Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 316
Filter
1.
J Chromatogr A ; 1735: 465341, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39241408

ABSTRACT

In the field of nuclear toxicology, the knowledge of the interaction of actinides (An) with biomolecules is of prime concern in order to elucidate their toxicity mechanism and to further develop selective decorporating agents. In this work, we demonstrated the great potential of hydrophilic interaction liquid chromatography (HILIC) to separate polar thorium (Th) biomimetic peptide complexes, as a key starting point to tackle these challenges. Th4+ was used as plutonium (Pu4+) analogue and pS16 and pS1368 as synthetic di- and tetra-phosphorylated peptides capable of mimicking the interaction sites of these An in osteopontin (OPN), a hyperphosphorylated protein. The objective was to determine the relative affinity of pS16 and pS1368 towards Th4+, and to evaluate the pS1368 selectivity when Th4+ was in competition complexation reaction with UO22+ at physiological pH. To meet these aims, HILIC was simultaneously coupled to electrospray ionization mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS), which allowed to identify online the molecular structure of the separated complexes and quantify them, in a single step. Dedicated HILIC conditions were firstly set up to separate the new dimeric Th2(peptide)2 complexes with good separation resolution (peptide = pS16 or pS1368). By adding pS16 and pS1368 in different proportions relatively to Th4+, we found that lower or equal proportions of pS16 with respect to pS1368 were not sufficient to displace pS1368 from Th2pS13682 and pS16 proportion higher than pS1368 led to the formation of a predominant ternary complex Th2(pS16)(pS1368), demonstrating preferential Th4+ binding to the tetra-phosphorylated peptide. Finally, online identification and quantification of the formed complexes when Th4+ and UO22+ were mixed in equimolar ratio relatively to pS1368 showed that in spite of pS1368 has been specifically designed to coordinate UO22+, pS1368 is also Th4+-selective and exhibits stronger affinity for this latter than for UO22+. Hence, the results gathered through this approach highlight the impact of Th4+ coordination chemistry on its interaction with pS1368 and more widely to its affinity for biomolecules.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Peptides , Thorium , Thorium/chemistry , Chromatography, Liquid/methods , Phosphorylation , Peptides/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Osteopontin/chemistry , Osteopontin/metabolism , Uranium Compounds/chemistry , Biomimetic Materials/chemistry , Plutonium/chemistry
2.
Sci Rep ; 14(1): 20866, 2024 09 06.
Article in English | MEDLINE | ID: mdl-39242668

ABSTRACT

Thorium biosorption by a green microalga, Chlorella Vulgaris, was studied in a stirred batch reactor to investigate the effect of initial solution pH, metal ion concentration, biomass dosage, contact time, kinetics, equilibrium and thermodynamics of uptake. The green microalgae showed the highest Th adsorption capacity at 45 °C for the solution with a thorium concentration of 350 mg L-1 and initial pH of 4. The amount of uptake raised from 84 to 104 mg g-1 as the temperature increased from 15 to 45 °C for an initial metal concentration of 75 mg L-1 at pH 4. Transformation Infrared Spectroscopy (FTIR) was employed to characterize the vibrational frequency changes for peaks related to surface functional groups. Also, the scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX) were used to determine the morphological changes and elemental analysis of the biosorbent before and after the sorption process. The Langmuir isotherm was in perfect agreement with the equilibrium empirical data of thorium biosorption and the highest sorption capacity of the Chlorella Vulgaris microalgae was determined as 185.19 mg g-1. Also, the results of kinetic studies show that the thorium biosorption process follows a pseudo-second-order kinetic model. The negative value of ΔG0 indicates spontaneity and the positive values of ΔH0 indicate the endothermic nature of the adsorption process.


Subject(s)
Chlorella vulgaris , Microalgae , Thorium , Chlorella vulgaris/metabolism , Thorium/metabolism , Thorium/chemistry , Adsorption , Microalgae/metabolism , Kinetics , Hydrogen-Ion Concentration , Biomass , Thermodynamics , Spectroscopy, Fourier Transform Infrared , Temperature , Water/chemistry
3.
Molecules ; 29(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39275073

ABSTRACT

Thorium is a radionuclide used in various environmental studies such as dating, sediment movement, soil-plant transfer studies, and contamination of waste from the natural fuel cycle. The liquid-liquid extraction method using tri-n-butyl phosphate (TBP) allows for the separation of Th from the accompanying actinides. However, the separation of Th and U present in the same sample is not trivial. This separation is influenced by the starting acid (HCl or HNO3), the concentration of TBP in an organic solvent, and the concentration of the acid used for re-extracting Th, which is typically HCl. Therefore, it is necessary to study these factors to ensure that the method has sufficient chemical yield and selectivity in complex matrices. This study presents a systematic investigation of the aforementioned parameters, making the necessary variations to select an optimal method for the radiochemical separation of Th. The ideal conditions were obtained using 4 M HCl as the acid prior to extraction, a 1:4 solution of TBP in xylene, and 4 M HCl as the re-extracting agent. The accuracy and precision were studied in four intercomparison exercises conducted in quadruplicate, using the parameters Enumbers, RB(%), and RSD(%) for 232Th and 230Th. The sensitivity of the method was experimentally studied and the limit of detection (LoD) was determined according to ISO 11929:2005. Additionally, the linearity of the method showed that the experimental and theoretical activity concentrations of 232Th and 230Th had slopes of 1 with an intercept close to 0.

4.
J Environ Radioact ; 279: 107514, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39142005

ABSTRACT

The Saltstone Disposal Facility on the Savannah River Site in South Carolina disposes of Low-Level Waste in a reducing-grout waste form. Reducing grout is presently being evaluated as a subsurface disposal waste form at several other locations in the United States, as well as in Europe and Asia. The objective of this study was to collect core samples directly from the Saltstone Disposal Facility and measure desorption distribution coefficients (Kd; radionuclide concentration ratio of saltstone:liquid; (Bq/kg)/Bq/L)) and desorption apparent solubility values (ksp; radionuclide aqueous concentration (moles/L)). An important attribute of this study was that these tests were conducted with actual aged, grout waste form materials, not small-volume simulants prepared in a laboratory. The reducing grout is comprised of blast furnace slag, Class F fly ash, ordinary portland cement, and a radioactive salt waste solution generated during nuclear processing. The grout sample used in this study underwent hydrolyzation in the disposal facility for 30 months prior to measuring radionuclide leaching. Leaching experiments were conducted either in an inert (no oxygen) atmosphere to simulate conditions within the saltstone monolith prior to aging (becoming oxidized) or they were exposed to atmosphere conditions to simulate conditions of an aged saltstone. Importantly, these experiments were designed not to be diffusion limited, that is, the saltstone was ground finely and the suspensions were under constant agitation during the equilibration period. Under oxidized conditions, measured Tc Kd values were 10 mL/g, which was appreciably greater than the historical best-estimate value of 0.8 mL/g. This difference is likely the result of a fraction of the Tc remaining in the less soluble Tc(IV) form, even after extensive oxidation during the experiment. Under oxidized and reducing conditions, the measured Ba and Sr (both divalent alkaline earth metals) Kd value were more than an order of magnitude greater than historical best-estimate values of 100 mL/g. The unexpectedly high Ba and Sr Kd values were attributed to these radionuclides having sufficient time to age (form strong bonds) in the sulfur-rich saltstone sample. Apparent ksp values under reducing conditions were 10-9 mol/L Tc and 10-13 mol/L Pu, consistent with values measured with surrogate materials. Measured apparent Ba, Sr, and Th ksp values were significantly greater than historical best-estimates. The implications of the generally greater Kd values and lower ksp values in these measurements is that these cementitious waste forms have greater radionuclide retention than was previously estimated based on laboratory studies using surrogate materials. This work represents the first leaching study performed with an actual aged, reducing-grout sample and as such provides an important comparison to studies conducted with surrogate materials, and provides high pedigree data for other programs around the world evaluating reducing grouts as a wasteform for subsurface nuclear waste disposal.


