision and accuracy were within the acceptance criteria at four concentration levels over a concentration ranging from 1.00 to 200 pg/ml. There was no matrix effect and recovery, three freeze-thaw cycles and incurred samples reanalysis were validated. The method was successfully applied for measuring LFX453 in minipig plasma after application on minipig skin.


Subject(s)
Tandem Mass Spectrometry , Toll-Like Receptor 7 , Animals , Swine , Tandem Mass Spectrometry/methods , Imiquimod , Reproducibility of Results , Swine, Miniature , Chromatography, Liquid/methods , Water , Acetonitriles , Chromatography, High Pressure Liquid/methods
8.
Antivir Ther ; 28(3): 13596535231172878, 2023 06.
Article in English | MEDLINE | ID: mdl-37199270

ABSTRACT

BACKGROUND: Chronic hepatitis B (CHB) is responsible for major disease burden worldwide. However, the number of available therapies is limited; cure remains an elusive goal. JNJ-64794964 (JNJ-4964) is an oral toll-like receptor-7 (TLR7) agonist being evaluated for the treatment of CHB. Here, we investigated the capacity of JNJ-4964 to induce transcriptomic and immune cell changes in peripheral blood in healthy volunteers. METHODS: Peripheral blood was collected in the JNJ-4964 first-in-human phase 1 trial at multiple time points to assess transcriptomics and changes in frequency and phenotype of peripheral-blood mononuclear cells. Correlation of changes to JNJ-4964 exposure (Cmax) and changes in cytokine levels (C-X-C motif chemokine ligand 10 [CXCL10] and interferon alpha [IFN-α]) were evaluated. RESULTS: Fifty-nine genes, mainly interferon-stimulated genes, were up-regulated between 6 hours and 5 days after JNJ-4964 administration. JNJ-4964 increased frequencies of CD69, CD134, CD137, and/or CD253-expressing natural killer (NK) cells, indicative of NK cell activation. These changes correlated with Cmax, increase of CXCL10, and induction of IFN-α and were observed at IFN-α levels that are associated with no/acceptable flu-like adverse events. JNJ-4964 administration resulted in increased frequencies of CD86-expressing B cells, indicative of B-cell activation. These changes were predominantly observed at high IFN-α levels, which are associated with flu-like adverse events. CONCLUSIONS: JNJ-4964 administration led to changes in transcriptional profiles and immune cell activation phenotype, particularly for NK cells and B cells. Together, these changes could represent a set of biomarkers for the characterization of the immune response in CHB patients receiving TLR7 agonists.


Subject(s)
Hepatitis B, Chronic , Toll-Like Receptor 7 , Adult , Humans , Cytokines/metabolism , Hepatitis B, Chronic/drug therapy , Interferon-alpha/therapeutic use , Phenotype , Toll-Like Receptor 7/agonists , Transcriptome
9.
Front Immunol ; 14: 1055671, 2023.
Article in English | MEDLINE | ID: mdl-36793737

ABSTRACT

TLR7 is an innate immune receptor that recognizes single-stranded RNAs, and its activation leads to anti-tumor immune effects. Although it is the only approved TLR7 agonist in cancer therapy, imiquimod is allowed to be administered with topical formulation. Thus, systemic administrative TLR7 agonist is expected in terms of expanding applicable cancer types. Here, we demonstrated the identification and characterization of DSP-0509 as a novel small-molecule TLR7 agonist. DSP-0509 is designed to have unique physicochemical features that could be administered systemically with a short half-life. DSP-0509 activated bone marrow-derived dendritic cells (BMDCs) and induced inflammatory cytokines including type I interferons. In the LM8 tumor-bearing mouse model, DSP-0509 reduced tumor growth not only in subcutaneous primary lesions but also in lung metastatic lesions. DSP-0509 inhibited tumor growth in several syngeneic tumor-bearing mouse models. We found that the CD8+ T cell infiltration of tumor before treatment tended to be positively correlated with anti-tumor efficacy in several mouse tumor models. The combination of DSP-0509 with anti-PD-1 antibody significantly enhanced the tumor growth inhibition compared to each monotherapy in CT26 model mice. In addition, the effector memory T cells were expanded in both the peripheral blood and tumor, and rejection of tumor re-challenge occurred in the combination group. Moreover, synergistic anti-tumor efficacy and effector memory T cell upregulation were also observed for the combination with anti-CTLA-4 antibody. The analysis of the tumor-immune microenvironment by using the nCounter assay revealed that the combination of DSP-0509 with anti-PD-1 antibody enhanced infiltration by multiple immune cells including cytotoxic T cells. In addition, the T cell function pathway and antigen presentation pathway were activated in the combination group. We confirmed that DSP-0509 enhanced the anti-tumor immune effects of anti-PD-1 antibody by inducing type I interferons via activation of dendritic cells and even CTLs. In conclusion, we expect that DSP-0509, a new TLR7 agonist that synergistically induces anti-tumor effector memory T cells with immune checkpoint blockers (ICBs) and can be administered systemically, will be used in the treatment of multiple cancers.


