Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.608
Filter
1.
Adv Sci (Weinh) ; : e2402962, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951958

ABSTRACT

The ultrafine cellular structure promotes the extraordinary mechanical performance of metals manufactured by laser powder-bed-fusion (L-PBF). An in-depth understanding of the mechanisms governing the thermal stability of such structures is crucial for designing reliable L-PBF components for high-temperature applications. Here, characterizations and 3D discrete dislocation dynamics simulations are performed to comprehensively understand the evolution of cellular structures in 316L stainless steel during annealing. The dominance of screw-type dislocation dipoles in the dislocation cells is reported. However, the majority of dislocations in sub-grain boundaries (SGBs) are geometrically necessary dislocations (GNDs) with varying types. The disparity in dislocation types can be attributed to the variation in local stacking fault energy (SFE) arising from chemical heterogeneity. The presence of screw-type dislocations facilitates the unpinning of dislocations from dislocation cells/SGBs, resulting in a high dislocation mobility. In contrast, the migration of SGBs with dominating edge-type GNDs requires collaborative motion of dislocations, leading to a sluggish migration rate and an enhanced thermal stability. This work emphasizes the significant role of dislocation type in the thermal stability of cellular structures. Furthermore, it sheds light on how to locally tune dislocation structures with desired dislocation types by adjusting local chemistry-dependent SFE and heat treatment.

2.
Photochem Photobiol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961565

ABSTRACT

Here, we report a novel kind of protein nanoparticles of 11 nm in size, which have a central protein core surrounded by two layers of lipid. One layer of the lipid was covalently attached to the protein, while the other layer has been physically assembled around the protein core. Particle synthesis is highly modular, while both the size and charge of the protein nanoparticles are controlled in a predictable manner. Circular dichroism studies of the conjugate showed that the protein secondary structure is retained, while biophysical characterizations indicated the particle purity, size, and charge. The conjugate had a high thermal stability to steam sterilization conditions at 121°C (17 psi). After labeling the protein core with few different fluorescent dyes, they were strongly fluorescent with the corresponding colors independent of their size, unlike quantum dots. They are readily digested by proteases, and these water-soluble, non-toxic, highly stable, biocompatible, and biodegradable conjugates are suitable for cell imaging and drug delivery applications.

3.
Chemosphere ; 362: 142734, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950745

ABSTRACT

In this work, Co3O4 nanoparticles were successfully synthesized by precipitating a precursor salt solution in the form of microdroplets generated by a nebulizer, as an efficient, fast and low-cost approach. After drying and calcination, synthesized particles were deposited on stacked wire mesh monoliths by immersing the structures in a suspension containing synthesized Co3O4 particles and commercial ceria nanoparticles as a binder. These structured catalysts were evaluated for the combustion of diesel soot which constitutes a crucial step in the regeneration of catalytic particulate filters (CDPFs). Thermal and mechanical stability of Co,Ce washcoated monoliths were investigated. For this, successive catalytic evaluations of the structured system, with intermediate treatments at 900 °C (accelerated aging), were carried out indicating a very good activity and stability of the catalysts developed. Adherence tests showed good adhesion of the catalytic layer to the metallic substrate. Fresh and aged catalysts were fully characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Laser Raman Spectroscopy (LRS) and Temperature-Programmed Reduction (TPR). It was found that the catalytic coating resulted composed of nanometric CeO2 and Co3O4 along with chromium, iron and manganese oxides coming from the migration of the metallic substrate, in the catalytic cartridge calcined at 600 °C. Despite after calcination at 900 °C spinels of Co, Fe, Cr and Mn were observed, these oxides did not significantly affected the catalytic activity. Although this aging treatment at 900 °C was severe and is not expected under real conditions, it highlights the potential application of the catalytic metallic cartridges here developed.

4.
J Sci Food Agric ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989609

ABSTRACT

BACKGROUND: Algae oil has garnered widespread acclaim due as a result of its high purity of docosahexaenoic acid (DHA) and excellent safety profile. The present study aimed to develop stable nanoemulsions (NEs) systems containing DHA from algae oil through thermal sterilization by combining modified whey protein concentrate (WPC) with low methoxyl pectin (LMP), as well as to investigate the impact of LMP concentration on the thermal stability and the gastrointestinal delivery efficiency of DHA NEs. RESULTS: The addition of LMP enhanced the stability of the emulsion after sterilization, at the same time as improving the protective and sustained release effects of DHA in the gastrointestinal tract. Optimal effect was achieved at a LMP concentration of 1% (10 g kg-1 sample), the stability of the emulsion after centrifugation increased by 17.21 ± 5.65% compared to the group without LMP, and the loss of DHA after sterilization decreased by only 0.92 ± 0.09%. Furthermore, the addition of 1% LMP resulted in a substantial reduction in the release of fatty acids from the NEs after gastrointestinal digestion simulation, achieving the desired sustained-release effect. However, excessive addition of 2% (20 g kg-1 sample) LMP negatively impacted all aspects of the NEs system, primarily because of the occurrence of depletion effects. CONCLUSION: The construction of the LMP/WPC-NEs system is conducive to the protection of DHA in algae oil and its sustained-release in the gastrointestinal tract. The results of the present study can provide reference guidance for the application of algae oil NEs in the food field. © 2024 Society of Chemical Industry.

5.
Enzyme Microb Technol ; 180: 110486, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39038418

ABSTRACT

Seaweed biomass is as an abundant and renewable source of complex polysaccharides, including alginate which has a variety of applications. A sustainable method for exploiting alginate towards the production of valuable oligosaccharides is through enzymatic processing, using alginate lyases. Industrial refinement methods demand robust enzymes. Metagenomic libraries from extreme environments are a new source of unique enzymes with great industrial potential. Herein we report the identification of a new thermostable alginate lyase with only 58 % identity to known sequences, identified by mining a metagenomic library obtained from the hydrothermal vents of the volcano Kolumbo in the Aegean Sea (Kolumbo Alginate Lyase, KAlLy). Sequence analysis and biochemical characterization of KAlLy showed that this new alginate lyase is a Polysaccharide Lyase of family 7 (PL7) enzyme with endo- and exo-action on alginate and poly-mannuronic acid, with high activity at 60°C (56 ± 8 U/mg) and high thermostability (half-life time of 30 h at 50°C). The response surface methodology analysis revealed that the reaction optimum conditions with poly-mannuronic acid as substrate are 44°C, pH of 5.5 with 440 mM NaCl. This novel alginate lyase is a valuable addition to the toolbox of alginate modifying enzymes, due to its diverse sequence and its good thermal stability.

6.
Article in English | MEDLINE | ID: mdl-39041930

ABSTRACT

In pursuing high stability and power conversion efficiency for organic photovoltaics (OPVs), a sequential deposition (SD) approach to fabricate active layers with p-i-n structures (where p, i, and n represent the electron donor, mixed donor:acceptor, and electron acceptor regions, respectively, distinctively different from the bulk heterojunction (BHJ) structure) has emerged. Here, we present a novel approach that by incorporating two polymer donors, PBDBT-DTBT and PTQ-2F, and one small-molecule acceptor, BTP-3-EH-4Cl, into the active layer with sequential deposition, we formed a device with nanometer-scale twin p-i-n structured active layer. The twin p-i-n PBDBT-DTBT:PTQ-2F/BTP-3-EH-4Cl device involved first depositing a PBDBT-DTBT:PTQ-2F blend under layer and then a BTP-3-EH-4Cl top layer and exhibited an improved power conversion efficiency (PCE) value of 18.6%, as compared to the 16.4% for the control BHJ PBDBT-DTBT:PTQ-2F:BTP-3-EH-4Cl device or 16.6% for the single p-i-n PBDBT-DTBT/BTP-3-EH-4Cl device. The PCE enhancement resulted mainly from the twin p-i-n active layer's multiple nanoscale charge carrier pathways that contributed to an improved fill factor and faster photocurrent generation based on transient absorption studies. The PBDBT-DTBT:PTQ-2F/BTP-3-EH-4Cl film possessed a vertical twin p-i-n morphology that was revealed through secondary ion mass spectrometry and synchrotron grazing-incidence small-angle X-ray scattering analyses. The thermal stability (T80) at 85 °C of the twin p-i-n PBDBT-DTBT:PTQ-2F/BTP-3-EH-4Cl device surpassed that of the single p-i-n PBDBT-DTBT/BTP-3-EH-4Cl devices (906 vs 196 h). This approach of providing a twin p-i-n structure in the active layer can lead to substantial enhancements in both the PCE and stability of organic photovoltaics, laying a solid foundation for future commercialization of the organic photovoltaics technology.