Subject(s)
Radiation Monitoring , Radioactive Waste , Radioactive Waste/analysis , Radiation Monitoring/methods , South Carolina , Refuse Disposal/methods , Waste Disposal Facilities , Radioisotopes/analysis
5.
Isotopes Environ Health Stud ; 60(4): 417-427, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39192383

ABSTRACT

An important method for measuring radionuclide activity is alpha spectrometry. Ten soil samples were collected from the studied area. The activity concentrations of 238U and 234U in the collected soil samples ranged between 135 and 218 Bq kg-1 and between 117 and 183 Bq kg-1, respectively. 232Th, 230Th and 228Th activity concentrations ranged between 101 and 339, between 122 and 234 and between 106 and 385 Bq kg-1, respectively. When calculating the amount of radionuclide transport across the food chain, assessment models usually employ a transfer factor. Through root uptake, U and Th are transferred from the soil to food plants. To monitor the movement of radionuclides from the uranium series in diverse environments, it may be possible to use the ratios of uranium and thorium isotopes. Uranium mobility in soil depends on different physicochemical, organic and enzymatic factors and mechanisms. The high mobility of uranium is the main reason for the accumulation of uranium in the soil at root level and the possibility of its transfer to plants. A group of plants were selected that are grown in this area and the population relies on them mainly to meet their food needs. The concentration and transfer factor values of uranium isotopes were the highest in roots as compared with leaves and stems. Uranium in plants accumulates in roots and is then transferred to leaves. The mobility of uranium in plant tissues is constrained because it frequently adsorbs cell wall components. As a result, concentrations are frequently higher in tissues located in lower parts of the plant, with root surfaces having the highest concentrations.


Subject(s)
Background Radiation , Radiation Monitoring , Soil Pollutants, Radioactive , Thorium , Uranium , Uranium/analysis , Thorium/analysis , Soil Pollutants, Radioactive/analysis , Radiation Monitoring/methods , Adsorption , Plants/chemistry , Plants/metabolism , Soil/chemistry , Plant Roots/chemistry , Plant Roots/metabolism
6.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 8): 820-825, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39108785

ABSTRACT

Reaction of thorium(IV) nitrate with 2-[(4-phenyl-1H-1,2,3-triazol-1-yl)meth-yl]pyridine (L) yielded (LH)2[Th(NO3)6] or (C14H13N4)2[Th(NO3)6] (1), instead of the expected mixed-ligand complex [Th(NO3)4 L 2], which was detected in the mass spectrum of 1. In the structure, the [Th(NO3)6]2- anions display an icosa-hedral coordination geometry and are connected by LH+ cations through C-H⋯O hydrogen bonds. The LH+ cations inter-act via N-H⋯N hydrogen bonds. Hirshfeld surface analysis indicates that the most important inter-actions are O⋯H/H⋯O hydrogen-bonding inter-actions, which represent a 55.2% contribution.

7.
Angew Chem Int Ed Engl ; : e202410453, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037423

ABSTRACT

Thorium, a predominant actinide in the Earth's crust, presents significant environmental and health risks due to its radioactive nature. These risks are particularly pronounced during the mining and processing of monazite for rare earth elements (REEs), which contain substantial thorium concentrations. Current instrumental analysis methods for thorium, offer high accuracy but require laborious sample preparation and expensive instruments, making them unsuitable for on-site analysis. Herein, we present a class of color-tunable luminescent lanthanide-based metal-organic frameworks (Ln-MOFs) as fluorochromic sensors for Th4+ cations. Utilizing a heterobimetallic Eu3+/Tb3+ doping strategy, the luminescence colors of EuxTb1-x-BDC-OH can be finely tuned from red, to orange, and to green. More intriguingly, the higher Lewis acidity of Th4+ facilitates the transformation of EuxTb1-x-BDC-OH into a UiO-type Th-MOF via a dissolution-recrystallization mechanism. This process results in a gradual reduction of characteristic Ln3+ emissions and the emergence of blue color ligand-based fluorescence, thereby leading to selective fluorochromic responses with increasing Th4+ concentrations and enabling visible detection of Th4+ cations. Additionally, a custom-built portable optoelectronic device was fabricated, which directly converts luminescence colors into red-green-blue (RGB) values. This device enables easy quantification of Th4+ concentrations without the need for complex instrumentation.

8.
Sci Rep ; 14(1): 15131, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956278

ABSTRACT

Due to the limited reserves of uranium, the abundance of thorium compared to it and other advantages, the development of the thorium fuel cycle is of interest in different countries. The optimization of thorium extraction from a feed solution produced by Saghand ore with bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272) on a laboratory scale was evaluated by response surface method. The operating variables include Cyanex 272 concentration of 0.001 to 0.2 mol/L, pH of 0 to 2, equilibrium time of 5 to 60 min and aqueous to organic phase ratio of 0.5 to 2.5 were conducted. The value of R2 = 0.9695 and an error of less than 4% indicate the validity of the model. Therefore, the model is in good agreement with the experimental results. It can be said that there are significant interactions between operational parameters, which vindicate different feedbacks of the system in different operational conditions. The results showed that the 4 mol/L sulfuric acid was a suitable agent for recovering thorium ions from the loaded organic phase. In optimum conditions, the thorium purity percentage and thorium stripping efficiency were obtained 98.99 and 94.12%, respectively.

9.
J Hazard Mater ; 477: 135234, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39042990

ABSTRACT

Thorium-232 (Th-232) is a promising fuel for advanced nuclear reactors. However, in case of internal human exposure to Th, there is currently no effective modality for its removal from liver and skeleton or for mitigating its effect. The FDA-approved agent, diethylenetriaminepentaacetate (DTPA), can remove Th and other actinides from blood circulation only. For the first time, a rationally-selected polyherbal hepatoprotective i.e. Liv52® (L52S), was evaluated in-combination with DTPA for its Th decorporation ability in Swiss mice. Inductively-coupled plasma mass spectroscopic analysis showed that oral administration of L52S in conjunction with DTPA significantly decreased Th burden from liver (20 %) and skeleton (33 %) as well as enhanced Th excretion (∼2.5 folds) through urine in comparison to DTPA or L52S alone. The combinatorial therapy was found to be complementary in-action, ameliorating Th-induced tissue damage in liver, spleen, and bone more effectively than monotherapy. Furthermore, markers of liver function (alanine transaminase) and liver inflammation and fibrosis (NF-κB & keratin) further validated the beneficial effect of L52S. The human consumption of L52S for various liver disorders further supports its clinical application for Th decorporation and mitigation of its health effects.


Subject(s)
Liver , Pentetic Acid , Thorium , Animals , Thorium/toxicity , Pentetic Acid/chemistry , Mice , Liver/drug effects , Liver/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Male , Chelating Agents/pharmacology , Chelating Agents/chemistry , Spleen/drug effects , Spleen/metabolism
10.
Sci Rep ; 14(1): 14888, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937613

ABSTRACT

This article investigated the kinetic studies of thorium adsorption from an aqueous solution with graphene oxide functionalized with aminomethyl phosphonic acid (AMPA) as an adsorbent. First, the AMPA-GO adsorbent was characterized using TEM, XRD, and FTIR methods. Experiments were performed in two batch and continuous modes. In batch mode, adsorption kinetics were studied in different pH (1-4), temperature (298-328 K), initial concentration (50-500 mg L-1), and dosages (0.1-2 g L-1). The results showed that thorium adsorption kinetic follows pseudo-first-order kinetic model and that the adsorption reaction is endothermic. The maximum experimental adsorption capacity of thorium ions was observed 138.84 mg g-1 at a pH of 3, adsorbent dosage of 0.5 g L-1, and a temperature of 328 K. The results showed that AMPA-GO adsorbent can be used seven times with an acceptable change in adsorption capacity. In continuous conditions, the effect of feed flow rate (2-8 mL min-1), initial concentration (50-500 mg L-1), and column bed height (2-8 cm) was investigated. The continuous data was analyzed using the Thomas, Yoon-Nelson, and Bohart-Adams models. The experimental data of the column were well matched with the Thomas, and Yoon-Nelson models. The research results showed that the use of functionalized graphene oxide adsorbents has a great ability to remove thorium from aqueous solutions.

11.
J Environ Radioact ; 278: 107480, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38865831

ABSTRACT

Fertilizers play a key role in increasing crop yield per unit land answering the growing demand for food production. However, excessive or improper use of fertilizers can lead to several environmental issues including soil contamination. One of the known contaminants attributed to fertilizers are radionuclides. The goal of this study was to determine the concentration of thorium isotopes in several types of commonly used fertilizers produced in Poland. The methodology included the use of an alternative tracer (namely 228Th) to evaluate chemical recovery. The correctness of the proposed method was confirmed by analyzing certified reference materials. The obtained results showed that the activity concentration of 232Th was ranged from <0.34 Bq kg-1 for nitrogenous fertilizer up to 97 ± 22 Bq kg-1 for pure phosphate fertilizer.


Subject(s)
Fertilizers , Radiation Monitoring , Soil Pollutants, Radioactive , Thorium , Fertilizers/analysis , Thorium/analysis , Radiation Monitoring/methods , Poland , Soil Pollutants, Radioactive/analysis , Spectrum Analysis/methods
12.
Environ Sci Technol ; 58(28): 12330-12342, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38772857

ABSTRACT

Thorium-232 (Th), the most abundant naturally occurring nuclear fuel, has been identified as a sustainable source of energy. In view of its large-scale utilization and human evidence of lung disorders and carcinogenicity, it is imperative to understand the effect of Th exposure on lung cells. The present study investigated the effect of Th-dioxide (1-100 µg/mL, 24-48 h) on expression of surfactant proteins (SPs) (SP-A, SP-B, SP-C, and SP-D, which are essential to maintain lung's surface tension and host-defense) in human lung cells (WI26 and A549), representative of alveolar cell type-I and type-II, respectively. Results demonstrated the inhibitory effect of Th on transcriptional expression of SP-A, SP-B, and SP-C. However, Th promoted the mRNA expression of SP-D in A549 and reduced its expression in WI26. To a significant extent, the effect of Th on SPs was found to be in accordance with their protein levels. Moreover, Th exposure altered the extracellular release of SP-D/A from A549, which remained unaltered in WI26. Our results suggested the differential role of oxidative stress and ATM and HSP90 signaling in Th-induced alterations of SPs. These effects of Th were found to be consistent in lung tissues of mice exposed to Th aerosols, suggesting a potential role of SPs in Th-associated lung disorders.


Subject(s)
Alveolar Epithelial Cells , Thorium , Humans , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Mice , Animals , A549 Cells , Pulmonary Surfactant-Associated Proteins/metabolism
13.
Molecules ; 29(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542859

ABSTRACT

The interaction between nonmetal and metal atoms has attracted great interest in the development of organometallic compounds and their promising applications. In this study, we explored the interaction between boron and thorium atoms, based on the stable B40Th coordination compound, by employing density functional theory calculations. We elucidated the stability and geometries of the B40Th coordination compound and revealed the electron transfer from the metal atom Th to B40, which is evidenced by the natural bond orbital calculations. This electron transfer is attributed to the electron-withdrawing character of the boron atom and results in clear electrostatic interaction. Additionally, bond critical analysis and bond order calculations show obvious covalent characters between the metal and nonmetal atoms. The IR spectrum was simulated to give detailed information to identify this targeted compound in future experiments. This study is expected to enhance the understanding of metal-nonmetal interactions and provides useful information for constructing new organometallic compounds based on actinium metal atoms.

14.
J Environ Radioact ; 274: 107411, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471302

ABSTRACT

Consumption of local and imported bottled water in Canada has greatly increased during the past three decades. While the presence of natural radioactivity is often overlooked when dealing with the water quality of these bottled products, it could contribute substantially to the uptake of radionuclides especially when sourced from regions with higher radioactivity levels compared to where it is consumed. In this study, the activity of several naturally occurring radionuclides (i.e., 210Po, 226,228Ra, 230,232Th, 234,235,238U) were measured in bottled water available in Québec, Canada after sample pretreatment and analysis by either radiometric or mass spectrometry approaches. 230,232Th and 228Ra concentrations were below minimum detectable activity levels in all samples tested. Analytical results for 234U, 235U, 238U, and 226Ra showed concentrations that ranged from 0.38 to 115 mBq/L, (2.2-313) x 10-2 mBq/L, 0.48-58.4 mBq/L, and 1.1-550 mBq/L, respectively. 210Po was detected in only 5 samples and its activity ranged from 2 to 26 mBq/L. To determine variability in activity within brands, the same brands of bottled water were purchased during two consecutive years and analyzed. The possible radiological impact of the consumption of these types of water was assessed based on different drinking habit scenarios. Some of the imported water brands showed higher activity concentrations than local sources or tap water, suggesting that individuals drinking predominantly imported bottled water would receive a higher radiation dose than those who drink mainly local water.


Subject(s)
Drinking Water , Radiation Monitoring , Water Pollutants, Radioactive , Humans , Drinking Water/analysis , Quebec , Water Pollutants, Radioactive/analysis , Radiation Monitoring/methods , Radioisotopes/analysis , Canada
15.
Environ Monit Assess ; 196(3): 330, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427152

ABSTRACT

The Kanyakumari coast is known to be a high background natural radiation area due to the placer deposits of heavy minerals such as ilmenite, monazite, and rutile. The Kanyakumari river sediments that could be the source of the elevated amounts of natural radionuclides in the coastal sands have been studied in this paper. The activity concentrations of primordial radionuclides 226Ra, 232Th, and 40K were determined using high-purity germanium (HPGe) gamma-ray spectrometry. The mean activity concentrations of 226Ra, 232Th, and 40K were found to be 75 Bq kg-1, 565 Bq kg-1, and 360 Bq kg-1, respectively. The mean absorbed dose rate was 395 nGy h-1. Radiological hazard parameters were studied and compared with the world average values. The contribution of 232Th to the total dose rate was found to be higher than that of the two other radionuclides. The high mean ratio of 232Th/226Ra suggested an enrichment of 232Th and the occurrence of 226Ra leaching due to an oxidizing environment. Principal component analysis (PCA) was carried out for the radionuclides in order to discriminate the source of the sediments. This study provides new insights into the distribution of natural radionuclides in sediments of rivers and streams.


Subject(s)
Radiation Monitoring , Soil Pollutants, Radioactive , Rivers , Background Radiation , Environmental Monitoring , Thorium/analysis , Radioisotopes/analysis , Soil Pollutants, Radioactive/analysis , India , Risk Assessment , Radiation Monitoring/methods , Potassium Radioisotopes/analysis
16.
Toxics ; 12(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38393198

ABSTRACT

The recovery and recycling of metals that generate toxic ions in the environment is of particular importance, especially when these are tungsten and, in particular, thorium. The radioactive element thorium has unexpectedly accessible domestic applications (filaments of light bulbs and electronic tubes, welding electrodes, and working alloys containing aluminum and magnesium), which lead to its appearance in electrical and electronic waste from municipal waste management platforms. The current paper proposes the simultaneous recovery of waste containing tungsten and thorium from welding electrodes. Simultaneous recovery is achieved by applying a hybrid membrane electrolysis technology coupled with nanofiltration. An electrolysis cell with sulphonated polyether-ether-ketone membranes (sPEEK) and a nanofiltration module with chitosan-polypropylene membranes (C-PHF-M) are used to carry out the hybrid process. The analysis of welding electrodes led to a composition of W (tungsten) 89.4%; Th 7.1%; O2 2.5%; and Al 1.1%. Thus, the parameters of the electrolysis process were chosen according to the speciation of the three metals suggested by the superimposed Pourbaix diagrams. At a constant potential of 20.0 V and an electrolysis current of 1.0 A, the pH is varied and the possible composition of the solution in the anodic workspace is analyzed. Favorable conditions for both electrolysis and nanofiltration were obtained at pH from 6 to 9, when the soluble tungstate ion, the aluminum hydroxide, and solid thorium dioxide were formed. Through the first nanofiltration, the tungstate ion is obtained in the permeate, and thorium dioxide and aluminum hydroxide in the concentrate. By adding a pH 13 solution over the two precipitates, the aluminum is solubilized as sodium aluminate, which will be found after the second nanofiltration in the permeate, with the thorium dioxide remaining integrally (within an error of ±0.1 ppm) on the C-PHF-M membrane.

17.
Talanta ; 272: 125783, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38364569

ABSTRACT

Highly stable nitrogen-doped Graphene Quantum Dots (N-GQD) functionalized with Pamoic Acid (PA@N-GQD) are utilized for nanomolar detection of radioactive elements, Uranium (VI) and Thorium (IV), in pH ± 5.0. The absorption, fluorescence, crystalline nature, elemental composition, functional groups, and morphological state of as-prepared PA@N-GQD are evaluated by UV-visible absorption, photoluminescence, XRD, XPS, FTIR, HRTEM, FESEM, and AFM characterizations. The aqueous solution of PA@N-GQD is characterized by its spherical morphology, averaging 6.5 nm in size. PA@N-GQD exhibits a gradual decrease in fluorescence intensity at 438 nm (λex 344 nm) upon the addition of Uranium (VI) and Thorium (IV) ions. The selectivity, sensitivity, competitivity, pH, time effect, and reversibility studies of PA@N-GQDs have been carried out using the photoluminescence technique. The attained fluorescence Limit of Detection (LoD) of PA@N-GQD for Uranium (VI) and Thorium (IV) ions are 2.009 × 10-9 and 1.351 × 10-9 M, respectively. From the fluorescence titration studies of U(VI) and Th(IV), the binding constant, Stern-Volmer constant, Modified Stern-Volmer constant, association constant, and dissociation constants have been calculated separately. These aforementioned results indicate that the PA@N-GQD has a higher binding affinity towards Th(IV) than U(VI) in aqueous medium. This current research represents the development of advanced materials for environmental and analytical applications, specifically focusing on the precise detection and quantification of radioactive elements.

18.
Sci Total Environ ; 914: 169984, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38218470

ABSTRACT

The Red Sea has been recognized as a coral reef refugia, but it is vulnerable to warming and pollution. Here we investigated the spatial and temporal trends of 15 element concentrations in 9 coral reef sediment cores (aged from the 1460s to the 1980s AD) to study the influence of global warming and industrialization on the Eastern Red Sea coral reefs. We found Na, Ca, Cr, Fe, Co, Ni, and Sr concentrations were higher in the northern Red Sea (i.e., Yanbu), whereas Mg, P, S, Mn, and Cd concentrations were higher in the southern Red Sea (i.e., Thuwal & Al Lith) reef sediments. In the central (i.e., Thuwal) to southern (i.e., Al Lith) Red Sea, the study revealed diverse temporal trends in element concentrations. However, both reef sedimentation rates (-36.4 % and -80.5 %, respectively) and elemental accumulation rates (-49.4 % for Cd to -12.2 % for Zn in Thuwal, and -86.2 % for Co to -61.4 % for Cu in Al Lith) exhibited a declining pattern over time, possibly attributed to warming-induced thermal bleaching. In the central to northern Red Sea (i.e., Yanbu), the severity of thermal bleaching is low, while the reef sedimentation rates (187 %), element concentrations (6.7 % for S to 764 % for Co; except Na, Mg, Ca, Sr, and Cd), and all elemental accumulation rates (190 % for Mg to 2697 % for Co) exponentially increased from the 1970s, probably due the rapid industrialization in Yanbu. Our study also observed increased trace metal concentrations (e.g., Cu, Zn, and Ni) in the Thuwal and Al Lith coral reefs with severe bleaching histories, consistent with previous reports that trace metals might result in decreased resistance of corals to thermal stress under warming scenarios. Our study points to the urgent need to reduce the local discharge of trace metal pollutants to protect this biodiversity hotspot.


Subject(s)
Anthozoa , Coral Reefs , Animals , Global Warming , Indian Ocean , Cadmium , Industrial Development
19.
Eur J Nucl Med Mol Imaging ; 51(3): 669-680, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37882848

ABSTRACT

PURPOSE: PSMA (prostate-specific membrane antigen) is highly expressed on prostate cancer (PrCa) cells and extensively used as a homing target for PrCa treatment. Most prominently, PSMA-targeting conjugate PSMA-617, carrying a DOTA chelator and labeled with therapeutic radionuclides like beta-emitting lutetium-177 or alpha-emitting actinium-225, has shown clinical activity in PrCa patients. We sought to develop PSMA-targeting small molecule (SMOL) conjugates that show high uptake in PSMA-expressing tumors and fast clearance, and can easily be labeled with the alpha emitter thorium-227 (half-life 18.7 days). METHODS: A novel linker motif with improved competition against 3H-PSMA-617 on PSMA-expressing LNCaP cells was identified. A 2,3-hydroxypyridinone chelator modified with carboxyl groups (carboxy-HOPO) with increased hydrophilicity and robust labeling with thorium-227 was developed and allowed the synthesis of mono-, di-, tri-, and tetrameric conjugates. The resulting monomeric and multimeric PSMA SMOL-TTCs (targeted thorium conjugate) were evaluated for cellular binding, internalization, and antiproliferative activity. The in vivo antitumor efficacy of the PSMA SMOL-TTCs was determined in ST1273 and KUCaP-1 PrCa models in mice, and their biodistribution was assessed in cynomolgus monkeys, minipigs, and mice. RESULTS: The monomeric and multimeric PSMA SMOL conjugates were readily labeled with thorium-227 at room temperature and possessed high stability and good binding, internalization, and antiproliferative activity in vitro. In vivo, the monomeric, dimeric, and trimeric PSMA SMOL-TTCs showed fast clearance, potent antitumor efficacy, and high uptake and retention in prostate tumors in mice. No major uptake or retention in other organs was observed beyond kidneys. Low uptake of free thorium-227 into bone confirmed high complex stability in vivo. Salivary gland uptake remained inconclusive as mini pigs were devalidated as a relevant model and imaging controls failed in cynomolgus monkeys. CONCLUSION: Monomeric and multimeric PSMA SMOL-TTCs show high tumor uptake and fast clearance in preclinical models and warrant further therapeutic exploration.


Subject(s)
Prostatic Neoplasms , Thorium , Male , Humans , Animals , Mice , Swine , Tissue Distribution , Macaca fascicularis/metabolism , Swine, Miniature/metabolism , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Radiopharmaceuticals , Chelating Agents/chemistry , Cell Line, Tumor
20.
Article in English | MEDLINE | ID: mdl-38039334

ABSTRACT

Commercial animal feed in Texas was characterized by determining natural gamma emitters including 40K,137Cs, and Uranium (235U and 238U) and Thorium (232Th) series to obtain basic radioactivity values. The measured activity concentration of natural radionuclides in animal feed was low enough for safe consumption by animal and largely depended on the type of animal feed.40K was the predominant radionuclide showing the highest activity concentration in animal feed. The radioactivity concentration of 214 Bi and 214Pb in 238U decay series was 1.39 and 1.33 Bq/kg in corn, respectively, lower than in other animal feed types. On the other hand, the vitamin/mineral mix samples showed higher concentrations of 214 Bi (9.04 Bq/kg) and 214Pb (10.19 Bq/kg). Beef cattle feed, poultry feed, and vitamin/mineral mix exhibited higher activity concentration of 228Ac and 212Pb in 232Th decay series. Gamma radionuclides appeared to be highly and significantly correlated within each decay series. 235U was present at low levels in all feed samples while the anthropogenic radionuclide of 137Cs was not detected irrespective of the type of animal feed. This study highlights an importance of establishing a current baseline of radioactivity concentration in animal feed in Texas in which the largest animal feed consumption in the US exists.


Subject(s)
Radioactivity , Soil Pollutants, Radioactive , Animals , Cattle , Texas , Lead , Cesium Radioisotopes/analysis , Animal Feed/analysis , Minerals , Vitamins , Soil Pollutants, Radioactive/analysis
SELECTION OF CITATIONS
SEARCH DETAIL