Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Trends Immunol ; 45(4): 288-302, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38514370

ABSTRACT

The mammalian small intestine epithelium harbors a peculiar population of CD4+CD8αα+ T cells that are derived from mature CD4+ T cells through reprogramming of lineage-specific transcription factors. CD4+CD8αα+ T cells occupy a unique niche in T cell biology because they exhibit mixed phenotypes and functional characteristics of both CD4+ helper and CD8+ cytotoxic T cells. The molecular pathways driving their generation are not fully mapped. However, recent studies demonstrate the unique role of the commensal gut microbiota as well as distinct cytokine and chemokine requirements in the differentiation and survival of these cells. We review the established and newly identified factors involved in the generation of CD4+CD8αα+ intraepithelial lymphocytes (IELs) and place them in the context of the molecular machinery that drives their phenotypic and functional differentiation.


Subject(s)
Intraepithelial Lymphocytes , Humans , Animals , Cell Differentiation , Transcription Factors/metabolism , T-Lymphocytes, Cytotoxic , CD8-Positive T-Lymphocytes , Intestinal Mucosa/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Mammals
2.
J Agric Food Chem ; 72(1): 390-404, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38154091

ABSTRACT

Ghrelin regulates diverse physiological activities. However, the effects of this hormone on the milk fat synthesis remain unknown. This study aimed to investigate the effect of acylated ghrelin (AG) on milk fat synthesis by modifying the expression (knockdown or overexpression) of growth hormone secretagogue receptor 1a (GHSR1a) and Th-inducing POK (ThPOK) in primary bovine mammary epithelial cells (BMECs). The results showed that AG significantly increased the triglyceride relative content from 260.83 ± 9.87 to 541.67 ± 8.38 in BMECs via GHSR1a. ThPOK functions as a key regulatory target downstream of AG, activating the PI3K and mTOR signaling pathways to promote milk fat synthesis in BMECs. Moreover, AG-regulated ThPOK by increasing the EP300 activity, which promoted ThPOK acetylation to protect it from proteasomal degradation. In conclusion, AG increases ThPOK acetylation and stabilizes ThPOK through GHSR1a, thereby activating the PI3K/mTOR signaling pathway and ultimately promoting the milk fat synthesis in BMECs.


Subject(s)
Milk , Phosphatidylinositol 3-Kinases , Cattle , Animals , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Milk/metabolism , Acetylation , Ghrelin/metabolism , Ghrelin/pharmacology , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Epithelial Cells/metabolism , Mammary Glands, Animal/metabolism
3.
In Vitro Cell Dev Biol Anim ; 58(10): 877-885, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36401120

ABSTRACT

Insulin-like growth factor-1 (IGF-1), in addition to its classic effects on cell proliferation and organism growth, has pleiotropic actions on the immune system, particularly on the thymus. Thus, the objective of this study was to evaluate the influence of IGF-1 on molecules involved in the survival of thymocytes in vitro using a co-culture system with thymic stromal cells obtained from C57BL/6 mice. The obtained thymic stroma has contained thymic epithelial cells, macrophages, dendritic cells, fibroblasts, and preserved the expression of the major histocompatibility complex (MHC) molecules. Fresh thymocytes were added to these cultures and the co-culture were treated daily with IGF-1 (100 ng/mL) for 3 days. In this scheme, the viability of the thymocytes was about 70%, either in the control (non-treated cells) or in the IGF-1-treated cultures. It was found that IGF-1 was able to increase the percentage of thymocytes from the CD4+ single-positive (SP) subset. This result was accompanied by an increase in the MHC II expression on thymic stromal cells and an augment on the interleukin-7 receptor (CD127) on the surface of the CD4 SP thymocytes after treatment with IGF-1. Finally, IGF-1 treatment increased the expression of the ThPOK encoding gene Zbtb7b, which is involved in the differentiation of CD4+ SP thymocytes. Our study demonstrates the participation of IGF-1 in the thymocyte/thymic stroma interactions, especially in the extended survival of the CD4+ lineage in the thymus.


