Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.501
Filter
2.
Int J Biol Macromol ; : 133597, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960232

ABSTRACT

BACKGROUND: Bone tissue engineering endows alternates to support bone defects/injuries that are circumscribed to undergo orchestrated process of remodeling on its own. In this regard, hydrogels have emerged as a promising platform that can confront irregular defects and encourage in situ bone repair. METHODS: In this study, we aimed to develop a new approach for bone tissue regeneration by developing an alginate based composite hydrogel incorporating selenium doped biphasic calcium phosphate nanoparticles, and retinoic acid. The fabricated hydrogel was physiochemically evaluated for morphological, bonding, and mechanical behavior. Additionally, the biological response of the fabricated hydrogel was evaluated on MC3T3-E1 pre-osteoblast cells. RESULTS: The developed composite hydrogel confers excellent biocompatibility, and osteoconductivity owing to the presence of alginate, and biphasic calcium phosphate, while selenium presents pro osteogenic, antioxidative, and immunomodulatory properties. The hydrogels exhibited highly porous microstructure, superior mechanical attributes, with enhanced calcification, and biomineralization abilities in vitro. SIGNIFICANCE: By combining the osteoconductive properties of biphasic calcium phosphate with multifaceted benefits of selenium and retinoic acid, the fabricated composite hydrogel offers a potential transformation in the landscape of bone defect treatment. This strategy could direct a versatile and effective approach to tackle complex bone injuries/defects and present potential for clinical translation.

3.
J Biomed Mater Res A ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007419

ABSTRACT

As the cornerstone of tissue engineering and regeneration medicine research, developing a cost-effective and bionic extracellular matrix (ECM) that can precisely modulate cellular behavior and form functional tissue remains challenging. An artificial ECM combining polysaccharides and fibrillar proteins to mimic the structure and composition of natural ECM provides a promising solution for cardiac tissue regeneration. In this study, we developed a bionic hydrogel scaffold by combining a quaternized ß-chitin derivative (QC) and fibrin-matrigel (FM) in different ratios to mimic a natural ECM. We evaluated the stiffness of those composite hydrogels with different mixing ratios and their effects on the growth of human umbilical vein endothelial cells (HUVECs). The optimal hydrogels, QCFM1 hydrogels were further applied to load HUVECs into nude mice for in vivo angiogenesis. Besides, we encapsulated human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) into QCFM hydrogels and employed 3D bioprinting to achieve batch fabrication of human-engineered heart tissue (hEHT). Finally, the myocardial structure and electrophysiological function of hEHT were evaluated by immunofluorescence and optical mapping. Designed artificial ECM has a tunable modulus (220-1380 Pa), which determines the different cellular behavior of HUVECs when encapsulated in these. QCFM1 composite hydrogels with optimal stiffness (800 Pa) and porous architecture were finally identified, which could adapt for in vitro cell spreading and in vivo angiogenesis of HUVECs. Moreover, QCFM1 hydrogels were applied in 3D bioprinting successfully to achieve batch fabrication of both ring-shaped and patch-shaped hEHT. These QCFM1 hydrogels-based hEHTs possess organized sarcomeres and advanced function characteristics comparable to reported hEHTs. The chitin-derived hydrogels are first used for cardiac tissue engineering and achieve the batch fabrication of functionalized artificial myocardium. Specifically, these novel QCFM1 hydrogels provided a reliable and economical choice serving as ideal ECM for application in tissue engineering and regeneration medicine.