Subject(s)
Immune Checkpoint Inhibitors , Interferon Type I , Neoplasms , Toll-Like Receptor 7 , Animals , Mice , Adjuvants, Immunologic/pharmacology , Disease Models, Animal , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Toll-Like Receptor 7/agonists , Tumor Microenvironment
10.
J Control Release ; 355: 238-247, 2023 03.
Article in English | MEDLINE | ID: mdl-36716860

ABSTRACT

Self-adjuvanting protein vaccines have been proved to be highly immunogenic with efficient codelivery of adjuvant and antigen. Current protein vaccines with built-in adjuvants are all modified at the peptide backbone of antigen protein, which could not achieve minor epitope interference and adjuvant multivalency at the same time. Herein, we developed a new conjugate strategy to construct effective adjuvant-protein vaccine with adjuvant cluster effect and minimal epitope interference. The toll-like receptor 7 agonist (TLR7a) is covalently conjugated on the terminal sialoglycans of SARS-CoV-2-S1 protein, leading to intracellular release of the small-molecule stimulators with greatly reduced risks of systemic toxicity. The resulting TLR7a-S1 conjugate elicited strong activation of immune cells in vitro, and potent antibody and cellular responses with a significantly enhanced Th1-bias in vivo. TLR7a-S1-induced antibody also effectively cross-neutralized all variants of concern. This sialoglycoconjugation approach to construct protein conjugate vaccines will have more applications to combat SARS-CoV-2 and other diseases.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Adjuvants, Immunologic , Antigens , Adjuvants, Pharmaceutic , Epitopes
11.
Front Oncol ; 12: 925495, 2022.
Article in English | MEDLINE | ID: mdl-36276155

ABSTRACT

The resistant cells that proliferate after radiotherapy and chemotherapy are primarily tumor stem cells with high stem marker expression, and their presence is the primary cause of tumor dispersion. The Wnt signaling receptor Frizzled family receptor 7 (FZD7) is linked to the maintenance of stem cell features as well as cancer progression. Frizzled-7 (FZD7), a key receptor for Wnt/-catenin signaling, is overexpressed in TNBC, suggesting that it could be a viable target for cancer therapy. We employed bioinformatics to find the best-scoring peptide, chemically synthesized FZD7 epitope antigen, and binding toll-like receptor 7 agonists (T7). Under GMP conditions, peptides for vaccines were produced and purified (>95%). In vivo and vitro tests were used to assess tumor cell inhibition. In vitro, the FZD7-T7 vaccination can boost the maturity of BMDC cells considerably. In mice, the FZD7 - T7 vaccine elicited the greatest immunological response. Significant tumor development inhibition was seen in BALB/c mice treated with FZD7 - T7 in prevention experiments (P < 0.01). Multiple cytokines that promote cellular immune responses, such as interferon (IFN)-γ (P < 0.05), interleukin (IL)-12 (P < 0.05), and IL-2 (P < 0.01), were shown to be considerably elevated in mice inoculated with FZD7- T7. Furthermore, we evaluated safety concerns in terms of vaccine composition to aid in the creation of successful next-generation vaccines. In conclusion, the FZD7-T7 vaccine can activate the immune response in vivo and in vitro, and play a role in tumor suppression. Our findings reveal a unique tumor-suppressive role for the FZD7 peptide in TNBC.