Subject(s)
Insulin-Like Growth Factor I , Thymocytes , Mice , Animals , Insulin-Like Growth Factor I/pharmacology , Coculture Techniques , Mice, Inbred C57BL , Thymus Gland/metabolism , Cell Differentiation , CD4-Positive T-Lymphocytes/metabolism , Stromal Cells , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism
4.
Front Immunol ; 13: 940995, 2022.
Article in English | MEDLINE | ID: mdl-35990681

ABSTRACT

TET proteins mediate DNA demethylation by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) and other oxidative derivatives. We have previously demonstrated a dynamic enrichment of 5hmC during T and invariant natural killer T cell lineage specification. Here, we investigate shared signatures in gene expression of Tet2/3 DKO CD4 single positive (SP) and iNKT cells in the thymus. We discover that TET proteins exert a fundamental role in regulating the expression of the lineage specifying factor Th-POK, which is encoded by Zbtb7b. We demonstrate that TET proteins mediate DNA demethylation - surrounding a proximal enhancer, critical for the intensity of Th-POK expression. In addition, TET proteins drive the DNA demethylation of site A at the Zbtb7b locus to facilitate GATA3 binding. GATA3 induces Th-POK expression in CD4 SP cells. Finally, by introducing a novel mouse model that lacks TET3 and expresses full length, catalytically inactive TET2, we establish a causal link between TET2 catalytic activity and lineage specification of both conventional and unconventional T cells.


Subject(s)
Dioxygenases , Natural Killer T-Cells , Animals , Cell Lineage , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/genetics , Mice , Natural Killer T-Cells/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Transcription Factors/metabolism
5.
Front Immunol ; 13: 939033, 2022.
Article in English | MEDLINE | ID: mdl-35844574

ABSTRACT

Innate lymphoid cells (ILCs) have been identified as a heterogeneous population of lymphocytes that mirrors the cytokine and transcriptional profile of adaptive T cells. The dynamic balance between key transcription factors determines the heterogeneity, plasticity, and functions of ILC subsets. The transcription factor ThPOK is highly conserved in biological evolution and exerts pivotal functions in the differentiation of T cells. However, the function of ThPOK in ILC3s has not been identified. Here, we found that ThPOK regulated the homeostasis of ILC3s, as mice lacking ThPOK showed decreased NKp46+ ILC3s and increased CCR6- NKp46- ILC3s. ThPOK-deficient mice were more sensitive to S. typhimurium infection due to the impaired IFN-γ secretion of NKp46+ ILC3s. Furthermore, ThPOK participates in ILC3-mediated control of C. rodentium infection by negatively regulating IL-17A secretion. ThPOK preserves the identity of NKp46+ ILC3s by repressing RORγt, which indirectly releases T-bet expression. On the molecular level, ThPOK directly binds to Rorc and Il23r to restrain their expression which further modulates IL-17A secretion. Collectively, our analysis revealed a critical role of ThPOK in the homeostasis and functions of ILC3 subsets.


Subject(s)
Interleukin-17 , Lymphocytes , Transcription Factors , Animals , Homeostasis , Immunity, Innate , Interleukin-17/metabolism , Lymphocytes/metabolism , Mice , Transcription Factors/metabolism
6.
BMC Immunol ; 23(1): 16, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379170