7.
Materials (Basel) ; 17(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38998318

ABSTRACT

Mullite fiber felt is a promising material that may fulfill the demands of advanced flexible external thermal insulation blankets. However, research on the fabrication and performance of mullite fiber felt with high-temperature resistance and thermal stability is still lacking. In this work, mullite fibers were selected as raw materials for the fabrication of mullite fibrous porous materials with a three-dimensional net structure. Said materials' high-temperature resistance and thermal stability were investigated by assessing the effects of various heat treatment temperatures (1100 °C, 1300 °C, and 1500 °C) on the phase composition, microstructure, and performance of their products. When the heat treatment temperature was below 1300 °C, both the phase compositions and microstructures of products exhibited stability. The compressive rebound rate of the product before and after 1100 °C reached 92.9% and 84.5%, respectively. The backside temperature of the as-prepared products was 361.6 °C when tested at 1500 °C for 4000 s. The as-prepared mullite fibrous porous materials demonstrated excellent high-temperature resistance, thermal stability, thermal insulation performance, and compressive rebound capacity, thereby indicating the great potential of the as-prepared mullite fibrous porous materials in the form of mullite fiber felt within advanced flexible external thermal insulation blankets.

8.
ACS Appl Mater Interfaces ; 16(28): 36832-36839, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38972033

ABSTRACT

Sulfonated octaphenylsilsesquioxane (SPOSS) has garnered significant interest due to its unique structural properties of containing the -SO3H group and its wide range of applications. This study introduces a novel approach to the synthesis of SPOSS, leveraging machine learning algorithms to explore new recipes and achieve higher -SO3H functionality. The focus was on synthesizing SPOSS with 2, 4, 6, and 8-SO3H functional groups on the phenyl group, marked as SPOSS-2, SPOSS-4, SPOSS-6, and SPOSS-8, respectively. The successful synthesis of SPOSS-8 was achieved by 5 training outputs based on the recipes of 21 sets of low-functionality (<4) SPOSS. The structure of SPOSS was confirmed using Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and time-of-flight mass spectrometry (MALDI-TOF MS). Machine learning analysis revealed that K2SO4 is an important additive to improve the functionality of SPOSS. A synthetic mechanism was proposed and validated that K2SO4 participated in the reaction to generate sulfur trioxide (SO3), a sulfonating agent with high reactivity. SPOSS shows thermal stability superior to octaphenylsilsesquioxane (OPS) according to thermogravimetric analysis (TGA) and TG-FTIR.

9.
Proc Natl Acad Sci U S A ; 121(28): e2400084121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968114

ABSTRACT

MXenes have demonstrated potential for various applications owing to their tunable surface chemistry and metallic conductivity. However, high temperatures can accelerate MXene film oxidation in air. Understanding the mechanisms of MXene oxidation at elevated temperatures, which is still limited, is critical in improving their thermal stability for high-temperature applications. Here, we demonstrate that Ti[Formula: see text]C[Formula: see text]T[Formula: see text] MXene monoflakes have exceptional thermal stability at temperatures up to 600[Formula: see text]C in air, while multiflakes readily oxidize in air at 300[Formula: see text]C. Density functional theory calculations indicate that confined water between Ti[Formula: see text]C[Formula: see text]T[Formula: see text] flakes has higher removal energy than surface water and can thus persist to higher temperatures, leading to oxidation. We demonstrate that the amount of confined water correlates with the degree of oxidation in stacked flakes. Confined water can be fully removed by vacuum annealing Ti[Formula: see text]C[Formula: see text]T[Formula: see text] films at 600[Formula: see text]C, resulting in substantial stability improvement in multiflake films (can withstand 600[Formula: see text]C in air). These findings provide fundamental insights into the kinetics of confined water and its role in Ti[Formula: see text]C[Formula: see text]T[Formula: see text] oxidation. This work enables the use of stable monoflake MXenes in high-temperature applications and provides guidelines for proper vacuum annealing of multiflake films to enhance their stability.

10.
Polymers (Basel) ; 16(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000667

ABSTRACT

The benefit of being acquainted with thermal properties, especially the thermal stability of polyurethanes (PU), and simplified methods for their improvement is manifold. Considering this, the effect of embedding different amounts of unmodified and surface-modified TiO2 nanoparticles (NPs) within PU, based on polycaprolactone (PCL) and Boltorn® aliphatic hyperbranched polyester, on PU properties was investigated. Results obtained via scanning electron microscopy, swelling measurements, mechanical tests and thermogravimetric analysis revealed that TiO2 NPs can be primarily applied to improve the thermal performance of PU. Through surface modification of TiO2 NPs with an amphiphilic gallic acid ester containing a C12 long alkyl chain (lauryl gallate), the impact on thermal stability of PU was greater due to the better dispersion of modified TiO2 NPs in the PU matrix compared to the unmodified ones. Also, the distinct shape of DTG peaks of the composite prepared using modified TiO2 NPs indicates that applied nano-filler is mostly embedded in soft segments of PU, leading to the delay in thermal degradation of PCL, simultaneously improving the overall thermal stability of PU. In order to further explore the thermal degradation process of the prepared composites and prove the dominant role of incorporated TiO2 NPs in the course of thermal stability of PU, various iso-conversional model-free methods were applied. The evaluated apparent activation energy of the thermal degradation reaction at different conversions clearly confirmed the positive impact of TiO2 NPs on the thermal stability and aging resistance of PU.

11.
Food Chem ; 459: 140430, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39024870

ABSTRACT

This study evaluated the effects of five thawing methods (air thawing (AT), water thawing (WT), plasma-activated water thawing (PT), ultrasound-assisted water thawing (UWT) and ultrasound-assisted plasma-activated water thawing (UPT)) on the physicochemical, thermal stability, rheological, and structural properties of porcine longissimus dorsi myofibrillar protein (MP). UPT treatment significantly improved protein solubility (73.10%) and reduced protein turbidity (0.123) compared with AT, WT, and PT treatments (P < 0.05). UPT treatment reduced the MP particle size (635.50 nm) and zeta potential (-6.38 mV) compared with AT and WT treatments (P < 0.05), which was closer to that of the fresh sample. UPT treatment also maintained the MP surface hydrophobicity and thermal stability. UPT treatment improved the MP rheological properties of the sample. In addition, UPT treatment effectively protected the MP secondary and tertiary structures. In conclusion, UPT treatment better maintained the MP physicochemical, thermal stability, rheological, and structural properties of thawed porcine longissimus dorsi. Therefore, UPT treatment can be considered as an effective thawing method.

12.
Sci Rep ; 14(1): 16651, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030238

ABSTRACT

A bio-based flame retardant nickel phytate (PA-Ni) was synthesized and combined with soybean oil-based polyol (SO) to create a green rigid polyurethane foam (RPUF) with enhanced compressive strength, good thermal stability and flame retardant. The results showed that the RPUF-SO2/Ni3 with 3 wt% PA-Ni had the highest initial and termination temperature, maximum thermal decomposition rate temperature and carbon residue, and better thermal stability. Its limiting oxygen index was increased by 2.6% compared with RPUF-SO2 without PA-Ni added, and the peak heat release rate (PHRR) and total heat release rate (THR) were reduced by 14.92% and 19.92%, respectively. In addition, RPUF-SO2/Ni3 had the lowest Ds under the conditions of flame (18.90) and flameless (22.41), and had the best smoke suppression effect. And the compressive strength of RPUF-SO/Ni3 was significantly enhanced by the addition of PA-Ni. The results show that the improvement of flame retardancy of RPUF is mainly the result of the combined effect of gas-phase and condensed-phase flame retardancy, among which the flame retardancy of RPUF-SO/Ni3 was the best. The current findings offer a practical way to produce green and low-carbon RPUF as well as promising prospects for the material's safe application.

13.
Article in English | MEDLINE | ID: mdl-39037284

ABSTRACT

Separators play a crucial role in inhibiting thermal runaway in lithium-ion batteries (LIBs). In this study, the doctor blade coating method and heavy-ion track etching technology were used to prepare a polyimide-based covalent organic framework (PI_COF) separator with excellent thermal stability and a long cycle life. Specifically, COF300 was simply coated on the surface of a polyimide-based track-etched membrane (PI_TEM) with straight through holes, which provided a rigid framework and high-temperature stability at 300 °C. These features were conducive to inhibiting thermal runaway, while porous COF300 with large holes increased the wettability of the electrolyte, facilitating lithium-ion migration and suppression of lithium dendrite growth; consequently, LIBs with an excellent cycling performance and a high rate capacity were obtained. The cell with the PI_COF separator delivered a high capacity of 90.0 mA h g-1 after 1000 cycles. The PI_COF separator with high thermal stability exhibited a long cycle life in LIBs. These features are beneficial for improving the safety characteristics of LIBs as well as for accelerating the practical application process of the PI_COF separator.

14.
Chemistry ; : e202401759, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973370

ABSTRACT

Oxygen evolution reaction (OER) is the bottle neck step in  water splitting reaction towards the realization of hydrogen based clean energy production and storage.  Transition metal based N4 organics are explored extensively as oxygen electrocatalysts i.e., (OER) and oxygen reduction reaction (ORR) catalysts because of their ease of synthesis, tuneable properties, low cost and high performance with long term stability. Here, vanillic acid functionalized iron phthalocyanine (FeVAPc) was synthesised and characterised. The novel FeVAPc exhibited good thermal stability and was coated on Ni foam for OER studies. The scanning electron microscopy images showed net-work like surface morphology and the X-ray photoelectron spectroscopy indicated the presence of Fe in +3 oxidation state. The Ni/FeVAPc demonstrated excellent electrocatalytic activity for OER with overpotential of 312 mV at 10 mA.cm-2 current density in 1.0 M KOH . The designed  catalyst exhibited lesser Tafel slope value which is nearer to the benchmark catalyst, IrO2. The proposed catalyst exhibited good stability as phthalocyanines are highly stable and do not undergo decomposition even in strong acidic and basic corrosive media. Integration of FeVAPc onto  Ni foam resulted in higher mass activity, lower charge transfer resistance, high active surface area leading to enhanced conductivity and activity.

15.
Adv Mater ; : e2405733, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39003615

ABSTRACT

Precise control over the size, species, and breakthrough of the activity-selectivity trade-off are great challenges for sub-nano non-noble metal catalysts. Here, for the first time, a "multiheteroatom induced SMSI + in situ P activation" strategy that enables high stability and effective construction of sub-2 nm metal sites for optimizing selective hydrogenation performance is developed. It is synthesized the smallest metal phosphide clusters (<2 nm) including from unary to ternary non-noble metal systems, accompanied by unprecedented thermal stability. In the proof-of-concept demonstration, further modulation of size and species results in the creation of a sub-2 nm site platform, directionally achieving single atom (Ni1), Ni1+metal cluster (Ni1+Nin), or novel Ni1+metal phosphide cluster synergistic sites (Ni1+Ni2Pn), respectively. Based on thorough structure and mechanism investigation, it is found the Ni1+Ni2Pn site is motivated to achieve electronic structure self-optimizing through synergistic SMSI and site coupling effect. Therefore, it speeds up the substrate adsorption-desorption kinetics in semihydrogenation of alkyne and achieves superior catalytic activity that is 56 times higher than the Ni1 site under mild conditions. Compared to traditional active sites, this may represent the highly effective integration of atom utilization, thermal stability, and favorable site requirements for chemisorption properties and reactivities of substrates.

16.
Polymers (Basel) ; 16(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891401

ABSTRACT

Composite polymers are an interesting class of materials with a wide range of applications. Among the properties of polymers which are currently being enhanced via the development of composite materials is their thermal stability, which is typically evaluated via thermogravimetric analysis (TGA). In this work, a paradox is recognized regarding the considered relationship between the polymer-filler interactions leading to a good dispersion of the filler and the improvement of thermal stability. Simulation of the TGA signal during isothermal measurements of composite polymers is performed along with experimental measurements. It is shown that there are at least three factors that can cause apparent alterations of the thermal stability of composite polymers, namely, the different buoyancy due to the different densities of the composites and the neat polymer, the different thermal diffusivity of the composites and the fact that the mass loss (or remaining mass) of the composites, conventionally, is expressed per overall mass of the composite and not per mass of polymer. The relative contributions of these factors are evaluated and it is found that the conventional expression of mass loss has the most profound effect. Furthermore, it is shown that it is proper to express and evaluate the TGA results of composite polymers per degradable (polymer) mass of the composite and not per overall mass of the composite.

17.
Molecules ; 29(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893402

ABSTRACT

The use of vegetable oil-dervied plasticizers to enhance the flexibility of polylactic acid (PLA) has received much attention due to their renewability, inexpensiveness and biodegradation. However, the double bonds in vegetable oil-based plasticizers limit their compatibility with PLA, resulting in PLA-derived products with reduced flexibility. Herein, we examined soybean oil-derived hydrogenated dimer acid-based polyethylene glycol methyl ether esters (HDA-2n, 2n = 2, 4, 6 or 8, referring to the ethoxy units) developed via the direct esterification of saturated hydrogenated dimer acid and polyethylene glycol monomethyl ethers. The resulting HDA-2n was first used as a plasticizer for PLA, and the effects of the ethoxy units in HDA-2n on the overall performance of the plasticized PLA were systematically investigated. The results showed that, compared with PLA blended with dioctyl terephthalate (DOTP), the PLA plasticized by HDA-8 with the maximum number of ethoxy units (PLA/HDA-8) exhibited better low-temperature resistance (40.1 °C vs. 15.3 °C), thermal stability (246.8 °C vs. 327.6 °C) and gas barrier properties. Additionally, the biodegradation results showed that HDA-8 could be biodegraded by directly burying it in soil. All results suggest that HDA-8 could be used as green alternative to the traditional petroleum-based plasticizer DOTP, which is applied in the PLA industry.

18.
Materials (Basel) ; 17(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38893746

ABSTRACT

Solar water evaporation offers a promising solution to address global water scarcity, utilizing renewable energy for purification and desalination. Transition-metal selenite hydrates (specifically nickel and cobalt) have shown potential as solar absorbers with high evaporation rates of 1.83 and 2.34 kg∙m-2∙h-1, but the reported discrepancy in evaporation rate deserves further investigation. This investigation aims to clarify their thermal stability for applications and determine the underlying mechanisms responsible for the differences. Nickel and cobalt selenite hydrate compositions were synthesized and investigated via thermogravimetric analysis, X-ray diffraction, and Raman spectroscopy to assess their temperature-induced structural and compositional variations. The results reveal distinct phase transitions and structural alterations under various temperature conditions for these two photothermal materials, providing valuable insights into the factors influencing water transportation and evaporation rates.

19.
Materials (Basel) ; 17(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38893850

ABSTRACT

Development of high-performance cutting tool materials is one of the critical parameters enhancing the surface finishing of high-speed machined products. Ti(C,N)-based cermets reinforced with and without different contents of silicon nitride were designed and evaluated to satisfy the requirements. In fact, the effect of silicon nitride addition to Ti(C,N)-based cermet remains unclear. The purpose of this study is to investigate the influence of Si3N4 additive on microstructure, mechanical properties, and thermal stability of Ti(C,N)-based cermet cutting tools. In the present work, α-Si3N4 "grade SN-E10" was utilized with various fractions up to 6 wt.% in the designed cermets. A two-step reactive sintering process under vacuum was carried out for the green compact of Ti(C,N)-based cermet samples. The samples with 4 wt.% Si3N4 have an apparent solid density of about 6.75 g/cm3 (relative density of about 98 %); however, the cermet samples with 2 wt.% Si3N4 exhibit a superior fracture toughness of 10.82 MPa.m1/2 and a traverse rupture strength of 1425.8 MPa. With an increase in the contents of Si3N4, the Vickers hardness and fracture toughness of Ti(C,N)-based cermets have an inverse behavior trend. The influence of Si3N4 addition on thermal stability is clarified to better understand the relationship between thermal stability and mechanical properties of Ti(C,N)-based cermets.

20.
Materials (Basel) ; 17(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38893936

ABSTRACT

Protection against fire and the corrosion of metals is necessary to ensure human safety. Most of the fire and corrosion inhibitors do not meet the ecological requirements. Therefore, effective and ecological methods of protecting metals are currently a challenge for researchers. In this work, the influence of hexakis(4-(hydroxymethyl)phenoxy)cyclotriphosphazene (HHPCP) on the characteristics of powder coatings was examined. The coatings' properties were investigated by measuring the roughness, hardness, adhesion to the steel surface, cupping, gloss, scratch resistance, and water contact angle. The thermal stability was studied by furnace test and TGA analysis. The corrosion resistance test was carried out in a 3.5% NaCl solution. The distribution of phosphazene-derived segments in the coating was examined by GD-EOS analysis. Modified coatings show better corrosion and thermal resistance and can be used for the protection of the steel surface. Their better corrosion resistance is due to the electroactive properties of the phosphazene ring and its higher concentration at the coating surface, confirmed by GD-EOS analysis. The increase in thermal resistance is due to the effect of the formation of phosphoric metaphosphoric and polyphosphoric acids during the decomposition of HHCPC, which remain in the condensed char phase and play a crucial role in surface protection.

SELECTION OF CITATIONS
SEARCH DETAIL