12.
Vaccines (Basel) ; 10(10)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36298559

ABSTRACT

Systemically vaccinated individuals against COVID-19 and influenza may continue to support viral replication and shedding in the upper airways, contributing to the spread of infections. Thus, a vaccine regimen that enhances mucosal immunity in the respiratory mucosa is needed to prevent a pandemic. Intranasal/pulmonary (IN) vaccines can promote mucosal immunity by promoting IgA secretion at the infection site. Here, we demonstrate that an intramuscular (IM) priming-IN boosting regimen with an inactivated influenza A virus adjuvanted with the liposomal dual TLR4/7 adjuvant (Fos47) enhances systemic and local/mucosal immunity. The IN boosting with Fos47 (IN-Fos47) enhanced antigen-specific IgA secretion in the upper and lower respiratory tracts compared to the IM boosting with Fos47 (IM-Fos47). The secreted IgA induced by IN-Fos47 was also cross-reactive to multiple influenza virus strains. Antigen-specific tissue-resident memory T cells in the lung were increased after IN boosting with Fos47, indicating that IN-Fos47 established tissue-resident T cells. Furthermore, IN-Fos47 induced systemic cross-reactive IgG antibody titers comparable to those of IM-Fos47. Neither local nor systemic reactogenicity or adverse effects were observed after IN delivery of Fos47. Collectively, these results indicate that the IM/IN regimen with Fos47 is safe and provides both local and systemic anti-influenza immune responses.

13.
Xenobiotica ; 52(8): 855-867, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36004550

ABSTRACT

RO7119929 is being developed as an orally administered prodrug of the TLR7-specific agonist and active drug, RO7117418, for the treatment of patients with solid tumours.In this publication, we present a case study wherein the human pharmacokinetics and pharmacological active dose were prospectively predicted following oral administration of the prodrug.A simple translational pharmacokinetic-pharmacodynamic strategy was applied to predict the pharmacological active dose of the prodrug in human. In vivo studies in monkey showed that an unbound plasma exposure of active drug of 1.5 ng/mL elicited secretion of key serum pharmacodynamic cytokine and chemokine biomarkers in monkey. This threshold of 1.5 ng/mL was close to the minimum effective concentration of active drug required to induce cytokine secretion in human peripheral blood mononuclear cells (3 ng/mL).Measured in vitro physicochemical and biochemical properties of the prodrug and active drug were applied as input parameters in physiologically based pharmacokinetic models to predict the pharmacokinetics of active drug after oral dosing of the prodrug in humans. Then, using the PBPK model, a dose which delivered an unbound plasma Cmax in line with the target pharmacodynamic threshold of 1.5 ng/mL was found. This defined the lowest pharmacologically active dose as 3 mg.The prodrug entered the clinic in 2020 in patients with primary or secondary liver cancers. Clear pharmacodynamic, transient, and dose-dependent cytokine induction was observed at prodrug doses > 1 mg.


Subject(s)
Neoplasms , Prodrugs , Humans , Prodrugs/pharmacokinetics , Toll-Like Receptor 7 , Leukocytes, Mononuclear , Models, Biological , Administration, Oral , Immunotherapy , Cytokines
14.
ACS Infect Dis ; 8(7): 1367-1375, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35748575