ABSTRACT

BACKGROUND: Gastric cancer is the second most frequently diagnosed cancer worldwide. Weak immunogenicity helps cancer cells escape from immune elimination and grow into predominant subpopulations. This study aimed to investigate the effect of Zinc finger and BTB domain containing 7B (Zbtb7b, Alias ThPOK) on T cell activation after coculture with gastric cancer cells. METHODS: Cell Counting Kit-8 assay (CCK-8) was performed to explore the viability of gastric cancer cells. Flow cytometry analysis was used to measure CD3+ T cell proliferation and the ratio of activated IFN-γ+ T cells which were co-incubated with gastric cancer cells (HGC-27, SNU-1). The binding between ThPOK and the promoter of its target sperm tail PG-rich repeat containing 1 (STPG1) was explored using ChIP and luciferase reporter assays. Relative gene expression was quantified using RT-qPCR. RESULTS: ThPOK was expressed at a low level in gastric cancer tissues and cells at mRNA and protein levels. Gastric cancer patients with lower ThPOK expression had poorer prognosis. ThPOK overexpression suppressed gastric cancer cell viability and increased T cell activation. ThPOK served as a transcription factor for STPG1. STPG1 expression was also at a low level in the tissues and cells of gastric cancer. ThPOK positively regulated the mRNA and protein levels of STPG1 in gastric cancer cells. Moreover, ThPOK was demonstrated to bind with STPG1 promoter. STPG1 upregulation also exerted inhibitory effects on gastric cancer cell viability and T cell activation. Additionally, ThPOK and STPG1 were revealed to inactivate the ERK pathway in gastric cancer cells. CONCLUSION: ThPOK inhibits gastric cancer cell viability and increases T cell activation by inducing STPG1 to inactivate the ERK pathway.


Subject(s)
MAP Kinase Signaling System , Stomach Neoplasms , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation , Humans , Male , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
7.
Cytokine ; 148: 155658, 2021 12.
Article in English | MEDLINE | ID: mdl-34353698

ABSTRACT

Gastric cancer (GC), originated from gastric mucosa, is a malignant tumor causing numerous deaths globally. The present study used the coculture of T cells with supernatant of the GC cells (HGC-27, SNU-1) and investigated the function and regulatory mechanism of Zinc finger and BTB domain containing 7B (ZBTB7B, alias ThPOK) on T cell proliferation. Flow cytometry analysis was used to measure the proliferation of CD3+ T cells and IFN-γ+ T cells. We found that low level of ThPOK was associated with poor prognosis in GC patients. ThPOK was lowly expressed in GC cells at the mRNA and protein levels. ThPOK overexpression inhibited GC cell viability and promoted proliferation of T cells. ThPOK was identified to function as a transcription factor for TNFRSF12A. TNFRSF12A was upregulated in GC tissues and cells and high level of TNFRSF12A was associated with poor prognosis in GC patients. ThPOK knockdown elevated TNFRSF12A level in GC cells. ThPOK was revealed to bind with the promoter of TNFRSF12A. TNFRSF12A silencing also inhibited GC cell viability and promoted T cell activation and proliferation. Additionally, ThPOK was demonstrated to inactivate the NF-kB pathway by downregulating TNFRSF12A in GC cells. Overall, ThPOK suppresses cell viability in GC and increases the activation and proliferation of T cells by targeting TNFRSF12A to inactivate the NF-kB pathway.


Subject(s)
DNA-Binding Proteins/metabolism , NF-kappa B/metabolism , Signal Transduction , TWEAK Receptor/genetics , Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival/genetics , DNA-Binding Proteins/genetics , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Prognosis , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , T-Lymphocytes/metabolism , TWEAK Receptor/metabolism , Transcription Factors/genetics , Transcription, Genetic
8.
Cell Mol Immunol ; 18(1): 150-161, 2021 01.
Article in English | MEDLINE | ID: mdl-32066854

ABSTRACT

CD4+ and CD8+ T cells are dichotomous lineages in adaptive immunity. While conventionally viewed as distinct fates that are fixed after thymic development, accumulating evidence indicates that these two populations can exhibit significant lineage plasticity, particularly upon TCR-mediated activation. We define a novel CD4-CD8αß+ MHC II-recognizing population generated by lineage conversion from effector CD4+ T cells. CD4-CD8αß+ effector T cells downregulated the expression of T helper cell-associated costimulatory molecules and increased the expression of cytotoxic T lymphocyte-associated cytotoxic molecules. This shift in functional potential corresponded with a CD8+-lineage skewed transcriptional profile. TCRß repertoire sequencing and in vivo genetic lineage tracing in acutely infected wild-type mice demonstrated that CD4-CD8αß+ effector T cells arise from fundamental lineage reprogramming of bona fide effector CD4+ T cells. Impairing autophagy via functional deletion of the initiating kinase Vps34 or the downstream enzyme Atg7 enhanced the generation of this cell population. These findings suggest that effector CD4+ T cells can exhibit a previously unreported degree of skewing towards the CD8+ T cell lineage, which may point towards a novel direction for HIV vaccine design.


Subject(s)
Autophagy-Related Protein 7/physiology , CD4-Positive T-Lymphocytes/immunology , CD8 Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Lineage , Class III Phosphatidylinositol 3-Kinases/physiology , Histocompatibility Antigens Class II/immunology , Animals , Cell Differentiation , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Cytotoxic/immunology
9.
Immunity ; 53(6): 1182-1201.e8, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33242395

ABSTRACT

αß lineage T cells, most of which are CD4+ or CD8+ and recognize MHC I- or MHC II-presented antigens, are essential for immune responses and develop from CD4+CD8+ thymocytes. The absence of in vitro models and the heterogeneity of αß thymocytes have hampered analyses of their intrathymic differentiation. Here, combining single-cell RNA and ATAC (chromatin accessibility) sequencing, we identified mouse and human αß thymocyte developmental trajectories. We demonstrated asymmetric emergence of CD4+ and CD8+ lineages, matched differentiation programs of agonist-signaled cells to their MHC specificity, and identified correspondences between mouse and human transcriptomic and epigenomic patterns. Through computational analysis of single-cell data and binding sites for the CD4+-lineage transcription factor Thpok, we inferred transcriptional networks associated with CD4+- or CD8+-lineage differentiation, and with expression of Thpok or of the CD8+-lineage factor Runx3. Our findings provide insight into the mechanisms of CD4+ and CD8+ T cell differentiation and a foundation for mechanistic investigations of αß T cell development.


Subject(s)
Cell Differentiation/immunology , Cell Lineage/immunology , T-Lymphocyte Subsets/immunology , Thymocytes/immunology , Animals , Antigen Presentation/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Epigenome , Gene Expression Regulation , Gene Regulatory Networks , Histocompatibility Antigens/genetics , Histocompatibility Antigens/immunology , Histocompatibility Antigens/metabolism , Humans , Mice , T-Lymphocyte Subsets/metabolism , Thymocytes/metabolism , Thymus Gland/immunology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
10.
Immunity ; 51(3): 465-478.e6, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31422869

ABSTRACT

The generation of high-affinity neutralizing antibodies, the objective of most vaccine strategies, occurs in B cells within germinal centers (GCs) and requires rate-limiting "help" from follicular helper CD4+ T (Tfh) cells. Although Tfh differentiation is an attribute of MHC II-restricted CD4+ T cells, the transcription factors driving Tfh differentiation, notably Bcl6, are not restricted to CD4+ T cells. Here, we identified a requirement for the CD4+-specific transcription factor Thpok during Tfh cell differentiation, GC formation, and antibody maturation. Thpok promoted Bcl6 expression and bound to a Thpok-responsive region in the first intron of Bcl6. Thpok also promoted the expression of Bcl6-independent genes, including the transcription factor Maf, which cooperated with Bcl6 to mediate the effect of Thpok on Tfh cell differentiation. Our findings identify a transcriptional program that links the CD4+ lineage with Tfh differentiation, a limiting factor for efficient B cell responses, and suggest avenues to optimize vaccine generation.


Subject(s)
Cell Differentiation/immunology , Proto-Oncogene Proteins c-bcl-6/immunology , Proto-Oncogene Proteins c-maf/immunology , T-Lymphocytes, Helper-Inducer/immunology , Transcription Factors/immunology , Transcription, Genetic/immunology , Animals , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Female , Gene Expression Regulation/immunology , Germinal Center/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL
11.
Immunity ; 50(1): 91-105.e4, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30638736

ABSTRACT

Memory CD4+ T cells mediate long-term immunity, and their generation is a key objective of vaccination strategies. However, the transcriptional circuitry controlling the emergence of memory cells from early CD4+ antigen-responders remains poorly understood. Here, using single-cell RNA-seq to study the transcriptome of virus-specific CD4+ T cells, we identified a gene signature that distinguishes potential memory precursors from effector cells. We found that both that signature and the emergence of memory CD4+ T cells required the transcription factor Thpok. We further demonstrated that Thpok cell-intrinsically protected memory cells from a dysfunctional, effector-like transcriptional program, similar to but distinct from the exhaustion pattern of cells responding to chronic infection. Mechanistically, Thpok- bound genes encoding the transcription factors Blimp1 and Runx3 and acted by antagonizing their expression. Thus, a Thpok-dependent circuitry promotes both memory CD4+ T cells' differentiation and functional fitness, two previously unconnected critical attributes of adaptive immunity.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , T-Lymphocyte Subsets/physiology , Transcription Factors/metabolism , Animals , Antigens, Viral/immunology , Cell Differentiation , Cells, Cultured , Core Binding Factor Alpha 3 Subunit/metabolism , Humans , Immunologic Memory/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1/metabolism , Protein Binding , Sequence Analysis, RNA , Single-Cell Analysis , Transcription Factors/genetics , Transcriptome
12.
Elife ; 72018 02 28.
Article in English | MEDLINE | ID: mdl-29488879

ABSTRACT

Cytotoxic CD4 (CD4CTX) T cells are emerging as an important component of antiviral and antitumor immunity, but the molecular basis of their development remains poorly understood. In the context of human cytomegalovirus infection, a significant proportion of CD4 T cells displays cytotoxic functions. We observed that the transcriptional program of these cells was enriched in CD8 T cell lineage genes despite the absence of ThPOK downregulation. We further show that establishment of CD4CTX-specific transcriptional and epigenetic programs occurred in a stepwise fashion along the Th1-differentiation pathway. In vitro, prolonged activation of naive CD4 T cells in presence of Th1 polarizing cytokines led to the acquisition of perforin-dependent cytotoxic activity. This process was dependent on the Th1 transcription factor Runx3 and was limited by the sustained expression of ThPOK. This work elucidates the molecular program of human CD4CTX T cells and identifies potential targets for immunotherapy against viral infections and cancer.


Subject(s)
Cell Differentiation , Core Binding Factor Alpha 3 Subunit/metabolism , Cytomegalovirus Infections/immunology , DNA-Binding Proteins/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Cytotoxic/immunology , Th1 Cells/immunology , Transcription Factors/metabolism , Adult , Animals , Cells, Cultured , Female , Gene Expression Regulation , Humans , Male , Mice , Middle Aged
13.
Cell Mol Life Sci ; 75(4): 623-633, 2018 02.
Article in English | MEDLINE | ID: mdl-28856379

ABSTRACT

GAGA factor of Drosophila melanogaster (DmGAF) is a multifaceted transcription factor with diverse roles in chromatin regulation. Recently, ThPOK/c-Krox was identified as its vertebrate homologue (vGAF), which has a basic domain structure similar to DmGAF and is decorated with a number of post-translationally modified residues. In vertebrate genomes, vGAF associates with purine-rich GAGA sequences and performs diverse chromatin-mediated functions, viz., gene activation, repression and enhancer blocking. Expansion of regulatory chromatin proteins with the acquisition of PTMs appears to be the general trend that facilitated the evolution of complexity in vertebrates. Here, we compare the structural and functional features of vGAF with those of DmGAF and also assess the possible functional redundancy among paralogues of vGAF. We also discuss the underlying mechanisms which aid in the diverse and context-dependent functions of this protein.


Subject(s)
Chromatin/metabolism , DNA-Binding Proteins/physiology , Drosophila Proteins/physiology , Gene Expression Regulation , Transcription Factors/physiology , Animals , Chromatin/chemistry , Drosophila melanogaster/genetics , Humans , Regulatory Sequences, Nucleic Acid , Sequence Homology , Transcription, Genetic , Vertebrates/genetics
14.
Intern Med ; 56(21): 2851-2856, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28943543

ABSTRACT

Objective It has been postulated that the normal counterpart of angioimmunoblastic T-cell lymphoma (AITL) is the follicular helper T-cell (TFH). Recent immunological studies have identified several transcription factors responsible for T-cell differentiation. The master regulators associated with T-cell, helper T-cell (Th), and TFH differentiation are reportedly BCL11B, Th-POK, and BCL6, respectively. We explored the postulated normal counterpart of AITL with respect to the expression of the master regulators of T-cell differentiation. Methods We performed an immunohistochemical analysis in 15 AITL patients to determine the expression of the master regulators and several surface markers associated with T-cell differentiation. Results BCL11B was detected in 10 patients (67%), and the surface marker of T-cells (CD3) was detected in all patients. Only 2 patients (13%) expressed the marker of naïve T-cells (CD45RA), but all patients expressed the marker of effector T-cells (CD45RO). Nine patients expressed Th-POK (60%), and 7 (47%) expressed a set of surface antigens of Th (CD4-positive and CD8-negative). In addition, BCL6 and the surface markers of TFH (CXCL13, PD-1, and SAP) were detected in 11 (73%), 8 (53%), 14 (93%), and all patients, respectively. Th-POK-positive/BCL6-negative patients showed a significantly shorter overall survival (OS) than the other patients (median OS: 33.0 months vs. 74.0 months, p=0.020; log-rank test). Conclusion Many of the AITL patients analyzed in this study expressed the master regulators of T-cell differentiation. The clarification of the diagnostic significance and pathophysiology based on the expression of these master regulators in AITL is expected in the future.


Subject(s)
Lymphoma, T-Cell/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adult , Aged , Aged, 80 and over , Biomarkers , Cell Differentiation , DNA-Binding Proteins/biosynthesis , Female , Humans , Immunoblastic Lymphadenopathy , Lymphoma, T-Cell/pathology , Male , Middle Aged , Proto-Oncogene Proteins c-bcl-6/biosynthesis , Repressor Proteins/biosynthesis , Transcription Factors/biosynthesis , Tumor Suppressor Proteins/biosynthesis
15.
Mech Dev ; 138 Pt 2: 160-169, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26254900

ABSTRACT

Hox gene expression imparts segment identity to body structures along the anterior-posterior axis and is tightly governed by higher order chromatin mechanisms. Chromatin regulatory features of the homeotic complex are best defined in Drosophila melanogaster, where multiple cis-regulatory elements have been identified that ensure collinear Hox gene expression patterns in accordance with their genomic organization. Recent studies focused on delineating the epigenetic features of the vertebrate Hox clusters have helped reveal their dynamic chromatin organization and its impact on gene expression. Enrichment for the 'activating' H3K4me3 and 'repressive' H3K27me3 histone modifications is a particularly strong read-out for transcriptional status and correlates well with the evidence for chromatin loop domain structures and stage specific topological changes at these loci. However, it is not clear how such distinct domains are imposed and regulated independent of each other. Comparative analysis of the chromatin structure and organization of the homeotic gene clusters in fly and mammals is increasingly revealing the functional conservation of chromatin mediated mechanisms. Here we discuss the case for interspersed boundary elements existing within mammalian Hox clusters along with their possible roles and mechanisms of action. Recent studies suggest a role for factors other than the well characterized vertebrate boundary factor CTCF, such as the GAGA binding factor (GAF), in maintaining chromatin domains at the Hox loci. We also present data demonstrating how such regulatory elements may be involved in organizing higher order structure and demarcating active domains of gene expression at the mammalian Hox clusters.


Subject(s)
Epigenesis, Genetic/genetics , Genes, Homeobox/genetics , Insulator Elements/genetics , Mammals/genetics , Animals , Cell Line , Chromatin/genetics , Gene Expression Regulation, Developmental/genetics , Genome/genetics , Mice , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/genetics
16.
Proc Natl Acad Sci U S A ; 112(25): 7773-8, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26056302

ABSTRACT

The transcription factor T-helper-inducing POZ/Krueppel-like factor (ThPOK, encoded by the Zbtb7b gene) plays widespread and critical roles in T-cell development, particularly as the master regulator of CD4 commitment. Here we show that mice expressing a constitutive T-cell-specific ThPOK transgene (ThPOK(const) mice) develop thymic lymphomas. These tumors resemble human T-cell acute lymphoblastic leukemia (T-ALL), in that they predominantly exhibit activating Notch1 mutations. Lymphomagenesis is prevented if thymocyte development is arrested at the DN3 stage by recombination-activating gene (RAG) deficiency, but restored by introduction of a T-cell receptor (TCR) transgene or by a single injection of anti-αßTCR antibody into ThPOK(const) RAG-deficient mice, which promotes development to the CD4(+)8(+) (DP) stage. Hence, TCR signals and/or traversal of the DN (double negative) > DP (double positive) checkpoint are required for ThPOK-mediated lymphomagenesis. These results demonstrate a novel link between ThPOK, TCR signaling, and lymphomagenesis. Finally, we present evidence that ectopic ThPOK expression gives rise to a preleukemic and self-perpetuating DN4 lymphoma precursor population. Our results collectively define a novel role for ThPOK as an oncogene and precisely map the stage in thymopoiesis susceptible to ThPOK-dependent tumor initiation.


Subject(s)
Gene Expression Regulation , Lymphoma, T-Cell/pathology , T-Lymphocytes/cytology , Transcription Factors/genetics , Animals , Incidence , Lymphoma, T-Cell/genetics , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Notch/metabolism , Signal Transduction , Transgenes
17.
Oncoimmunology ; 4(3): e994370, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25949915

ABSTRACT

CD4+ T cells represent an entire arm of the immune system that has hitherto been incompletely understood, but their potential to act as both helper and effector may make them optimal protagonists in immunotherapeutic approaches to treat cancer. Cytokine therapy can activate this population in a manner that ensures maximal diversification of effector function for a robust immune response.

18.
Int Immunopharmacol ; 28(2): 813-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25864621

ABSTRACT

CD4(+) helper T cells and CD8(+) cytotoxic T cells form the two major subsets of peripheral T lymphocytes. Helper T cells fulfill crucial roles in the activation and coordination of the immune response, while cytotoxic T cells kill virus-infected or tumor cells. Recent data suggest that the lineage identify of helper T cells is not fixed and that CD4(+) T cells under certain physiological conditions can be reprogrammed to express CD8 lineage genes and to develop into intestinal intraepithelial CD4(+) cytotoxic T lymphocytes that lack the expression of the key helper T cell lineage commitment factor ThPOK. Moreover, the analysis of mice with a conditional deletion of the transcription factor ThPOK or the histone deacetylases HDAC1 and HDAC2 indicated that CD8 lineage genes are actively repressed in CD4(+) T cells in order to maintain the lineage integrity of helper T cells. In this review I summarize recent studies that indicate plasticity of CD4(+) T cells towards a CTL program and that demonstrate that ThPOK and HDAC1-HDAC2 are part of a transcriptional regulatory circuit that counteracts the activity of the transcription factor Runx3 to maintain CD4(+) T cell lineage integrity.