4.
ACS Appl Bio Mater ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007509

ABSTRACT

In view of their exceptional approach, excellent inherent biocompatibility and biodegradability properties, and interaction with the local extracellular matrix, protein-based polymers have received attention in bone tissue engineering, which is a multidisciplinary field that repairs and regenerates fractured bones. Bone is a multihierarchical complex structure, and it performs several essential biofunctions, including maintaining mineral balance and structural support and protecting soft organs. Protein-based polymers have gained interest in developing ideal scaffolds as emerging biomaterials for bone fractured healing and regeneration, and it is challenging to design ideal bone substitutes as perfect biomaterials. Several protein-based polymers, including collagen, keratin, gelatin, serum albumin, etc., are potential materials due to their inherent cytocompatibility, controlled biodegradability, high biofunctionalization, and tunable mechanical characteristics. While numerous studies have indicated the encouraging possibilities of proteins in BTE, there are still major challenges concerning their biodegradability, stability in physiological conditions, and continuous release of growth factors and bioactive molecules. Robust scaffolds derived from proteins can be used to replace broken or diseased bone with a biocompatible substitute; proteins, being biopolymers, provide excellent scaffolds for bone tissue engineering. Herein, recent developments in protein polymers for cutting-edge bone tissue engineering are addressed in this review within 3-5 years, with a focus on the significant challenges and future perspectives. The first section discusses the structural fundamentals of bone anatomy and ideal scaffolds, and the second section describes the fabrication techniques of scaffolds. The third section highlights the importance of proteins and their applications in BTE. Hence, the recent development of protein polymers for state-of-the-art bone tissue engineering has been discussed, highlighting the significant challenges and future perspectives.

5.
Methods Mol Biol ; 2805: 51-87, 2024.
Article in English | MEDLINE | ID: mdl-39008174

ABSTRACT

We describe a scalable method for the robust generation of 3D pancreatic islet-like organoids from human pluripotent stem cells using suspension bioreactors. Our protocol involves a 6-stage, 20-day directed differentiation process, resulting in the production of 104-105 organoids. These organoids comprise α- and ß-like cells that exhibit glucose-responsive insulin and glucagon secretion. We detail methods for culturing, passaging, and cryopreserving stem cells as suspended clusters and for differentiating them through specific growth media and exogenous factors added in a stepwise manner. Additionally, we address quality control measures, troubleshooting strategies, and functional assays for research applications.


Subject(s)
Bioreactors , Cell Culture Techniques , Cell Differentiation , Islets of Langerhans , Organoids , Pluripotent Stem Cells , Humans , Organoids/cytology , Organoids/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Cell Culture Techniques/methods , Cryopreservation/methods
6.
Methods Mol Biol ; 2805: 89-100, 2024.
Article in English | MEDLINE | ID: mdl-39008175

ABSTRACT

Engineered heart tissues (EHTs) have been shown to be a valuable platform for disease investigation and therapeutic testing by increasing human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) maturity and better recreating the native cardiac environment. The protocol detailed in this chapter describes the generation of miniaturized EHTs (mEHTs) incorporating hiPSC-CMs and human stromal cells in a fibrin hydrogel. This platform utilizes an array of silicone posts designed to fit in a standard 96-well tissue culture plate. Stromal cells and hiPSC-CMs are cast in a fibrin matrix suspended between two silicone posts, forming an mEHT that produces synchronous muscle contractions. The platform presented here has the potential to be used for high throughput characterization and screening of disease phenotypes and novel therapeutics through measurements of the myocardial function, including contractile force and calcium handling, and its compatibility with immunostaining.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Tissue Engineering , Humans , Tissue Engineering/methods , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Hydrogels/chemistry , Cell Differentiation , Fibrin/metabolism , Cells, Cultured , Cell Culture Techniques/methods , Stromal Cells/cytology , Tissue Culture Techniques/methods , Tissue Culture Techniques/instrumentation
7.
Rozhl Chir ; 103(6): 202-207, 2024.
Article in English | MEDLINE | ID: mdl-38991783

ABSTRACT

Skin substitutes and covers are crucial across surgical disciplines, promoting interdisciplinary collaboration to meet varied clinical needs. While some medical professionals may encounter these products infrequently in their practice, understanding their properties and applications is paramount to provide optimal patient care. In this overview, we aim to provide healthcare professionals with essential information regarding skin substitutes and covers, equipping them with knowledge to navigate their use effectively across different clinical scenarios and to optimize patient outcomes. The speed of progress in tissue engineering and regenerative medicine is notable, driven by collaborative efforts among scientists, engineers, and clinicians. Technological advancements, increased funding, and a deeper understanding of cellular and molecular processes have accelerated research and development. However, challenges remain, such as achieving vascularization in engineered tissues, addressing immune responses, and ensuring long-term functionality of regenerated organs. Despite these hurdles, the field continues to evolve rapidly, offering hope for transformative medical solutions that may redefine the treatment landscape soon. In this article, we review the current selected commercially available epidermal, dermal, and total skin substitutes for wound healing.