ABSTRACT

With the global pandemic of the new coronavirus disease (COVID-19), a safe, effective, and affordable mass-produced vaccine remains the current focus of research. Herein, we designed an adjuvant-protein conjugate vaccine candidate, in which the TLR7 agonist (TLR7a) was conjugated to S1 subunit of SARS-CoV-2 spike protein, and systematically compared the effect of different numbers of built-in TLR7a on the immune activity for the first time. As the number of built-in TLR7a increased, a bell-shaped reaction was observed in three TLR7a-S1 conjugates, with TLR7a(10)-S1 (with around 10 built-in adjuvant molecules on one S1 protein) eliciting a more potent immune response than TLR7a(2)-S1 and TLR7a(18)-S1. This adjuvant-protein conjugate strategy allows the built-in adjuvant to provide cluster effects and prevents systemic toxicity and facilitates the co-delivery of adjuvant and antigen. Vaccination of mice with TLR7a(10)-S1 triggered a potent humoral and cellular immunity and a balanced Th1/Th2 immune response. Meanwhile, the vaccine induces effective neutralizing antibodies against SARS-CoV-2 and all variants of concern (B.1.1.7/alpha, B.1.351/beta, P.1/gamma, B.1.617.2/delta, and B.1.1.529/omicron). It is expected that the adjuvant-protein conjugate strategy has great potential to construct a potent recombinant protein vaccine candidate against various types of diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Adjuvants, Immunologic/pharmacology , Adjuvants, Pharmaceutic , Animals , COVID-19/prevention & control , Humans , Mice , Mice, Inbred BALB C , Spike Glycoprotein, Coronavirus , Toll-Like Receptor 7 , Vaccines, Conjugate
15.
Nanomedicine ; 44: 102573, 2022 08.
Article in English | MEDLINE | ID: mdl-35728739

ABSTRACT

Photothermal therapy (PTT) is a promising cancer treatment that debulks tumors locally while priming immune responses. However, PTT as a standalone treatment approach often has limited systemic efficacy, motivating the development of synergistic combination approaches. Toward this goal, herein, the tobacco mosaic virus (TMV) was loaded with a small molecule immunomodulator, toll-like receptor 7 agonist (1V209), and its surface was coated with photothermal biopolymer polydopamine (PDA). The resulting 1V209-laden and PDA-coated TMV was used to treat B16F10 dermal melanoma in C57BL/6 mice. 1V209-TMV-PDA was intratumorally injected and irradiated using an 808-nm near infrared laser. 60 % of the mice receiving PTT with intratumoral 1V209-TMV-PDA + laser remained alive at the end point - in contrast to only 20 % survivors were observed in the control group. Immunological analysis indicates systemic anti-tumor immunity being induced by the combination therapy with a greater number of tumor-specific T cells (as determined by a splenocyte assay). This study highlights the potential of TMV versatility as a multifunctional nano-platform for combined PTT-immunotherapy.


Subject(s)
Melanoma , Nanoparticles , Tobacco Mosaic Virus , Adjuvants, Immunologic , Animals , Cell Line, Tumor , Immunotherapy , Indoles , Mice , Mice, Inbred C57BL , Phototherapy , Polymers , Toll-Like Receptor 7
16.
Front Immunol ; 13: 857779, 2022.
Article in English | MEDLINE | ID: mdl-35371101

ABSTRACT

The tumor-associated antigen mucin 1 (MUC1) is an attractive target of antitumor vaccine, but its weak immunogenicity is a big challenge for the development of vaccine. In order to enhance immune responses against MUC1, herein, we conjugated small molecular toll-like receptor 7 agonist (TLR7a) to carrier protein BSA via MUC1 glycopeptide to form a three-component conjugate (BSA-MUC1-TLR7a). Furthermore, we combined the three-component conjugate with Alum adjuvant to explore their synergistic effects. The immunological studies indicated that Alum adjuvant and built-in TLR7a synergistically enhanced anti-MUC1 antibody responses and showed Th1-biased immune responses. Meanwhile, antibodies elicited by the vaccine candidate effectively recognized tumor cells and induced complement-dependent cytotoxicity. In addition, Alum adjuvant and built-in TLR7a synergistically enhanced MUC1 glycopeptide-specific memory CD8+ T-cell immune responses. More importantly, the vaccine with the binary adjuvant can significantly inhibit tumor growth and prolong the survival time of mice in the tumor challenge experiment. This novel vaccine construct provides an effective strategy to develop antitumor vaccines.


