Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Handb Exp Pharmacol ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39254747

ABSTRACT

mRNA and targeted delivery of mRNA carry the promise to enable targeted treatment of undruggable diseases with high unmet medical needs. The transient nature of mRNA opens options for safe influencing of protein biology, immune responses, and complex ailments without impacting DNA heritage. Technical challenges such as mRNA stability and targeted delivery require next generation solutions, which attracted substantial funding and research interests. To build an integrated mRNA value chain and enable the development of novel therapeutics, Merck KGaA Darmstadt, Germany has initiated an internally incubated program, "Targeted mRNA Delivery" (TMD). This collaborative approach brings together scientists, researchers, engineers, and commercial experts from diverse backgrounds to overcome the multidimensional challenges associated with mRNA technology. In this chapter, the multiple opportunities and challenges for the development of mRNA formulations and therapeutics are described comprehensively. Specifically, the TMD program is presented as a use case to show how intrapreneurs were gathered to establish internal mRNA capabilities and foster collaborations for technology development. In the realm of targeted mRNA delivery, partnerships, encompassing internal partnership and external private, public, and hybrid collaborations, play a crucial role in driving innovation and addressing these hurdles. Within multinational pharmaceutical companies, the establishment of "internal startups" is an effective solution to drive innovation to the next level with support from different business sectors, where existing capabilities and positioning are seamlessly blended with the agility and speed of a startup.

2.
Curr Opin Chem Biol ; 81: 102499, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38996568

ABSTRACT

This review introduces the typical delivery process of messenger RNA (mRNA) nanomedicines and concludes that the delivery involves a at least four-step SCER cascade and that high efficiency at every step is critical to guarantee high overall therapeutic outcomes. This SCER cascade process includes selective organ-targeting delivery, cellular uptake, endosomal escape, and cytosolic mRNA release. Lipid nanoparticles (LNPs) have emerged as a state-of-the-art vehicle for in vivo mRNA delivery. The review emphasizes the importance of LNPs in achieving selective, efficient, and safe mRNA delivery. The discussion then extends to the technical and clinical considerations of LNPs, detailing the roles of individual components in the SCER cascade process, especially ionizable lipids and helper phospholipids. The review aims to provide an updated overview of LNP-based mRNA delivery, outlining recent innovations and addressing challenges while exploring future developments for clinical translation over the next decade.


Subject(s)
Lipids , Nanoparticles , RNA, Messenger , Humans , Nanoparticles/chemistry , RNA, Messenger/genetics , RNA, Messenger/administration & dosage , RNA, Messenger/metabolism , Lipids/chemistry , Animals , Gene Transfer Techniques , Liposomes
3.
Pharmaceutics ; 15(6)2023 May 23.
Article in English | MEDLINE | ID: mdl-37376020

ABSTRACT

Viral and synthetic vectors to deliver nucleic acids were key to the rapid development of extraordinarily efficient COVID-19 vaccines. The four-component lipid nanoparticles (LNPs), containing phospholipids, PEG-conjugated lipids, cholesterol, and ionizable lipids, co-assembled with mRNA via a microfluidic technology, are the leading nonviral delivery vector used by BioNTech/Pfizer and Moderna to access COVID-19 mRNA vaccines. LNPs exhibit a statistical distribution of their four components when delivering mRNA. Here, we report a methodology that involves screening libraries to discover the molecular design principles required to realize organ-targeted mRNA delivery and mediate activity with a one-component ionizable multifunctional amphiphilic Janus dendrimer (IAJD) derived from plant phenolic acids. IAJDs co-assemble with mRNA into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions, via the simple injection of their ethanol solution in a buffer. The precise location of the functional groups in one-component IAJDs demonstrated that the targeted organs, including the liver, spleen, lymph nodes, and lung, are selected based on the hydrophilic region, while activity is associated with the hydrophobic domain of IAJDs. These principles, and a mechanistic hypothesis to explain activity, simplify the synthesis of IAJDs, the assembly of DNPs, handling, and storage of vaccines, and reduce price, despite employing renewable plant starting materials. Using simple molecular design principles will lead to increased accessibility to a large diversity of mRNA-based vaccines and nanotherapeutics.

4.
Mol Ther ; 29(11): 3293-3304, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34091054

ABSTRACT

Nucleoside-modified messenger RNA (mRNA)-lipid nanoparticles (LNPs) are the basis for the first two EUA (Emergency Use Authorization) COVID-19 vaccines. The use of nucleoside-modified mRNA as a pharmacological agent opens immense opportunities for therapeutic, prophylactic and diagnostic molecular interventions. In particular, mRNA-based drugs may specifically modulate immune cells, such as T lymphocytes, for immunotherapy of oncologic, infectious and other conditions. The key challenge, however, is that T cells are notoriously resistant to transfection by exogenous mRNA. Here, we report that conjugating CD4 antibody to LNPs enables specific targeting and mRNA interventions to CD4+ cells, including T cells. After systemic injection in mice, CD4-targeted radiolabeled mRNA-LNPs accumulated in spleen, providing ∼30-fold higher signal of reporter mRNA in T cells isolated from spleen as compared with non-targeted mRNA-LNPs. Intravenous injection of CD4-targeted LNPs loaded with Cre recombinase-encoding mRNA provided specific dose-dependent loxP-mediated genetic recombination, resulting in reporter gene expression in about 60% and 40% of CD4+ T cells in spleen and lymph nodes, respectively. T cell phenotyping showed uniform transfection of T cell subpopulations, with no variability in uptake of CD4-targeted mRNA-LNPs in naive, central memory, and effector cells. The specific and efficient targeting and transfection of mRNA to T cells established in this study provides a platform technology for immunotherapy of devastating conditions and HIV cure.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Lipids/genetics , Lipids/immunology , Nanoparticles/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/immunology , Recombination, Genetic/genetics , Animals , COVID-19/immunology , COVID-19 Vaccines/immunology , Humans , Immunotherapy/methods , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Recombination, Genetic/immunology , SARS-CoV-2/immunology , Spleen/immunology , Transfection/methods
SELECTION OF CITATIONS
SEARCH DETAIL