Subject(s)
Skin, Artificial , Wound Healing , Humans , Tissue Engineering
8.
J Med Signals Sens ; 14: 10, 2024.
Article in English | MEDLINE | ID: mdl-38993202

ABSTRACT

Fabricating three-dimensional (3D) scaffolds is attractive due to various advantages for tissue engineering, such as cell migration, proliferation, and adhesion. Since cell growth depends on transmitting nutrients and cell residues, naturally vascularized scaffolds are superior for tissue engineering. Vascular passages help the inflow and outflow of liquids, nutrients, and waste disposal from the scaffold and cell growth. Porous scaffolds can be prepared by plant tissue decellularization which allows for the cultivation of various cell lines depending on the intended application. To this end, researchers decellularize plant tissues by specific chemical and physical methods. Researchers use plant parts depending on their needs, for example, decellularizing the leaves, stems, and fruits. Plant tissue scaffolds are advantageous for regenerative medicine, wound healing, and bioprinting. Studies have examined various plants such as vegetables and fruits such as orchid, parsley, spinach, celery, carrot, and apple using various materials and techniques such as sodium dodecyl sulfate, Triton X-100, peracetic acid, deoxyribonuclease, and ribonuclease with varying percentages, as well as mechanical and physical techniques like freeze-thaw cycles. The process of data selection, retrieval, and extraction in this review relied on scholarly journal publications and other relevant papers related to the subject of decellularization, with a specific emphasis on plant-based research. The obtained results indicate that, owing to the cellulosic structure and vascular nature of the decellularized plants and their favorable hydrophilic and biological properties, they have the potential to serve as biological materials and natural scaffolds for the development of 3D-printing inks and scaffolds for tissue engineering.

9.
Front Transplant ; 3: 1350546, 2024.
Article in English | MEDLINE | ID: mdl-38993748

ABSTRACT

Vascularized composite allotransplantation (VCA) is the transplantation of multiple tissues such as skin, muscle, bone, nerve, and vessels, as a functional unit (i.e., hand or face) to patients suffering from major tissue trauma and functional deficits. Though the surgical feasibility has been optimized, issues regarding graft rejection remains. VCA rejection involves a diverse population of cells but is primarily driven by both donor and recipient lymphocytes, antigen-presenting cells, macrophages, and other immune as well as donor-derived cells. In addition, it is commonly understood that different tissues within VCA, such as the skin, elicits a stronger rejection response. Currently, VCA recipients are required to follow potent and lifelong immunosuppressing regimens to maximize graft survival. This puts patients at risk for malignancies, opportunistic infections, and cancers, thereby posing a need for less perilous methods of inducing graft tolerance. This review will provide an overview of cell populations and mechanisms, specific tissue involved in VCA rejection, as well as an updated scope of current methods of tolerance induction.

10.
Theranostics ; 14(10): 3859-3899, 2024.
Article in English | MEDLINE | ID: mdl-38994021

ABSTRACT

Osteoporosis is a systemic skeletal disease caused by an imbalance between bone resorption and formation. Current treatments primarily involve systemic medication and hormone therapy. However, these systemic treatments lack directionality and are often ineffective for locally severe osteoporosis, with the potential for complex adverse reactions. Consequently, treatment strategies using bioactive materials or external interventions have emerged as the most promising approaches. This review proposes twelve microenvironmental treatment targets for osteoporosis-related pathological changes, including local accumulation of inflammatory factors and reactive oxygen species (ROS), imbalance of mitochondrial dynamics, insulin resistance, disruption of bone cell autophagy, imbalance of bone cell apoptosis, changes in neural secretions, aging of bone cells, increased local bone tissue vascular destruction, and decreased regeneration. Additionally, this review examines the current research status of effective or potential biophysical and biochemical stimuli based on these microenvironmental treatment targets and summarizes the advantages and optimal parameters of different bioengineering stimuli to support preclinical and clinical research on osteoporosis treatment and bone regeneration. Finally, the review addresses ongoing challenges and future research prospects.


Subject(s)
Osseointegration , Osteoporosis , Humans , Osteoporosis/therapy , Animals , Reactive Oxygen Species/metabolism , Bone Regeneration , Autophagy , Bone and Bones/metabolism , Apoptosis , Bioengineering/methods
12.
Indian J Orthop ; 58(7): 932-943, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38948364

ABSTRACT

Background: In bone tissue engineering segment, numerous approaches have been investigated to address critically sized bone defects via 3D scaffolds, as the amount of autologous bone grafts are limited, accompanied with complications on harvesting. Moreover, the use of bone-marrow-derived stem cells is also a limiting factor owing to the invasive procedures involved and the low yield of stem cells. Hence, research is ongoing on the search for an ideal bone graft system promoting bone growth and regeneration. Purpose of the Study: This study aims to develop a unique platform for tissue development via stem cell differentiation towards an osteogenic phenotype providing optimum biological cues for cell adhesion, differentiation and proliferation using biomimetic gelatin-based scaffolds. The use of adipose-derived mesenchymal stem cells in this study also offers an ideal approach for the development of an autologous bone graft. Methods: A gelatin-vinyl acetate-based 3D scaffold system incorporating Bioglass was developed and the osteogenic differentiation of adipose-derived mesenchymal stem cells (ADMSCs) on the highly porous freeze-dried gelatin-vinyl acetate/ Bioglass scaffold (GB) system was analyzed. The physicochemical properties, cell proliferation and viability were investigated by seeding rat adipose tissue-derived mesenchymal stem cells (ADSCs) onto the scaffolds. The osteogenic differentiation potential of the ADMSC seeded GeVAc/bioglass system was assessed using calcium deposition assay and bone-related protein and genes and comparing with the 3D Gelatin vinyl acetate coppolymer (GeVAc) constructs. Results and Conclusion: According to the findings, the 3D porous GeVAc/bioglass scaffold can be considered as a promising matrix for bone tissue regeneration and the 3D architecture supports the differentiation of the ADMSCs into osteoblast cells and enhances the production of mineralized bone matrix.

13.
Adv Healthc Mater ; : e2400462, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38948966

ABSTRACT

Osteochondral regeneration remains formidable challenges despite significant advances in microsurgery. Herein, an acellular trilayer cryogel (TC) with injectability, tunable pore sizes (80-200 µm), and appropriate compressive modulus (10.8 kPa) is manufactured from self-healable hydrogel under different gelling times through Schiff reaction between chitosan and difunctionalized polyurethane (DFPU). Bioactive molecules (Y27632 and dexamethasone) are respectively loaded in the top and bottom layers to form the Y27632/dexamethasone-loaded trilayer cryogel (Y/DEX-TC). Mesenchymal stem cells (MSCs) seeded in Y/DEX-TC proliferated ≈350% in vitro and underwent chondrogenesis or osteogenesis in response to the respective release of Y or DEX in 14 days. Acupuncture is administered to animals in an attempt to modulate the innate regulatory system and mobilize endogenous MSCs for osteochondral defect regeneration. In vivo rabbit experiments using Y/DEX-TC combined with acupuncture successfully regulate SDF-1 and TGF-ß1 levels, which possibly cause MSC migration toward Y/DEX-TC. The synergistic effect of cryogel and acupuncture on immunomodulation is verified with a ≈7.3-fold enhancement of the M2-/M1-macrophage population ratio by treatment of Y/DEX-TC combining acupuncture, significantly greater than ≈1.5-fold increase by acupuncture or ≈2.2-fold increase by Y/DEX-TC alone. This novel strategy using acellular drug-loaded cryogel and accessible acupuncture shows promise in treating osteochondral defects of joint damage.

14.
ACS Biomater Sci Eng ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961601

ABSTRACT

Hair follicle-penetrating nanoparticles offer a promising avenue for targeted antibiotic delivery, especially in challenging infections like acne inversa or folliculitis decalvans. However, demonstrating their efficacy with existing preclinical models remains difficult. This study presents an innovative approach using a 3D in vitro organ culture system with human hair follicles to investigate the hypothesis that antibiotic nanocarriers may reach bacteria within the follicular cleft more effectively than free drugs. Living human hair follicles were transplanted into a collagen matrix within a 3D printed polymer scaffold to replicate the follicle's microenvironment. Hair growth kinetics over 7 days resembled those of simple floating cultures. In the 3D model, fluorescent nanoparticles exhibited some penetration into the follicle, not observed in floating cultures. Staphylococcus aureus bacteria displayed similar distribution profiles postinfection of follicles. While rifampicin-loaded lipid nanocapsules were as effective as free rifampicin in floating cultures, only nanoencapsulated rifampicin achieved the same reduction of CFU/mL in the 3D model. This underscores the hair follicle microenvironment's critical role in limiting conventional antibiotic treatment efficacy. By mimicking this microenvironment, the 3D model demonstrates the advantage of topically administered nanocarriers for targeted antibiotic therapy against follicular infections.

15.
J Biomed Mater Res A ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963322

ABSTRACT

Corneal blindness affects over 10 million patients worldwide. Due to the limited supply of donor corneas and frequent graft failure, bioengineered alternatives are crucial. To overcome drawbacks associated with corneal substitutes from synthetic biomaterials, fabrication from plant-derived biomaterials is a potential alternative. Herein, soy protein and glutenin in combination with different crosslinkers were evaluated for fabrication of corneal substitutes. Optical, mechanical, and biochemical properties of fabricated constructs and control rabbit corneas were evaluated in vitro. Soy protein crosslinked with peroxidase/H202 possessed transparency and mechanical properties comparable to controls, although their water content and biocompatibility were inferior. In contrast, soy protein crosslinked with tannic acid showed similar water content, tensile strength, and biocompatibility as rabbit corneas; however, these constructs displayed significantly lower transparency and higher strain to failure. Finally, glutenin cross-linked using formaldehyde showed excellent transparency, strain to failure, and biocompatibility, however; they exhibited significantly lower water content and tensile strength than controls. This study is the first to establish CIELAB color values for the rabbit cornea, allowing quantitative optical evaluation of tissue-engineered substitutes. Thus, a crosslinking strategy utilizing plant-derived proteins for fabrication of constructs with properties comparable to rabbit corneas is a promising direction for development of tissue-engineered corneal substitutes.

16.
Stem Cell Res Ther ; 15(1): 194, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956719

ABSTRACT

BACKGROUND: Repairation of bone defects remains a major clinical problem. Constructing bone tissue engineering containing growth factors, stem cells, and material scaffolds to repair bone defects has recently become a hot research topic. Nerve growth factor (NGF) can promote osteogenesis of bone marrow mesenchymal stem cells (BMSCs), but the low survival rate of the BMSCs during transplantation remains an unresolved issue. In this study, we investigated the therapeutic effect of BMSCs overexpression of NGF on bone defect by inhibiting pyroptosis. METHODS: The relationship between the low survival rate and pyroptosis of BMSCs overexpressing NGF in localized inflammation of fractures was explored by detecting pyroptosis protein levels. Then, the NGF+/BMSCs-NSA-Sca bone tissue engineering was constructed by seeding BMSCs overexpressing NGF on the allograft bone scaffold and adding the pyroptosis inhibitor necrosulfonamide(NSA). The femoral condylar defect model in the Sprague-Dawley (SD) rat was studied by micro-CT, histological, WB and PCR analyses in vitro and in vivo to evaluate the regenerative effect of bone repair. RESULTS: The pyroptosis that occurs in BMSCs overexpressing NGF is associated with the nerve growth factor receptor (P75NTR) during osteogenic differentiation. Furthermore, NSA can block pyroptosis in BMSCs overexpression NGF. Notably, the analyses using the critical-size femoral condylar defect model indicated that the NGF+/BMSCs-NSA-Sca group inhibited pyroptosis significantly and had higher osteogenesis in defects. CONCLUSION: NGF+/BMSCs-NSA had strong osteogenic properties in repairing bone defects. Moreover, NGF+/BMSCs-NSA-Sca mixture developed in this study opens new horizons for developing novel tissue engineering constructs.


Subject(s)
Mesenchymal Stem Cells , Nerve Growth Factor , Osteogenesis , Rats, Sprague-Dawley , Tissue Scaffolds , Animals , Nerve Growth Factor/metabolism , Nerve Growth Factor/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Rats , Tissue Scaffolds/chemistry , Bone Regeneration , Allografts , Male , Tissue Engineering/methods , Pyroptosis , Sulfonamides/pharmacology , Cell Differentiation , Mesenchymal Stem Cell Transplantation/methods , Bone Transplantation/methods
17.
Article in English | MEDLINE | ID: mdl-38985414

ABSTRACT

PURPOSE OF REVIEW: Intervertebral disc degeneration (IVDD) is a common orthopaedic disease and an important cause of lower back pain, which seriously affects the work and life of patients and causes a large economic burden to society. The traditional treatment of IVDD mainly involves early pain relief and late surgical intervention, but it cannot reverse the pathological course of IVDD. Current studies suggest that IVDD is related to the imbalance between the anabolic and catabolic functions of the extracellular matrix (ECM). Anti-inflammatory drugs, bioactive substances, and stem cells have all been shown to improve ECM, but traditional injection methods face short half-life and leakage problems. RECENT FINDINGS: The good biocompatibility and slow-release function of polymer hydrogels are being noticed and explored to combine with drugs or bioactive substances to treat IVDD. This paper introduces the pathophysiological mechanism of IVDD, and discusses the advantages, disadvantages and development prospects of hydrogels for the treatment of IVDD, so as to provide guidance for future breakthroughs in the treatment of IVDD.

18.
HardwareX ; 19: e00543, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38988373

ABSTRACT

3D bioprinting is a tissue engineering approach using additive manufacturing to fabricate tissue equivalents for regenerative medicine or medical drug testing. For this purpose, biomaterials that provide the essential microenvironment to support the viability of cells integrated directly or seeded after printing are processed into three-dimensional (3D) structures. Compared to extrusion-based 3D printing, which is most commonly used in bioprinting, stereolithography (SLA) offers a higher printing resolution and faster processing speeds with a wide range of cell-friendly materials such as gelatin- or collagen-based hydrogels and SLA is, therefore, well suited to generate 3D tissue constructs. While there have been numerous publications of conversions and upgrades for extrusion-based printers, this is not the case for state-of-the-art SLA technology in bioprinting. The high cost of proprietary printers severely limits teaching and research in SLA bioprinting. With mSLAb, we present a low-cost and open-source high-resolution 3D bioprinter based on masked SLA (mSLA). mSLAb is based on an entry-level (€350) desktop mSLA printer (Phrozen Sonic Mini 4 K), equipped with temperature control and humidification of the printing chamber to enable the processing of cell-friendly hydrogels. Additionally, the build platform was redesigned for easy sample handling and microscopic analysis of the printed constructs. All modifications were done with off-the-shelf hardware and in-house designed 3D printed components, printed with the same printer that was being modified. We validated the system by printing macroscopic porous scaffolds as well as hollow channels from gelatin-based hydrogels as representative structures needed in tissue engineering.

19.
Front Bioeng Biotechnol ; 12: 1411680, 2024.
Article in English | MEDLINE | ID: mdl-38988863

ABSTRACT

Introduction: The development of next-generation tissue-engineered medical devices such as tissue-engineered vascular grafts (TEVGs) is a leading trend in translational medicine. Microscopic examination is an indispensable part of animal experimentation, and histopathological analysis of regenerated tissue is crucial for assessing the outcomes of implanted medical devices. However, the objective quantification of regenerated tissues can be challenging due to their unusual and complex architecture. To address these challenges, research and development of advanced ML-driven tools for performing adequate histological analysis appears to be an extremely promising direction. Methods: We compiled a dataset of 104 representative whole slide images (WSIs) of TEVGs which were collected after a 6-month implantation into the sheep carotid artery. The histological examination aimed to analyze the patterns of vascular tissue regeneration in TEVGs in situ. Having performed an automated slicing of these WSIs by the Entropy Masker algorithm, we filtered and then manually annotated 1,401 patches to identify 9 histological features: arteriole lumen, arteriole media, arteriole adventitia, venule lumen, venule wall, capillary lumen, capillary wall, immune cells, and nerve trunks. To segment and quantify these features, we rigorously tuned and evaluated the performance of six deep learning models (U-Net, LinkNet, FPN, PSPNet, DeepLabV3, and MA-Net). Results: After rigorous hyperparameter optimization, all six deep learning models achieved mean Dice Similarity Coefficients (DSC) exceeding 0.823. Notably, FPN and PSPNet exhibited the fastest convergence rates. MA-Net stood out with the highest mean DSC of 0.875, demonstrating superior performance in arteriole segmentation. DeepLabV3 performed well in segmenting venous and capillary structures, while FPN exhibited proficiency in identifying immune cells and nerve trunks. An ensemble of these three models attained an average DSC of 0.889, surpassing their individual performances. Conclusion: This study showcases the potential of ML-driven segmentation in the analysis of histological images of tissue-engineered vascular grafts. Through the creation of a unique dataset and the optimization of deep neural network hyperparameters, we developed and validated an ensemble model, establishing an effective tool for detecting key histological features essential for understanding vascular tissue regeneration. These advances herald a significant improvement in ML-assisted workflows for tissue engineering research and development.

20.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999953

ABSTRACT

Hybrid scaffolds that are based on PLA and PLA/PMMA with 75/25, 50/50, and 25/75 weight ratios and functionalized with 10 wt.% of bioglass nanoparticles (n-BG) were developed using an electrospinning technique with a chloroform/dimethylformamide mixture in a 9:1 ratio for bone tissue engineering applications. Neat PLA and PLA/PMMA hybrid scaffolds were developed successfully through a (CF/DMF) solvent system, obtaining a random fiber deposition that generated a porous structure with pore interconnectivity. However, with the solvent system used, it was not possible to generate fibers in the case of the neat PMMA sample. With the increase in the amount of PMMA in PLA/PMMA ratios, the fiber diameter of hybrid scaffolds decreases, and the defects (beads) in the fiber structure increase; these beads are associated with a nanoparticle agglomeration, that could be related to a low interaction between n-BG and the polymer matrix. The Young's modulus of PLA/PMMA/n-BG decreases by 34 and 80%, indicating more flexible behavior compared to neat PLA. The PLA/PMMA/n-BG scaffolds showed a bioactive property related to the presence of hydroxyapatite crystals in the fiber surface after 28 days of immersion in a Simulated Body Fluids solution (SBF). In addition, the hydrolytic degradation process of PLA/PMMA/n-BG, analyzed after 35 days of immersion in a phosphate-buffered saline solution (PBS), was less than that of the pure PLA. The in vitro analysis using an HBOF-1.19 cell line indicated that the PLA/PMMA/n-BG scaffold showed good cell viability and was able to promote cell proliferation after 7 days. On the other hand, the in vivo biocompatibility evaluated via a subdermal model in BALC male mice corroborated the good behavior of the scaffolds in avoiding the generation of a cytotoxic effect and being able to enhance the healing process, suggesting that the materials are suitable for potential applications in tissue engineering.


Subject(s)
Ceramics , Nanoparticles , Polyesters , Polymethyl Methacrylate , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Polyesters/chemistry , Polymethyl Methacrylate/chemistry , Tissue Scaffolds/chemistry , Ceramics/chemistry , Ceramics/pharmacology , Nanoparticles/chemistry , Animals , Mice , Bone and Bones/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Humans , Cell Line
SELECTION OF CITATIONS
SEARCH DETAIL
...