Subject(s)
Cancer Vaccines , Neoplasms , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Alum Compounds , Aluminum Hydroxide , Animals , Glycopeptides , Immunity , Mice , Mucin-1 , Neoplasms/therapy , Toll-Like Receptor 7/agonists
17.
Front Immunol ; 13: 816761, 2022.
Article in English | MEDLINE | ID: mdl-35250995

ABSTRACT

Although CAR T cell therapies have proven to be effective in treating hematopoietic cancers, their abilities to regress solid tumors have been less encouraging. Mechanisms to explain these disparities have focused primarily on differences in cancer cell heterogeneity, barriers to CAR T cell penetration of solid tumors, and immunosuppressive microenvironments. To evaluate the contributions of immunosuppressive tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) on CAR T cell efficacies, we have exploited the ability of a folate-targeted Toll-like receptor 7 agonist (FA-TLR7-1A) to specifically reactivate TAMs and MDSCs from an immunosuppressive to pro-inflammatory phenotype without altering the properties of other immune cells. We report here that FA-TLR7-1A significantly augments standard CAR T cell therapies of 4T1 solid tumors in immune competent mice. We further show that co-administration of the FA-TLR7-1A with the CAR T cell therapy not only repolarizes TAMs and MDSCs from an M2-like anti-inflammatory to M1-like pro-inflammatory phenotype, but also enhances both CAR T cell and endogenous T cell accumulation in solid tumors while concurrently increasing their states of activation. Because analogous myeloid cells in healthy tissues ar not altered by administration of FA-TLR7-1A, no systemic activation of the immune system nor accompanying weight loss is observed. These data argue that immunosuppressive myeloid cells contribute prominently to the failure of CAR T cells to eradicate solid tumors and suggest that methods to reprogram tumor associated myeloid cells to a more inflammatory phenotype could significantly augment the potencies of CAR T cell therapies.


Subject(s)
Myeloid-Derived Suppressor Cells , Neoplasms , Animals , Immunotherapy, Adoptive , Mice , Myeloid Cells , Toll-Like Receptor 7 , Tumor Microenvironment
18.
Int J Biol Sci ; 18(1): 166-179, 2022.
Article in English | MEDLINE | ID: mdl-34975325

ABSTRACT

The use of large molecules for immunotherapy has led to exciting developments in cancer treatment, such as the development of PD-1/PD-L1 antibodies. However, small molecule targeted therapies still lack effective immune-functional classes. Ideal anticancer drugs should simultaneously generate immune memory when killing cancer cells to prevent tumor relapse and metastasis. To this end, we carried out a rationally designed strategy to develop novel classes of small molecule compounds with bifunctional targeting and immunostimulatory abilities by conjugating targeting compounds with TLR7 agonists, generating immune-targeting conjugates (ImmunTacs). GY161, as a representative ImmunTac, was synthesized via chemical conjugation of ibrutinib with a TLR7 agonist. In vitro, GY161 stimulated the production of cytokines by mouse spleen lymphocytes, promoted the maturation of dendritic cells (DCs), and inhibited the growth and induced the apoptosis of B16 melanoma cells by regulating the c-Met/ß-catenin pathway. In vivo, GY161 enhanced the frequency of CD8+ T cells in spleens and tumors, suppressed the growth of B16 melanoma cell-derived tumors and prolonged the survival time of mice. In summary, GY161 could prevent melanoma progression through direct tumor killing and by triggering specific immunity. These results strongly suggest that ImmunTacs are a reliable and promising strategy for developing small molecule immunogenic anticancer drugs.


Subject(s)
Adenine/analogs & derivatives , CD8-Positive T-Lymphocytes/immunology , Immunotherapy/methods , Melanoma/drug therapy , Melanoma/immunology , Piperidines/pharmacology , Toll-Like Receptor 7/agonists , Adenine/chemistry , Adenine/pharmacology , Animals , Apoptosis , Cell Cycle , Cell Line, Tumor , Disease Progression , Female , Humans , Mice , Mice, Inbred C57BL , Molecular Structure , Piperidines/chemistry , Xenograft Model Antitumor Assays
19.
Front Immunol ; 12: 743890, 2021.
Article in English | MEDLINE | ID: mdl-34950134

ABSTRACT

Background: Both anti-viral and anti-inflammatory bronchial effects are warranted to treat viral infections in asthma. We sought to investigate if imiquimod, a TLR7 agonist, exhibits such dual actions in ex vivo cultured human bronchial epithelial cells (HBECs), targets for SARS-CoV-2 infectivity. Objective: To investigate bronchial epithelial effects of imiquimod of potential importance for anti-viral treatment in asthmatic patients. Methods: Effects of imiquimod alone were examined in HBECs from healthy (N=4) and asthmatic (N=18) donors. Mimicking SARS-CoV-2 infection, HBECs were stimulated with poly(I:C), a dsRNA analogue, or SARS-CoV-2 spike-protein 1 (SP1; receptor binding) with and without imiquimod treatment. Expression of SARS-CoV-2 receptor (ACE2), pro-inflammatory and anti-viral cytokines were analyzed by RT-qPCR, multiplex ELISA, western blot, and Nanostring and proteomic analyses. Results: Imiquimod reduced ACE2 expression at baseline and after poly(I:C) stimulation. Imiquimod also reduced poly(I:C)-induced pro-inflammatory cytokines including IL-1ß, IL-6, IL-8, and IL-33. Furthermore, imiquimod increased IFN-ß expression, an effect potentiated in presence of poly(I:C) or SP1. Multiplex mRNA analysis verified enrichment in type-I IFN signaling concomitant with suppression of cytokine signaling pathways induced by imiquimod in presence of poly(I:C). Exploratory proteomic analyses revealed potentially protective effects of imiquimod on infections. Conclusion: Imiquimod triggers viral resistance mechanisms in HBECs by decreasing ACE2 and increasing IFN-ß expression. Additionally, imiquimod improves viral infection tolerance by reducing viral stimulus-induced epithelial cytokines involved in severe COVID-19 infection. Our imiquimod data highlight feasibility of producing pluripotent drugs potentially suited for anti-viral treatment in asthmatic subjects.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Asthma , COVID-19 , Imiquimod/pharmacology , Interferon-beta/drug effects , Respiratory Mucosa/drug effects , Adjuvants, Immunologic/pharmacology , Adult , Aged , Bronchi/drug effects , Bronchi/immunology , Bronchi/virology , Cells, Cultured , Female , Humans , Interferon-beta/immunology , Male , Middle Aged , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2
20.
Antiviral Res ; 196: 105196, 2021 12.
Article in English | MEDLINE | ID: mdl-34718044

ABSTRACT

JNJ-64794964 (JNJ-4964/AL-034/TQ-A3334), an oral toll-like receptor 7 agonist, is being investigated for the treatment of chronic hepatitis B (CHB), a condition with a high unmet medical need. The anti-hepatitis B (HBV) activity of JNJ-4964 was assessed preclinically in an adeno-associated virus vector expressing HBV (AAV/HBV) mouse model. Mice were treated orally with 2, 6 or 20 mg/kg of JNJ-4964 once-per-week for 12 weeks and then followed up for 4 weeks. At 6 mg/kg, a partial decrease in plasma HBV-DNA and plasma hepatitis B surface antigen (HBsAg) was observed, and anti-HBs antibodies and HBsAg-specific T cells were observed in 1/8 animals. At 20 mg/kg, plasma HBV-DNA and HBsAg levels were undetectable for all animals 3 weeks after start of treatment, with no rebound observed 4 weeks after JNJ-4964 treatment was stopped. High anti-HBs antibody levels were observed until 4 weeks after JNJ-4964 treatment was stopped. In parallel, HBsAg-specific immunoglobulin G-producing B cells and interferon-γ-producing CD4+ T cells were detected in the spleen. In 2/4 animals, liver HBV-DNA and HBV-RNA levels and liver hepatitis B core antigen expression dropped 4 weeks after JNJ-4964 treatment-stop. In these animals, HBsAg-specific CD8+ T cells were detectable. Throughout the study, normal levels of alanine aminotransferase were observed, with no hepatocyte cell death (end of treatment and 4 weeks later) and minimal infiltrations of B and T cells into the liver, suggesting induction of cytokine-mediated, non-cytolytic mechanisms.


Subject(s)
Antiviral Agents/therapeutic use , Cytokines/blood , Drugs, Investigational/therapeutic use , Hepatitis B Antibodies/blood , Hepatitis B virus/drug effects , Hepatitis B/drug therapy , Toll-Like Receptor 7/agonists , Animals , Antiviral Agents/pharmacology , Cytokines/immunology , Drug Evaluation, Preclinical , Hepatitis B/immunology , Hepatitis B virus/immunology , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL