Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36770386

ABSTRACT

Although several studies assess the biological effects of micro and titanium dioxide nanoparticles (TiO2 NPs), the literature shows controversial results regarding their effect on bone cell behavior. Studies on the effects of nanoparticles on mammalian cells on two-dimensional (2D) cell cultures display several disadvantages, such as changes in cell morphology, function, and metabolism and fewer cell-cell contacts. This highlights the need to explore the effects of TiO2 NPs in more complex 3D environments, to better mimic the bone microenvironment. This study aims to compare the differentiation and mineralized matrix production of human osteoblasts SAOS-2 in a monolayer or 3D models after exposure to different concentrations of TiO2 NPs. Nanoparticles were characterized, and their internalization and effects on the SAOS-2 monolayer and 3D spheroid cells were evaluated with morphological analysis. The mineralization of human osteoblasts upon exposure to TiO2 NPs was evaluated by alizarin red staining, demonstrating a dose-dependent increase in mineralized matrix in human primary osteoblasts and SAOS-2 both in the monolayer and 3D models. Furthermore, our results reveal that, after high exposure to TiO2 NPs, the dose-dependent increase in the bone mineralized matrix in the 3D cells model is higher than in the 2D culture, showing a promising model to test the effect on bone osteointegration.

2.
J Mech Behav Biomed Mater ; 140: 105687, 2023 04.
Article in English | MEDLINE | ID: mdl-36780815

ABSTRACT

This study evaluated the influence of the TiO2 nanoparticles (NPs) on the mechanical and chemical performance of Sn and Sn-Ag alloys. The XRD (X-ray diffraction) and HR-TEM (high resolution-transmission electron microscopy) methods were used to characterize the NPs synthesized by the sol-gel microwave process. The chemical composition of the alloys was Sn, Sn+3TiO2 NPs, Sn-5Ag+1.5TiO2 NPs, Sn-10Ag, and Sn-10Ag+3TiO2 NPs, obtained from an experimental factorial design (EFD). A statistical model was used to determine the mechanical and chemical properties, showing the Vickers hardness response surface, tensile strength, wear, and corrosion resistance. The wear and corrosion tests for the various alloy compositions were performed using human artificial saliva solution. The results indicated that the Sn-10Ag+3TiO2 NPs exhibited the highest mechanical performance due to their increased hardness (380 HV), tensile strength (370 N), and wear resistance (0.34 × 10-3 mm3 Nm-1); in all the cases, the inclusion of TiO2 NPs enhanced the corrosion resistance of the alloys. According to the American Dental Association (ADA), Sn-10Ag+3TiO2 NPs alloy could be classified as a possible type IV restorative material.


Subject(s)
Alloys , Titanium , Humans , Alloys/chemistry , Corrosion , Titanium/chemistry , Hardness , X-Ray Diffraction , Materials Testing
3.
Drug Chem Toxicol ; 46(6): 1130-1137, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36254786

ABSTRACT

Titatinum dioxide nanoparticles (TiO2-NPs) are frequently used in several areas. Titanium alloys are employed in orthopedic and odontological surgery (such as hip, knee, and teeth implants). To evaluate the potential acute toxic effects of titanium pieces implantations and in other sources that allow the systemic delivery of titanium, parenteral routes of TiO2-NPs administration should be taken into account. The present study evaluated the impact of subcutaneous administration of TiO2-NPs on renal function and structure in rats. Animals were exposed to a dose of 50 mg/kg b.w., s.c. and sacrificed after 48 h. Titanium levels were detected in urine (135 ± 6 ηg/mL) and in renal tissue (502 ± 40 ηg/g) employing inductively coupled plasma mass spectrometry. An increase in alkaline phosphatase activity, total protein levels, and glucose concentrations was observed in urine from treated rats suggesting injury in proximal tubule cells. In parallel, histopathological studies showed tubular dilatation and cellular desquamation in these nephron segments. In summary, this study demonstrates that subcutaneous administration of TiO2-NPs causes acute nephrotoxicity evidenced by functional and histological alterations in proximal tubule cells. This fact deserves to be mainly considered when humans are exposed directly or indirectly to TiO2-NPs sources that cause the systemic delivery of titanium.


Subject(s)
Metal Nanoparticles , Nanoparticles , Humans , Rats , Animals , Titanium/toxicity , Titanium/chemistry , Nanoparticles/toxicity , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry
4.
Environ Res ; 212(Pt B): 113237, 2022 09.
Article in English | MEDLINE | ID: mdl-35405134

ABSTRACT

Antimicrobial resistance (AMR) causes global consequences through increased mortality and economic loss. Antimicrobial drugs including nanomaterials are an emerging environmental impact. Hence, this work aimed to synthesize and characterize the titanium dioxide nanoparticles (TiO2 NPs) using the aqueous extract of endophytic fungus Paraconiothyrium brasiliense (Pb) for enhancing the antibacterial efficiency of existing standard antibiotics at minimum concentration. The FTIR and XRD results confirmed the capping of functional molecules and the crystalline nature of Pb-TiO2 NPs. The spherical-shaped TiO2 NPs with the size of 57.39 ± 13.65 nm were found in TEM analysis. The average hydrodynamic size (68.43 ± 1.49 d. nm) and the zeta potential (-19.6 ± 1.49 mV) was confirmed the stability of Pb-TiO2 NPs. Antibacterial studies revealed that bare Pb-TiO2 NPs (20 µg/mL) did not exhibit significant antibacterial activity while combination of TCH + Pb-TiO2 NPs considerably increased the inhibition of E. coli biofilm evidenced by CLSM and SEM analysis. Further, Pb-TiO2 NPs (100 µg/mL) were found to be moderately toxic to cell line (NIH3T3), red blood cells (RBC), and egg embryos. Hence, this study concluded that <50 µg/mL of TiO2 NPs can be mixed with antibiotics for enhanced antibacterial application thereby minimizing the AMR and the environmental toxicity.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Nanoparticles , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Ascomycota , Biofilms , Escherichia coli , Lead , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Mice , NIH 3T3 Cells , Nanoparticles/chemistry , Nanoparticles/toxicity , Titanium/chemistry , Titanium/toxicity
5.
Environ Toxicol Pharmacol ; 86: 103654, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33823299

ABSTRACT

The increasing use of metal oxide nanoparticles (MONPs) as TiO2 NPs or ZnO NPs has led to environmental release and human exposure. The respiratory system, effects on lamellar bodies and surfactant protein A (SP-A) of pneumocytes, can be importantly affected. Exposure of human alveolar epithelial cells (A549) induced differential responses; a higher persistence of TiO2 in cell surface and uptake (measured by Atomic Force Microscopy) and sustained inflammatory response (by means of TNF-α, IL-10, and IL-6 release) and ROS generation were observed, whereas ZnO showed a modest response and low numbers in cell surface. A reduction in SP-A levels at 24 h of exposure to TiO2 NPs (concentration-dependent) or ZnO NPs (the higher concentration) was also observed, reversed by blocking the inflammatory response (by the inhibition of IL-6). Loss of SP-A represents a relevant target of MONPs-induced inflammatory response that could contribute to cellular damage and loss of lung function.


Subject(s)
Alveolar Epithelial Cells/drug effects , Nanoparticles/toxicity , Pulmonary Surfactant-Associated Protein A/antagonists & inhibitors , Titanium/toxicity , Zinc Oxide/toxicity , A549 Cells , Alveolar Epithelial Cells/metabolism , Cell Survival/drug effects , Cytokines/metabolism , Humans , Inflammation/chemically induced , Inflammation/metabolism , Lung , Pulmonary Surfactant-Associated Protein A/metabolism , Reactive Oxygen Species/metabolism
6.
Biodegradation ; 32(3): 313-326, 2021 06.
Article in English | MEDLINE | ID: mdl-33811584

ABSTRACT

The rapid growth of the use of nanomaterials in different modern industrial branches makes the study of the impact of nanoparticles on the human health and environment an urgent matter. For instance, it has been reported that titanium dioxide nanoparticles (TiO2 NPs) can be found in wastewater treatment plants. Previous studies have found contrasting effects of these nanoparticles over the activated sludge process, including negative effects on the oxygen uptake. The non-utilization of oxygen reflects that aerobic bacteria were inhibited or decayed. The aim of this work was to study how TiO2 NPs affect the bacterial diversity and metabolic processes on an activated sludge. First, respirometry assays of 8 h were carried out at different concentrations of TiO2 NPs (0.5-2.0 mg/mL) to measure the oxygen uptake by the activated sludge. The bacterial diversity of these assays was determined by sequencing the amplified V3-V4 region of the 16S rRNA gene using Illumina MiSeq. According to the respirometry assays, the aerobic processes were inhibited in a range from 18.5 ± 4.8% to 37.5 ± 2.0% for concentrations of 0.5-2.0 mg/mL TiO2 NPs. The oxygen uptake rate was affected mainly after 4.5 h for concentrations higher than 1.0 mg/mL of these nanoparticles. Results indicated that, in the presence of TiO2 NPs, the bacterial community of activated sludge was altered mainly in the genera related to nitrogen removal (nitrogen assimilation, nitrification and denitrification). The metabolic pathways prediction suggested that genes related to biofilm formation were more sensitive than genes directly related to nitrification-denitrification and N-assimilation processes. These results indicated that TiO2 NPs might modify the bacteria diversity in the activated sludge according to their concentration and time of exposition, which in turn impact in the performance of the wastewater treatment processes.


Subject(s)
Nanoparticles , Sewage , Bacteria/genetics , Biodegradation, Environmental , Humans , RNA, Ribosomal, 16S/genetics , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL