Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Physiol Rep ; 12(9): e16043, 2024 May.
Article in English | MEDLINE | ID: mdl-38724885

ABSTRACT

The epithelial cells that line the kidneys and lower urinary tract are exposed to mechanical forces including shear stress and wall tension; however, the mechanosensors that detect and respond to these stimuli remain obscure. Candidates include the OSCA/TMEM63 family of ion channels, which can function as mechanosensors and osmosensors. Using Tmem63bHA-fl/HA-fl reporter mice, we assessed the localization of HA-tagged-TMEM63B within the urinary tract by immunofluorescence coupled with confocal microscopy. In the kidneys, HA-TMEM63B was expressed by proximal tubule epithelial cells, by the intercalated cells of the collecting duct, and by the epithelial cells lining the thick ascending limb of the medulla. In the urinary tract, HA-TMEM63B was expressed by the urothelium lining the renal pelvis, ureters, bladder, and urethra. HA-TMEM63B was also expressed in closely allied organs including the epithelial cells lining the seminal vesicles, vas deferens, and lateral prostate glands of male mice and the vaginal epithelium of female mice. Our studies reveal that TMEM63B is expressed by subsets of kidney and lower urinary tract epithelial cells, which we hypothesize are sites of TMEM63B mechanosensation or osmosensation, or both.


Subject(s)
Calcium Channels , Urinary Tract , Animals , Female , Male , Mice , Calcium Channels/genetics , Calcium Channels/metabolism , Epithelial Cells/metabolism , Mechanotransduction, Cellular/physiology , Mice, Inbred C57BL , Urinary Tract/metabolism , Urothelium/metabolism , Urothelium/cytology
2.
Rev Neurol (Paris) ; 180(5): 363-367, 2024 May.
Article in English | MEDLINE | ID: mdl-38582661

ABSTRACT

Developmental encephalopathies (DE), epileptic encephalopathies (EE) and developmental and epileptic encephalopathies (DEE) are overlapping neurodevelopmental disorders characterized by early-onset, often severe epileptic seizures, developmental delay, or regression and have multiple etiologies. Classical nosology in child neurology distinguished progressive and nonprogressive conditions. A progressive course with global cognitive worsening in DEE is usually attributed to severe seizures and electroencephalographic abnormalities whose deleterious effects interfere with developmental processes both in an apparently healthy brain and in an anatomically compromised one. Next generation sequencing and functional studies have helped identifying and characterizing clinical conditions, each with a broad spectrum of clinical and anatomic severity corresponding to a variable level of neurodegeneration, such that both a rapidly progressive course and considerably milder phenotypes with no obvious deterioration can be configured with mutations in the same gene. In this mini review, we present examples of genetic DEE that draw connections between neurodevelopmental and neurodegenerative disorders.


Subject(s)
Disease Progression , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/pathology , Epilepsy/diagnosis , Epilepsy/etiology , Epilepsy/genetics , Brain Diseases/genetics , Brain Diseases/diagnosis , Brain Diseases/pathology , Child , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/etiology
3.
J Biol Chem ; 299(1): 102781, 2023 01.
Article in English | MEDLINE | ID: mdl-36496074

ABSTRACT

TMEM63B is a mechanosensitive cation channel activated by hypoosmotic stress and mechanic stimulation. We recently reported a brain-specific alternative splicing of exon 4 in TMEM63B. The short variant lacking exon 4, which constitutes the major isoform in the brain, exhibits enhanced responses to hypoosmotic stimulation compared to the long isoform containing exon 4. However, the mechanisms affecting this differential response are unclear. Here, we showed that the short isoform exhibited stronger cell surface expression compared to the long variant. Using mutagenesis screening of the coding sequence of exon 4, we identified an RXR-type endoplasmic reticulum (ER) retention signal (RER). We found that this motif was responsible for binding to the COPI retrieval vesicles, such that the longer TMEM63B isoforms were more likely to be retrotranslocated to the ER than the short isoforms. In addition, we demonstrated long TMEM63Bs could form heterodimers with short isoforms and reduce their surface expression. Taken together, our findings revealed an ER retention signal in the alternative splicing domain of TMEM63B that regulates the surface expression of TMEM63B protein and channel function.


Subject(s)
Alternative Splicing , Endoplasmic Reticulum , Membrane Proteins , Cations/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Gene Expression Regulation/genetics
4.
J Biol Chem ; 295(52): 18199-18212, 2020 12 25.
Article in English | MEDLINE | ID: mdl-33100268

ABSTRACT

Post-transcriptional modifications of pre-mRNAs expand the diversity of proteomes in higher eukaryotes. In the brain, these modifications diversify the functional output of many critical neuronal signal molecules. In this study, we identified a brain-specific A-to-I RNA editing that changed glutamine to arginine (Q/R) at exon 20 and an alternative splicing of exon 4 in Tmem63b, which encodes a ubiquitously expressed osmosensitive cation channel. The channel isoforms lacking exon 4 occurred in ∼80% of Tmem63b mRNAs in the brain but were not detected in other tissues, suggesting a brain-specific splicing. We found that the Q/R editing was catalyzed by Adar2 (Adarb1) and required an editing site complementary sequence located in the proximal 5' end of intron 20. Moreover, the Q/R editing was almost exclusively identified in the splicing isoform lacking exon 4, indicating a coupling between the editing and the splicing. Elimination of the Q/R editing in brain-specific Adar2 knockout mice did not affect the splicing efficiency of exon 4. Furthermore, transfection with the splicing isoform containing exon 4 suppressed the Q/R editing in primary cultured cerebellar granule neurons. Thus, our study revealed a coupling between an RNA editing and a distant alternative splicing in the Tmem63b pre-mRNA, in which the splicing plays a dominant role. Finally, physiological analysis showed that the splicing and the editing coordinately regulate Ca2+ permeability and osmosensitivity of channel proteins, which may contribute to their functions in the brain.


Subject(s)
Adenosine Deaminase/physiology , Alternative Splicing , Brain/metabolism , Calcium Channels/genetics , Exons , RNA Editing , RNA Precursors/genetics , RNA-Binding Proteins/physiology , Animals , Calcium Channels/metabolism , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
5.
Cell Rep ; 31(5): 107596, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32375046

ABSTRACT

Hypotonic stress causes the activation of swelling-activated nonselective cation channels (NSCCs), which leads to Ca2+-dependent regulatory volume decrease (RVD) and adaptive maintenance of the cell volume; however, the molecular identities of the osmosensitive NSCCs remain unclear. Here, we identified TMEM63B as an osmosensitive NSCC activated by hypotonic stress. TMEM63B is enriched in the inner ear sensory hair cells. Genetic deletion of TMEM63B results in necroptosis of outer hair cells (OHCs) and progressive hearing loss. Mechanistically, the TMEM63B channel mediates hypo-osmolarity-induced Ca2+ influx, which activates Ca2+-dependent K+ channels required for the maintenance of OHC morphology. These findings demonstrate that TMEM63B is an osmosensor of the mammalian inner ear and the long-sought cation channel mediating Ca2+-dependent RVD.


Subject(s)
Hearing/drug effects , Hypotonic Solutions/pharmacology , Ion Transport/physiology , Osmolar Concentration , Potassium Channels/metabolism , Animals , Calcium/metabolism , Cations/metabolism , Cell Size/drug effects , Mice, Knockout , Potassium/metabolism , Potassium Channels/genetics , Signal Transduction/drug effects
6.
Cell Biochem Funct ; 34(4): 238-41, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27045885

ABSTRACT

Osmoreception is essential for systemic osmoregulation, a process to stabilize the tonicity and volume of the extracellular fluid through regulating the ingestive behaviour, sympathetic outflow and renal function. The sensation of osmotic changes by osmoreceptor neurons is mediated by ion channels that detect the change of osmolarity in extracellular fluid. However, the molecular identity of these channels remains mysterious. AtCSC1and OSCA1,two closely related paralogues from Arabidopsis, have been demonstrated to form hyperosmolarity activated ion channels, which makes their mammalian orthologues-the members of TMEM63 proteins, possible candidates for osmoreceptor transduction channel. To test this possibility, we cloned the cDNAs of all the three members of the mouse TMEM63 family, TMEM63A, TMEM63B and TMEM63C from the mRNA from mouse brain. When all of the three subtypes of TMEM63 proteins were co-expressed in HEK293 cells, we recorded membrane currents evoked by hypertonic stimulation in these cells. However, the cells expressing the combinations of any two subtypes of TMEM63 proteins could not exhibit any hyperosmolarity evoked currents. Thus, all the three members of TMEM63 proteins are required to constitute a hyperosmolarity activated ion channel. We propose that the TMEM63 proteins may serve as an osmolarity sensitive ion channel for the osmoreception. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Ion Channel Gating , Ion Channels/metabolism , Membrane Proteins/metabolism , Animals , HEK293 Cells , Humans , Hypertonic Solutions/pharmacology , Ion Channel Gating/drug effects , Mice , Osmolar Concentration , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL