Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.263
Filter
1.
J Chromatogr A ; 1730: 465090, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38955129

ABSTRACT

A new, versatile, and straightforward vapor phase deposition (VPD) approach was used to prepare continuous stationary phase gradients (cSPGs) on silica thin-layer chromatography (TLC) plates using phenyldimethylchlorosilane (PDCS) as a precursor. A mixture of paraffin oil and PDCS was placed at the bottom of an open-ended rectangular chamber, allowing the reactive silanes to evaporate and freely diffuse under a controlled atmosphere. As the volatile silane diffused across the length of the TLC plate, it reacted with the surface silanol groups thus functionalizing the surface in a gradient fashion. Characterization of the gradient TLC plates was done through UV visualization and diffuse reflectance spectroscopy (DRS). Visualizing the fluorescent gradient plates under UV radiation shows the clear presence of a gradient with the side closest to the vapor source undergoing the most modification. More quantitative characterization of the shape of the gradient was provided by DRS. The DRS showed that the degree of modification and shape of the gradient was dependent on the concentration of silane, VPD time, and relative humidity. To evaluate the chromatographic performance, a mixture of three aromatic compounds (acetaminophen (A), aspirin (As), and 3-hydroxy-2-naphthoic acid (3H)) was spotted on the high (GHP) and low phenyl (GLP) ends of the gradient TLC plates and the results compared to the separations carried out on unmodified and uniformly modified plates. The GHP TLC plates showed retention factors (Rf) of 0.060 ± 0.006, 0.391 ± 0.006, and 0.544 ± 0.006, whereas the unmodified plate displayed Rf values of 0.059 ± 0.006, 0.092 ± 0.003, and 0.037 ± 0.002 for the analytes A, As, and 3H, respectively. From the Rf values, it was observed that each modified plate exhibited different selectivity for the analytes. The GHP TLC plates exhibited better separation performance, and improved resolution compared to the GLP, unmodified, and uniformly modified plates. Overall, VPD is a new, cost-effective method for creating a gradient on the stationary phase which has the potential to advance chromatographic separation capabilities.

2.
J Sep Sci ; 47(12): e2400099, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38937914

ABSTRACT

The chromatographic behavior of the selected compounds was studied under conditions of hydrophilic interaction liquid chromatography (HILIC). The effect of mobile phase composition on the retention in different chromatographic systems was systematically examined using high-performance thin-layer chromatography. The sorbents of different polarity and adsorption characteristics were selected and mixtures of water and organic solvents of various compositions, from pure water to pure organic solvent were used as mobile phases. Increasing the amount of water in the mobile phase leads to a conversion of the separation mechanism, and the retention curves have a characteristic "U" shape. The conversion between the adsorption and partition mechanisms is most likely continuous and depends on the chemical nature of separated substances, the stationary phase as well as on organic component of the mobile phase. Silica gel can be considered the most suitable stationary phase for the systematic investigation of the chromatographic behavior of the test compounds, whereas acetonitrile was the most suitable solvent. The obtained results contribute to the understanding of the dominant separation mechanism, the type, and the intensity of the interactions between separated substances with both stationary and mobile phases. Besides, the lipophilicity parameters obtained under HILIC conditions were evaluated and correlated with the calculated values.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Chromatography, Thin Layer , Solvents/chemistry , Adsorption , Chromatography, Liquid
3.
Plant Physiol Biochem ; 213: 108806, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861822

ABSTRACT

The enzyme phospholipase A2 (PLA2) plays a crucial role in acyl remodeling of phospholipids via the Lands' cycle, and consequently alters fatty acid compositions in triacylglycerol (TAG). In this study, a full-length cDNA sequence coding Myrmecia incisa phospholipase A2 (MiPLA2) was cloned using the technique of rapid amplification of cDNA ends. Comparison of the 1082-bp cDNA with its corresponding cloned DNA sequence revealed that MiPLA2 contained 3 introns. Mature MiPLA2 (mMiPLA2) had a conserved Ca2+-binding loop and a catalytic site motif that has been recognized in plant secretory PLA2 (sPLA2) proteins. Correspondingly, phylogenetic analysis illustrated that MiPLA2 was clustered within GroupXIA of plant sPLA2 proteins. To ascertain the function of MiPLA2, the cDNA coding for mMiPLA2 was subcloned into the vector pET-32a to facilitate the production of recombinant mMiPLA2 in Escherichia coli. Recombinant mMiPLA2 was purified and used for the in vitro enzyme reaction. Thin-layer chromatography profiles of the catalytic products generated by recombinant mMiPLA2 indicated a specificity for cleaving sn-2 acyl chains from phospholipids, thereby functionally characterizing MiPLA2. Although recombinant mMiPLA2 displayed a strong preference for phosphatidylethanolamine, it preferentially hydrolyzes arachidonic acid (ArA) at the sn-2 position of phosphatidylcholine. Results from the fused expression of p1300-sp-EGFP-mMiPLA2 illustrated that MiPLA2 was localized in the intercellular space of onion epidermis. Furthermore, the positive correlation between MiPLA2 transcription and free ArA levels were established. Consequently, the role of mMiPLA2 in the biosynthesis of ArA-rich TAG was elucidated. This study helps to understand how M. incisa preferentially uses ArA to synthesize TAG.


Subject(s)
Arachidonic Acid , Phosphatidylcholines , Phospholipases A2 , Phospholipases A2/metabolism , Phospholipases A2/genetics , Arachidonic Acid/metabolism , Phosphatidylcholines/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Substrate Specificity , Amino Acid Sequence , Microalgae/genetics , Microalgae/enzymology , Microalgae/metabolism , Cloning, Molecular
4.
Small ; : e2400812, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38845480

ABSTRACT

Manufacturing high-performance and cost-affordable non-metallic, electroactive 1D carbon material for energy storage and hydrogen evolution reaction (HER) is of foremost importance to respond positively to the impending energy crisis. Porous N-doped carbon nanofiber (PNCNF) is successfully synthesized by electrospinning, using selenium nanoparticles as a sacrificial template (where Se is reutilized for ZIF-67 selenization as a bi-process, and the surface of PNCNF is modified with poly(3,4-ethylenedioxythiophene) (PNCNT/PEDOT) by electropolymerization. The prepared materials are found ideal for energy storage (supercapacitor) and electrocatalysis (HER). The bi-functional material has shown excellent energy storage capability with the specific capacitance (CS) of 230 F g-1 (PNCNF) and 395 F g-1 (PNCNF/PEDOT), and the symmetric supercapacitor device, PNCNF/PEDOT//PEDOT/PNCNF, exhibits 32.4 Wh kg-1 energy density at 14400 W kg-1 power density with 96.6% Coulombic efficiency and 106% CS at the end of 5000 charge-discharge cycles. The rate capability of the symmetric supercapacitor cell of PNCNF/PEDOT is 51% for the current density increase from 1 to 8 A g-1, while that of PNCNF is a meager 29% only. Electrocatalytic HER at the PNCNF electrode is achieved with an overpotential of 281 mV@10 mA cm-2 relative to the Pt/C electrode and a low Tafel slop value of 96 mV dec-1.

5.
Front Microbiol ; 15: 1385301, 2024.
Article in English | MEDLINE | ID: mdl-38903778

ABSTRACT

Introduction: Kefir beverage has beneficial microorganisms that have health-giving properties; therefore, they have a good potential to be probiotic. This study evaluated the probiotic potential, technological, and safety characteristics of Enterococcus faecalis, Lactococcus lactis, and Pichia fermentans isolated from traditional kefir beverages. Method: First, isolates were evaluated in terms of resistance to acid, alkali, bile salts, trypsin, and pepsin of the gastrointestinal tract. The auto-aggregation and co-aggregation ability of isolates were measured using spectrophotometry. Antimicrobial activities were assayed against important food-borne pathogens using the agar well diffusion method. Moreover, gamma-aminobutyric acid (GABA) production was investigated by thin-layer chromatography (TLC). Result: Among the isolates, P. fermentans had an 85% total survival rate, but its amount reached below 6 log CFU/ml which is considered non-resistant, and it showed the highest auto-aggregation (74.67%). Moreover, only L. lactis showed antimicrobial activity and had the highest co-aggregation with E. coli PTCC 1338 (54.33%) and L. monocytogenes ATCC 7644 (78%). Finally, an evaluation of the technological and safety characteristics of the strains showed that the strains produced GABA and were safe. Discussion: Although the isolates were not resistant to the gastrointestinal tract, their supernatant contained valuable natural compounds, including antioxidants, GABA, and antimicrobials, which can be used to produce functional foods and medicines. In addition, other approaches, such as increasing the initial number of strains, using foods as carriers of isolates, and encapsulating the isolates, can effectively increase the survivability of isolates in the gastrointestinal tract.

6.
J Hazard Mater ; 474: 134814, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850932

ABSTRACT

Identification of components in pesticide mixtures has been a major challenge in spectral analysis. In this paper, we assembled monolayer Ag nanoparticles on Thin-layer chromatography (TLC) plates to prepare TLC-Ag substrates with mixture separation and surface-enhanced Raman scattering (SERS) detection. Spectral scans were performed along the longitudinal direction of the TLC-Ag substrate to generate SERS spectra of all target analytes on the TLC plate. Convolutional neural network classification and spectral angle similarity machine learning algorithms were used to identify pesticide information from the TLC-SERS spectra. It was shown that the proposed automated spectral analysis method successfully classified five categories, including four pesticides (thiram, triadimefon, benzimidazole, thiamethoxam) as well as a blank TLC-Ag data control. The location of each pesticide on the TLC plate was determined by the intersection of the information curves of the two algorithms with 100 % accuracy. Therefore, this method is expected to help regulators understand the residues of mixed pesticides in agricultural products and reduce the potential risk of agricultural products to human health and the environment.

7.
Foods ; 13(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38890884

ABSTRACT

This study reports on the physicochemical and sensory attributes, total phenolic content, and antioxidant activity of 36 honey samples produced by two different stingless bee species (Tetragonula carbonaria and Tetragonula hockingsi) from Australia. The findings reveal moisture content across all samples ranges from 24.9% to 30.8% (w/w), electrical conductivity from 1.02 to 2.15 mS/cm, pH levels between 3.57 and 6.54, soluble solids from 69.2 to 75.1 °Brix, trehalulose concentrations from 6.20 to 38.2 g/100 g, fructose levels from 7.79 to 33.4 g/100 g, and glucose content from 3.36 to 26.8 g/100 g. Sucrose was undetectable in all investigated samples. In a sensory analysis involving 30 participants, Australian stingless bee honey was perceived as having a more pronounced sourness compared with New Zealand Manuka honey. The study reveals considerable variability in the composition of Australian stingless bee honey, influenced by factors such as floral availability, geographical origin, and time of harvest. It also demonstrates the presence of phenolic compounds and antioxidant activity in stingless bee honey, underlining their potential as a natural source of antioxidants. All investigated samples contain trehalulose, which supports the findings of other recent studies that propose this unusual disaccharide as a marker compound of stingless bee honey.

8.
Foods ; 13(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38890968

ABSTRACT

This study is the first to report on the presence of oestrogenic compounds in different clover flower nectar samples, in bee-deposited nectars collected from hive combs (unripe honey) and in mature honeys harvested from the same hives. The clover species investigated were two red clover (Trifolium pratense) cultivars, bred specifically for high isoflavone content, alongside a sainfoin (Onobrychis viciifolia) and a purple clover (T. purpureum) cultivar. A total of eight isoflavones, four of them non-glycosidic (biochanin A, formononetin, genistein and daidzein) the others glycosidic (sissotrin, ononin, genistin and daidzin), were targeted for identification and quantification in this study using high-performance thin-layer chromatography (HPTLC). Leaves and flower bracts of the clover samples were also investigated. Different isoflavone profiles were found across the four clover species and also in the different samples collected from each species indicating that, most likely due to the activity of honeybee (Apis mellifera) salivary enzymes, biochemical conversions take place when these bioactive compounds transition from flower nectar into ripe honey. Among the four investigated clover species, the two red clover cultivars, including their honeys, were found to contain higher levels of estrogenic compounds compared to other two cultivars.

9.
Carbohydr Res ; 541: 109170, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38830279

ABSTRACT

The development of chitinase tailored for the bioconversion of chitin to chitin oligosaccharides has attracted significant attention due to its potential to alleviate environmental pollution associated with chemical conversion processes. In this present investigation, we purified extracellular chitinase derived from marine Bacillus haynesii to homogeneity and subsequently characterized it. The molecular weight of BhChi was approximately 35 kDa. BhChi displayed its peak catalytic activity at pH 6.0, with an optimal temperature of 37 °C. It exhibited stability across a pH range of 6.0-9.0. In addition, BhChi showed activation in the presence of Mn2+ with the improved activity of 105 U mL-1. Ca2+ and Fe2+ metal ions did not have any significant impact on enzyme activity. Under the optimized enzymatic conditions, there was a notable enhancement in catalytic activity on colloidal chitin with Km of 0.01 mg mL-1 and Vmax of 5.75 mmol min-1. Kcat and catalytic efficiency were measured at 1.91 s-1 and 191 mL mg-1 s-1, respectively. The product profiling of BhChi using thin layer chromatography and Mass spectrometric techniques hinted an exochitinase mode of action with chitobiose and N-Acetyl glucosamine as the products. This study represents the first report on an exochitinase from Bacillus haynesii. Furthermore, the chitinase showcased promising antifungal properties against key pathogens, Fusarium oxysporum and Penicillium chrysogenum, reinforcing its potential as a potent biocontrol agent.


Subject(s)
Antifungal Agents , Bacillus , Chitin , Chitinases , Chitinases/metabolism , Chitinases/isolation & purification , Chitinases/chemistry , Chitinases/pharmacology , Chitin/chemistry , Chitin/metabolism , Chitin/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/metabolism , Bacillus/enzymology , Fusarium/enzymology , Fusarium/drug effects , Hydrogen-Ion Concentration , Temperature
10.
Sci Total Environ ; 946: 174263, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38936733

ABSTRACT

Sediments polluted with hydrophobic organic contaminants (HOCs) and metals can pose environmental risks, yet effective remediation remains a challenge. We investigated a new composite sorbent comprising granular activated carbon (GAC) and a calcium-silicate (Polonite®, PO) for thin-layer capping of polluted sediment, with the aim to sequester both HOCs and metals. Box cores were collected in polluted Oskarshamn harbor, Sweden, and the sediments were treated with GAC and/or Polonite in a 10-week mesocosm study to measure endpoints ranging from contaminant immobilization to ecological side effects on native fauna and biogeochemical processes. The GAC particle size was 300-500 µm to reduce negative effects on benthic fauna (by being non-ingestible) and of biogenic origin (coconut) to have a small carbon footprint compared with traditional fossil ACs. The calcium-silicate was a fine-grained industrial by-product used to target metals and as a carrier for GAC to improve the cap integrity. GAC decreased the uptake of dioxins (PCDD/Fs) in the bivalve Macoma balthica by 47 % and the in vitro bioavailability of PCB by 40 %. The composite cap of GAC + Polonite decreased sediment-to-water release of Pb < Cu < Ni < Zn < Cd by 42-98 % (lowest to highest decrease) and bioaccumulation of Cd < Zn < Cu in the worm Hediste diversicolor by 50-65 %. Additionally, in vitro bioavailability of Pb < Cu < Zn, measured using digestive fluid extraction, decreased by 43-83 %. GAC showed no adverse effects on benthic fauna while Polonite caused short-term adverse effects on fauna diversity and abundance, partly due to its cohesiveness, which, in turn, can improve the cap integrity in situ. Fauna later recovered and bioturbated the cap. Both sorbents influenced biogeochemical processes; GAC sorbed ammonium, Polonite decreased respiration, and both sorbents reduced denitrification. In conclusion, the side effects were relatively mild, and the cap decreased the release and bioavailability of both HOCs and metals effectively, thus offering a promising sustainable and cost-effective solution to remediating polluted sediments.


Subject(s)
Calcium Compounds , Charcoal , Environmental Restoration and Remediation , Geologic Sediments , Silicates , Water Pollutants, Chemical , Geologic Sediments/chemistry , Charcoal/chemistry , Environmental Restoration and Remediation/methods , Silicates/chemistry , Sweden , Calcium Compounds/chemistry , Animals , Metals
11.
J Pharm Biomed Anal ; 246: 116224, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38759321

ABSTRACT

Cardiovascular diseases, including fatal myocardial infarctions from atheromatous plaques, are the primary global mortality cause. Detecting stenotic atheromatous plaques is possible through coronary angiography, but vulnerable plaques with eccentric remodeling are undetectable with current diagnostic methods. Addressing this challenge, our group developed a radiopharmaceutical drug targeting vascular cell adhesion molecule 1 (VCAM-1), radiolabeled with technetium-99m. Given the absence of a monograph in the European Pharmacopoeia, and in order to draft the investigational medicinal product documentation, analytical methods had to be validated by high performance liquid chromatography (HPLC) and thin layer chromatography (TLC) to determine the radiochemical purity (RCP) of 99mTc-cAbVCAM1-5. This study therefore presents the results of the validation of analytical methods obtained in this context. The method validation followed the European Association of Nuclear Medicine (EANM) recommendations adapted from ICH Q2(R1), ensuring conformity with specificity, accuracy, repeatability and intermediate precision, linearity, robustness, quantification limit (LoQ), and range criteria. Regarding the results of specificity, both HPLC and TLC methods demonstrated excellent separation of 99mTc-cAbVCAM1-5 from impurities 99mTcO4-. Accuracy results indicated recovery percentages within the range of 99.52-101.40% for the HPLC and 99.51-101.97% for TLC, ensuring reliable measurements for each concentration of 99mTcO4-. Precision of the methods was validated by assessing repeatability and intermediate precision. Linearity was determined over the usual concentrations range and the correlation coefficient was greater than 0.99 for both methods. The limit of quantification was measured by diluting the 99mTcO4- to obtain a signal-to-noise ratio of around 10:1. Under these conditions, we obtained an LOQ of 2.10 MBq/mL for HPLC and 2Mbq/mL for TLC. In conclusion, the analytical methods developed in this study comply with EANM recommendations. This therefore allows us to correctly assess the radiochemical purity of 99mTc-cAbVCAM1-5, a new radiotracer targeting inflammation in vulnerable plaques.


Subject(s)
Radiopharmaceuticals , Chromatography, High Pressure Liquid/methods , Chromatography, Thin Layer/methods , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/analysis , Reproducibility of Results , Technetium/chemistry , Technetium/analysis , Organotechnetium Compounds/chemistry , Organotechnetium Compounds/analysis
12.
J Chromatogr A ; 1726: 464972, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38744184

ABSTRACT

The effect of internal and external magnetic fields on the separation of antifungal drugs by centrifugal acceleration thin-layer chromatography was reported for the first time. External and internal magnetic fields were applied using neodymium magnets and CoFe2O4@SiO2 ferromagnetic nanoparticles. Separation of ketoconazole and clotrimazole was performed using a mobile phase consisting of n-hexane, ethyl acetate, ethanol, and ammonia (2.0:2.0:0.5:0.2, v/v). The influence of the magnetic field on the entire chromatographic system led to changes in the properties of the stationary and mobile phases and the analytes affecting the retention factor, shape, and width of the separated rings. The extent of this impact depended on the structure of the analyte and the type and intensity of the magnetic field. In the presence of the external magnetic field, there were more significant changes in the chromatographic parameters of the drugs, especially the width of the separated rings, and ketoconazole was more affected than clotrimazole. The changes are conceivably due to the effect of the magnetic field on the analyte distribution between the stationary and mobile phases, which is also caused by the possibility of the magnetic field affecting the viscosity, surface tension, and surface free energy between the stationary and mobile phases.


Subject(s)
Antifungal Agents , Ketoconazole , Magnetic Fields , Chromatography, Thin Layer/methods , Antifungal Agents/analysis , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Ketoconazole/chemistry , Ketoconazole/analysis , Clotrimazole/chemistry , Clotrimazole/analysis , Centrifugation/methods , Silicon Dioxide/chemistry
13.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727357

ABSTRACT

This article presents, for the first time, a comparative analysis of the emission characteristics of large-area field-effect cathodes (LAFE) based on carbon nanotubes (CNTs) of various morphologies according to key parameters using a unique computerized technique. The work presents a description of a technology for creating various CNT arrays and their comprehensive structure characterization. All CNT arrays synthesized by the catalytic PECVD method on a silicon substrate showed a high degree of chemical purity under the presented technological conditions. In some cases, nanoisland films of Fe were used as a catalyst; in others, thin films of NiO were used, which were deposited on a silicon wafer by chemical vapor deposition (CVD) and atomic layer deposition (ALD), respectively. As a result of these studies, it turned out that an array with a thick CNT coating has good resistance to the action of strong electric fields, fairly good uniformity of distribution of emission centers, a fairly high selection current (2.88 mA/cm2 at 4.53 V/µm), and compliance with the normal current mode according to the "orthodox" test, which makes the morphology of such structures the most promising for further technological optimization of CNT-based cathodes for various practical applications.

14.
Talanta ; 275: 126174, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38705021

ABSTRACT

To analyze a complex sample for endocrine activity, different tests must be performed to clarify androgen/estrogen agonism, antagonism, cytotoxicity, anti-cytotoxicity, and corresponding false-positive reactions. This means a large amount of work. Therefore, a six-fold planar multiplex bioassay concept was developed to evaluate up to the mentioned six endpoints or mechanisms simultaneously in the same sample analysis. Separation of active constituents from interfering matrix via high-performance thin-layer chromatography and effect differentiation via four vertical stripes (of agonists and end-products of the respective enzyme-substrate reaction) applied along each separated sample track were key to success. First, duplex endocrine bioassay versions were established. For the androgen/anti-androgen bioassay applied via piezoelectric spraying, the mean limit of biological detection of bisphenol A was 14 ng/band and its mean half maximal inhibitory concentration IC50 was 116 ng/band. Applied to trace analysis of six migrate samples from food packaging materials, 19 compound zones with agonistic or antagonistic estrogen/androgen activities were detected, with up to seven active compound zones within one migrate. For the first time, the S9 metabolism of endocrine effective compounds was studied on the same surface and revealed partial deactivation. Coupled to high-resolution mass spectrometry, molecular formulas were tentatively assigned to compounds, known to be present in packaging materials or endocrine active or previously unknown. Finally, the detection of cytotoxicity/anti-cytotoxicity and false-positives was integrated into the duplex androgen/anti-androgen bioassay. The resulting six-fold multiplex planar bioassay was evaluated with positive control standards and successfully applied to one migrate sample. The streamlined stripe concept for multiplex planar bioassays made it possible to assign different mechanisms to individual active compounds in a complex sample. The concept is generic and can be transferred to other assays.


Subject(s)
Biological Assay , Biological Assay/methods , Humans , Endocrine Disruptors/analysis , Endocrine Disruptors/pharmacology , False Positive Reactions , Phenols/analysis , Phenols/chemistry , Phenols/pharmacology , Benzhydryl Compounds/analysis , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/chemistry , Androgens/analysis , Androgens/metabolism , Androgen Antagonists/analysis , Androgen Antagonists/pharmacology
15.
Folia Med (Plovdiv) ; 66(2): 255-263, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38690822

ABSTRACT

INTRODUCTION: In the period between 1997 and 2010, sibutramine-containing drugs were widely prescribed for obesity and over-weight management. Due to safety concerns, in 2010 all medicines containing sibutramine were urgently withdrawn from the USA and European pharmaceutical market. Although sibutramine is no longer available in pharmaceutical products, there have been numerous reports of mislabeled weight-loss dietary supplements containing sibutramine.


Subject(s)
Appetite Depressants , Cyclobutanes , Dietary Supplements , Cyclobutanes/analysis , Dietary Supplements/analysis , Chromatography, Thin Layer/methods , Appetite Depressants/analysis , Humans
16.
Food Chem ; 453: 139593, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761724

ABSTRACT

Ergot alkaloids, naturally occurring mycotoxins of Claviceps fungi, pose health risks. This necessitates accurate analysis methods to ensure food safety. This study explored the open-source miniaturized all-in-one 2LabsToGo system to analyze ergot alkaloids in whole rye samples. It is suited for sustainable atline analysis as it combines all planar chromatography tasks, allowing low-cost quality control in milling plants. The LOD and LOQ of ergocristine were determined to be 0.4 and 1.2 ng/zone, respectively. Detectability of ergot alkaloids was proven to be below the current maximum limit of 500 µg/kg for rye milling products. The repeatability (%RSD) was 4.1 % and the coefficient of determination of the analytical response (R2) was 0.9918 for ergocristine. The mean recovery rate of ergot alkaloids in spiked whole rye grain was close to 100 %. Results of screening whole rye for ergot alkaloids were successfully verified by comparison with those obtained by conventional status quo HPTLC instrumentation.


Subject(s)
Ergot Alkaloids , Food Contamination , Secale , Secale/chemistry , Ergot Alkaloids/analysis , Food Contamination/analysis , Chromatography, High Pressure Liquid , Mycotoxins/analysis , Claviceps/chemistry , Limit of Detection
17.
Biomed Chromatogr ; 38(7): e5867, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38558037

ABSTRACT

Fourteen donepezil-like acetylcholinesterase (AChE) inhibitors from our library were analyzed using reversed-phase thin-layer chromatography to assess their lipophilicity and blood-brain barrier permeability. Compounds possessed N-benzylpiperidine and N,N-diarylpiperazine moieties connected via a short carboxamide or amine linker. Retention parameters RM 0, b, and C0 were considered as the measures of lipophilicity. Besides, logD of the investigated compounds was determined chromatographically using standard compounds with known logPow and logD values at pH 11. Experimentally obtained lipophilicity parameters correlated well with in silico generated results, and the effect of the nature of the linker between two pharmacophores and substituents on the arylpiperazine part of the molecule was observed. As a result of drug-likeness analysis, both Lipinski's rule of five and Veber's rule parameters were determined, suggesting that examined compounds could be potential candidates for further drug development. Principal component analysis was performed to obtain an insight into a grouping of compounds based on calculated structural descriptors, experimentally obtained values of lipophilicity, and AChE inhibitory activity.


Subject(s)
Cholinesterase Inhibitors , Chromatography, Reverse-Phase , Donepezil , Hydrophobic and Hydrophilic Interactions , Piperidines , Chromatography, Thin Layer/methods , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Chromatography, Reverse-Phase/methods , Donepezil/chemistry , Donepezil/pharmacology , Piperidines/chemistry , Indans/chemistry , Blood-Brain Barrier/metabolism , Principal Component Analysis
18.
Med Mycol ; 62(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38578660

ABSTRACT

Aspergillus flavus is a commonly encountered pathogen responsible for fungal rhinosinusitis (FRS) in arid regions. The species is known to produce aflatoxins, posing a significant risk to human health. This study aimed to investigate the aflatoxin profiles of A. flavus isolates causing FRS in Sudan. A total of 93 clinical and 34 environmental A. flavus isolates were studied. Aflatoxin profiles were evaluated by phenotypic (thin-layer and high-performance chromatography) and genotypic methods at various temperatures and substrates. Gene expression of aflD and aflR was also analyzed. A total of 42/93 (45%) isolates were positive for aflatoxin B1 and AFB2 by HPLC. When the incubation temperature changed from 28°C to 36°C, the number of positive isolates decreased to 41% (38/93). Genetic analysis revealed that 85% (79/93) of clinical isolates possessed all seven aflatoxin biosynthesis-associated genes, while 27% (14/51) of non-producing isolates lacked specific genes (aflD/aflR/aflS). Mutations were observed in aflS and aflR genes across both aflatoxin-producers and non-producers. Gene expression of aflD and aflR showed the highest expression between the 4th and 6th days of incubation on the Sabouraud medium and on the 9th day of incubation on the RPMI (Roswell Park Memorial Institute) medium. Aspergillus flavus clinical isolates demonstrated aflatoxigenic capabilities, influenced by incubation temperature and substrate. Dynamic aflD and aflR gene expression patterns over time enriched our understanding of aflatoxin production regulation. The overall findings underscored the health risks of Sudanese patients infected by this species, emphasizing the importance of monitoring aflatoxin exposure.


Aspergillus flavus, mainly causing fungal rhinosinusitis in Sudan, poses health risks due to aflatoxin production. This study revealed diverse levels of aflatoxin and gene expression of clinical isolates by pheno- and genotypic methods, emphasizing the need for vigilant monitoring in the region.


Subject(s)
Aflatoxins , Aspergillus flavus , Rhinosinusitis , Humans , Aspergillosis/microbiology , Aspergillus flavus/genetics , Aspergillus flavus/isolation & purification , Aspergillus flavus/classification , Fungal Proteins/genetics , Genotype , Rhinosinusitis/microbiology , Sudan , Temperature
19.
Nat Prod Res ; : 1-5, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630967

ABSTRACT

A total of 20 endophytic fungi were isolated (ZSEFL1-ZSEFL20) from Ziziphus spina-christi (L.) Desf. (Nabq) leaves. Four isolates A2/ZSEFL2, Alternaria alternata, D/ZSEFL14, Aspergillus niger, E/ZSEFL15, Epicoccum nigrum, and S/ZSEFL19, Penicillium crustosum were found to show the most promising antimicrobial activities either in plug or disc diffusion screening assays against Gram-positive, Gram-negative bacteria and pathogenic fungi. Antimicrobial activity was tested against Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213, Serratia marcescens ATCC 14764, Klebsiella pneumoniae ATCC 700603, Candida albicans ATCC 10231, and Fusarium oxysporum ATCC417. In vitro antioxidant activity assay was conducted using the ABTS [2,2'-Azino-bis (3-Ethylbenzthiazoline-6-Sulfonic Acid)] free radical scavenging method. EtOAc extracts of all isolated endophytic fungi showed antioxidant activities. This study would be one of the first reports to measure the antioxidant activity of Z. spina-christi (L.) Desf. endophytic fungi. Therefore, these isolated endophytic fungi can provide additional information for medicinal sources of natural antioxidants and antimicrobial agents.

20.
BMC Chem ; 18(1): 82, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659043

ABSTRACT

Simple, quick, cost-effective, and environmentally friendly analytical methods for quality assurance and control roles for different medicines, including Tetrcyclines, are most significantly needed. Also, different thin layer chromatography (TLC)-based methods for tetracycline identification exist, but high performance thin layer chromatography methods based on modern state- of- the art equipment are still nonexistent. Thus, in this study, analytical method development and verification were done by high performance thin layer chromatography (HPTLC) (using an automated equipment model) using glass plates coated with silica gel 60 F254 after treating with 10% Na2EDTA. Validation was carried out according to International Council for Harmonization (ICH) guidelines. A mobile phase formed from ethyl acetate, acetonitrile, methanol, and 1% aqueous ammonia in the composition of 4.4:19.6:10:6 volume to volume ratio (V/V) was used. Rf value, percentage recoveries, linearity ranges, limit of detection (LOD), and limit of quantitation (LOQ) for the developed HPTLC method were 0.28, 100.83-106.25%, 160-560 ng/band (r2 values of 0.9999), 31.9 ng/band, and 96.7 ng/band, respectively. The results of the sample assays conducted using the new method and the United States Pharmacopoeia (USP) high performance liquid chromatography (HPLC) method were 91.59% to 108.3% and 90.83% to 102.85%, respectively. The F test for the aforementioned methods was 2.01, which is smaller than the tabulated F value of 5.05 with 5 degrees of freedom at a 95% confidence range, proving that the newly developed HPTLC and HPLC pharmacopoeial methods can be used interchangeably.The newly developed HPTLC method is easy, economical, specific, accurate, and roboust, thus it can be employed in a range of settings that require quality control and assurance activities of tetracycline hydrochloride (TC-HCl) in bulk and ointment dosage forms.

SELECTION OF CITATIONS
SEARCH DETAIL