Subject(s)
CD4-Positive T-Lymphocytes/cytology , Cell Plasticity , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Lineage , Core Binding Factor alpha Subunits/immunology , DNA-Binding Proteins/immunology , Histone Deacetylase 1/immunology , Histone Deacetylase 2/immunology , Humans , Intestines/immunology , Transcription Factors/immunology
19.
Immunology ; 141(3): 431-45, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24708418

ABSTRACT

The zinc finger transcription factor ThPOK plays a crucial role in CD4 T-cell development and CD4/CD8 lineage decision. In ThPOK-deficient mice, developing T cells expressing MHC class II-restricted T-cell receptors are redirected into the CD8 T-cell lineage. In this study, we investigated whether the ThPOK transgene affected the development and function of two additional types of T cells, namely self-specific CD8 T cells and CD4(+) FoxP3(+) T regulatory cells. Self-specific CD8 T cells are characterized by high expression of CD44, CD122, Ly6C, 1B11 and proliferation in response to either IL-2 or IL-15. The ThPOK transgene converted these self-specific CD8 T cells into CD4 T cells. The converted CD4(+) T cells are no longer self-reactive, lose the characteristics of self-specific CD8 T cells, acquire the properties of conventional CD4 T cells and survive poorly in peripheral lymphoid organs. By contrast, the ThPOK transgene promoted the development of CD4(+) FoxP3(+) regulatory T cells resulting in an increased recovery of CD4(+) FoxP3(+) regulatory T cells that expressed higher transforming growth factor-ß-dependent suppressor activity. These studies indicate that the ThPOK transcription factor differentially affects the development and function of self-specific CD8 T cells and CD4(+) FoxP3(+) regulatory T cells.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Cell Lineage , Self Tolerance , T-Lymphocytes, Regulatory/metabolism , Transcription Factors/metabolism , Animals , Antigens, Ly/metabolism , Biomarkers/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Cells, Cultured , Female , Forkhead Transcription Factors/metabolism , H-Y Antigen/metabolism , Hyaluronan Receptors/metabolism , Interleukin-15/metabolism , Interleukin-2/metabolism , Interleukin-2 Receptor beta Subunit/metabolism , Male , Mice , Mice, Transgenic , Receptors, Antigen/metabolism , Sex Factors , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Regulatory/immunology , Time Factors , Transcription Factors/genetics , Transforming Growth Factor beta/metabolism
20.
Semin Immunol ; 25(4): 273-81, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24246226

ABSTRACT

During thymic development, thymocytes expressing a T cell receptor consisting of an alpha and beta chain (TCRαß), commit to either the cytotoxic- or T helper-lineage fate. This lineage dichotomy is controlled by key transcription factors, including the T helper (Th) lineage master regulator, the Th-inducing BTB/POZ domain-containing Kruppel-like zinc-finger transcription factor, ThPOK, (formally cKrox or Zfp67; encoded by Zbtb7b), which suppresses the cytolytic program in major histocompatibility complex (MHC) class II-restricted CD4(+) thymocytes and the Runt related transcription factor 3 (Runx3), which counteracts ThPOK in MHC class I restricted precursor cells and promotes the lineage commitment of CD8αß(+) cytolytic T lymphocytes (CTL). ThPOK continues to repress the CTL gene program in mature CD4(+) T cells, even as they differentiate into effector Th cell subsets. The Th cell fate however is not fixed and two recent studies showed that mature, antigen-stimulated CD4(+) T cells have the flexibility to terminate the expression of ThPOK and functionally reprogram to cytotoxic effector cells. This unexpected plasticity of CD4(+) T cells results in the post-thymic termination of the Th lineage fate and the functional differentiation of distinct MHC class II-restricted CD4(+) CTL. The recognition of CD4 CTL as a defined separate subset of effector cells and the identification of the mechanisms and factors that drive their reprogramming finally create new opportunities to explore the physiological relevance of these effector cells in vivo and to determine their pivotal roles in both, protective immunity as well as in immune-related pathology.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic , T-Lymphocyte Subsets/immunology , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Cell Lineage/immunology , Gene Expression Regulation , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Lymphocyte Activation/immunology , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Thymus Gland/immunology , Thymus Gland/metabolism , Transcription Factors/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL