Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 409
Filter
1.
Odontology ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951301

ABSTRACT

The aim of this study was to evaluate the influence of liver fibrosis (LF) on the expression of Toll-like receptors (TLR) 2 and 4 in apical periodontitis (AP) in Wistar rats. Forty Wistar rats were allocated in the following groups (n = 10): C-control; AP-apical periodontitis; LF-liver fibrosis; AP + LF-rats with AP and LF. LF and AP were induced by established methodologies. Histological, bacteriological, and immunohistochemical analyses were performed according to pre-established scores. For comparisons between AP and AP + LF groups, the Mann-Whitney test was used (P < .05). The livers of the LF and AP + LF groups showed generalized portal inflammatory infiltrate and collagen fibers confirming the presence of LF. Histopathological analysis in the maxilla of the AP + LF group showed areas of necrosis comprising the entire dental pulp and periapical tissue surrounded by a more intense inflammatory infiltrate than observed in the AP group (P = 0.032). A significant number of specimens in the AP + LF group showed microorganisms beyond the apical foramen adhered to the extraradicular biofilm, demonstrating greater invasion compared to the AP group (P = .008). Immunohistochemical analysis showed a large number of cells immunoreactive for TLR2 and TLR4 in the AP + LF group, compared to the AP group (P < 0.05). Liver fibrosis favors the inflammation and contamination of microorganisms in apical periodontitis and triggers the expression of TLR2 and TLR4, modulating innate immunity response in periapical lesions.

2.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000607

ABSTRACT

Natural killer (NK) cells play a crucial role in innate immunity, particularly in combating infections and tumors. However, in hematological cancers, NK cells often exhibit impaired functions. Therefore, it is very important to activate its endosomal Toll-like receptors (TLRs) as a potential strategy to restore its antitumor activity. We stimulated NK cells from the peripheral blood mononuclear cells from children with acute lymphoblastic leukemia and NK cells isolated, and the NK cells were stimulated with specific TLR ligands (Poly I:C, Imiquimod, R848, and ODN2006) and we evaluated changes in IFN-γ, CD107a, NKG2D, NKp44 expression, Granzyme B secretion, cytokine/chemokine release, and cytotoxic activity. Results revealed that Poly I:C and Imiquimod enhanced the activation of both immunoregulatory and cytotoxic NK cells, increasing IFN-γ, CD107a, NKG2D, and NKp44 expression. R848 activated immunoregulatory NK cells, while ODN2006 boosted CD107a, NKp44, NKG2D, and IFN-γ secretion in cytotoxic NK cells. R848 also increased the secretion of seven cytokines/chemokines. Importantly, R848 and ODN 2006 significantly improved cytotoxicity against leukemic cells. Overall, TLR stimulation enhances NK cell activation, suggesting TLR8 (R848) and TLR9 (ODN 2006) ligands as promising candidates for antitumor immunotherapy.


Subject(s)
Imiquimod , Killer Cells, Natural , Lymphocyte Activation , Poly I-C , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Toll-Like Receptors , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Poly I-C/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Imiquimod/pharmacology , Toll-Like Receptors/metabolism , Toll-Like Receptors/agonists , Child , Oligodeoxyribonucleotides/pharmacology , Cytokines/metabolism , Female , Interferon-gamma/metabolism , Male , Imidazoles/pharmacology , Cytotoxicity, Immunologic/drug effects , Child, Preschool , Toll-Like Receptor Agonists
3.
Rev. parag. reumatol ; 10(1)jun. 2024.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1565766

ABSTRACT

Introducción: El lupus eritematoso sistémico (LES) es una enfermedad autoinmune que causa inflamación sistémica y alteraciones en la tolerancia inmunológica. La activación de los genes inducibles por interferón (IFN), contribuye en más del 50% de su patogenia. Objetivo: relacionar el papel del IFN-λ en la patogenia del LES. Materiales y Métodos: Búsqueda sistémica en base de datos; a través de las palabras claves del MeSH and DeCS. Fue incluido adicionalmente la palabra "Interferón Lambda". Resultados: Se encontró que la producción aberrante de interferón tipo I contribuye a la desregulación de IFN-λ, producido principalmente por células dendríticas plasmocitoides. Este proceso conduce a la estimulación inmunológica por autoanticuerpos y a un aumento de IFNλR-1 en células B, potenciando la generación de anticuerpos. IFN-λ3 se asocia particularmente con nefritis lúpica, y el IFN-λ en general aumenta la expresión de MHC-I, intensificando la respuesta de células T CD8+ y posiblemente afectando la tolerancia central y la regulación en el timo. Conclusión: Se destaca que el IFN-λ favorece la activación inmune, formación de inmunocomplejos, inflamación crónica y producción de autoanticuerpos, vinculándose niveles altos de IFN-λ3 con mayor actividad de la enfermedad.


Introduction: Systemic lupus erythematosus (SLE) is an autoimmune disease that causes systemic inflammation and alterations in immunological tolerance. The activation of interferon (IFN)-inducible genes contributes to more than 50% of its pathogenesis. Objective: to review the role of IFN-λ in the pathogenesis of SLE. Materials and Methods: Systemic search in database; through the MeSH and DeCS keywords. The word "Lambda Interferon" was additionally included. Results: Aberrant production of type I interferon was found to contribute to the deregulation of IFN-λ, produced mainly by plasmacytoid dendritic cells. This process leads to immunological stimulation by autoantibodies and an increase in IFNλR-1 in B cells, enhancing the generation of antibodies. IFN-λ3 is particularly associated with lupus nephritis, and IFN-λ generally increases MHC-I expression, enhancing the CD8+ T cell response and possibly affecting central tolerance and regulation in the thymus. Conclusion: It is highlighted that IFN-λ favors immune activation, formation of immune complexes, chronic inflammation and production of autoantibodies, linking high levels of IFN-λ3 with greater disease activity.

4.
Can J Microbiol ; 70(7): 252-261, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38855942

ABSTRACT

Non-tuberculosis infections in immunocompromised patients represent a cause for concern, given the increased risks of infection, and limited treatments available. Herein, we report that molecules for binding to the catalytic site of histone deacetylase (HDAC) inhibit its activity, thus increasing the innate immune response against environmental mycobacteria. The action of HDAC inhibitors (iHDACs) was explored in a model of type II pneumocytes and macrophages infection by Mycobacterium aurum. The results show that the use of 1,3-diphenylurea increases the expression of the TLR-4 in M. aurum infected MDMs, as well as the production of defb4, IL-1ß, IL-12, and IL-6. Moreover, we observed that aminoacetanilide upregulates the expression of TLR-4 together with TLR-9, defb4, CAMP, RNase 6, RNase 7, IL-1ß, IL-12, and IL-6 in T2P. Results conclude that the tested iHDACs selectively modulate the expression of cytokines and antimicrobial peptides that are associated with reduction of non-tuberculous mycobacteria infection.


Subject(s)
Cytokines , Drug Repositioning , Histone Deacetylase Inhibitors , Immunity, Innate , Mycobacterium Infections, Nontuberculous , Immunity, Innate/drug effects , Humans , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium Infections, Nontuberculous/microbiology , Histone Deacetylase Inhibitors/pharmacology , Cytokines/metabolism , Macrophages/immunology , Macrophages/drug effects , Macrophages/microbiology , Nontuberculous Mycobacteria/drug effects , Nontuberculous Mycobacteria/immunology , Mycobacterium/immunology , Mycobacterium/drug effects
5.
Expert Rev Mol Diagn ; 24(6): 525-531, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864429

ABSTRACT

BACKGROUND: A distinct phenotype in Coronavirus disease 2019 (Covid-19) was observed in severe patients, consisting of a highly impaired interferon (IFN) type I response, an exacerbated inflammatory response. OBJECTIVE: The aim of the present study was to investigate a possible association of single nucleotide polymorphisms (SNPs), in five genes related to the immune response, rs3775291 in TLR3; rs2292151 in TICAM1; rs1758566 in IFNA1; rs1800629 in TNF, and rs1800795 in IL6 with the severity of Covid-19. METHODS: A cross-sectional study was performed, with non-severe and severe/critical patients diagnosed with Covid-19, by two public hospitals in Brazil. In total, 300 patients were genotyped for the SNPs, 150 with the non-severe form of the disease and 150 with severe/critical form. RESULTS: The T/T genotype of TLR3 in recessive model shows 58% of protection against severe/critical Covid-19; as well as the genotypes G/A+A/A of TICAM1 in dominant model with 60% of protection, and in a codominant model G/A with 57% and A/A with 71% of protection against severe/critical Covid-19. Comparing severe and critical cases, the T/C genotype of IFNA1 in the codominant model and TC+C/C in the dominant model showed twice the risk of critical Covid-19. CONCLUSION: We can conclude that rs3775291, rs2292151 and rs1758566 can influence the COVID-19 severity.


Subject(s)
COVID-19 , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , SARS-CoV-2 , Severity of Illness Index , Toll-Like Receptor 3 , Adult , Aged , Female , Humans , Male , Middle Aged , Brazil/epidemiology , COVID-19/genetics , COVID-19/virology , Cross-Sectional Studies , Genotype , Interferon Type I/genetics , Interferon-alpha , SARS-CoV-2/genetics , Toll-Like Receptor 3/genetics
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167155, 2024 06.
Article in English | MEDLINE | ID: mdl-38579939

ABSTRACT

Tubular proteinuria is a common feature in COVID-19 patients, even in the absence of established acute kidney injury. SARS-CoV-2 spike protein (S protein) was shown to inhibit megalin-mediated albumin endocytosis in proximal tubule epithelial cells (PTECs). Angiotensin-converting enzyme type 2 (ACE2) was not directly involved. Since Toll-like receptor 4 (TLR4) mediates S protein effects in various cell types, we hypothesized that TLR4 could be participating in the inhibition of PTECs albumin endocytosis elicited by S protein. Two different models of PTECs were used: porcine proximal tubule cells (LLC-PK1) and human embryonic kidney cells (HEK-293). S protein reduced Akt activity by specifically inhibiting of threonine 308 (Thr308) phosphorylation, a process mediated by phosphoinositide-dependent kinase 1 (PDK1). GSK2334470, a PDK1 inhibitor, decreased albumin endocytosis and megalin expression mimicking S protein effect. S protein did not change total TLR4 expression but decreased its surface expression. LPS-RS, a TLR4 antagonist, also counteracted the effects of the S protein on Akt phosphorylation at Thr308, albumin endocytosis, and megalin expression. Conversely, these effects of the S protein were replicated by LPS, an agonist of TLR4. Incubation of PTECs with a pseudovirus containing S protein inhibited albumin endocytosis. Null or VSV-G pseudovirus, used as control, had no effect. LPS-RS prevented the inhibitory impact of pseudovirus containing the S protein on albumin endocytosis but had no influence on virus internalization. Our findings demonstrate that the inhibitory effect of the S protein on albumin endocytosis in PTECs is mediated through TLR4, resulting from a reduction in megalin expression.


Subject(s)
Endocytosis , Kidney Tubules, Proximal , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Endocytosis/drug effects , Humans , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/virology , Animals , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/metabolism , HEK293 Cells , Swine , Proto-Oncogene Proteins c-akt/metabolism , Phosphorylation , COVID-19/metabolism , COVID-19/virology , COVID-19/pathology , Albumins/metabolism , LLC-PK1 Cells , Epithelial Cells/metabolism , Epithelial Cells/virology
7.
Front Nutr ; 11: 1362694, 2024.
Article in English | MEDLINE | ID: mdl-38600992

ABSTRACT

Background and aim: Considering the increasing prevalence of non-alcoholic steatohepatitis (NASH) and treatment gaps, this study aimed to evaluate the effect of probiotic supplementation on liver function markers, nutritional status, and clinical parameters. Methods: This double-blind, randomized clinical trial (ClinicalTrials.gov ID: NCT0346782) included adult outpatients with biopsy-proven NASH. The intervention consisted of 24 weeks of supplementation with the probiotic mix Lactobacillus acidophilus (1 × 109 CFU) + Lactobacillus rhamnosus (1 × 109 CFU) + Lactobacillus paracasei (1 × 109 CFU) + Bifidobacterium lactis (1 × 109 CFU), or placebo, twice a day. The following parameters were evaluated: demographic and clinical data, transient elastography (FibroScan), liver enzymes, NAFLD fibrosis score, fatty liver index, laboratory assessment, serum concentration of toll-like receptor-4 (sTLR-4) and cytokeratin 18 (CK-18), anthropometric data, dietary intake, and physical activity. Regarding data analysis, the comparison between the groups was based on the delta of the difference of each variable analyzed (value at the end of treatment minus the baseline value) using the t-test for independent samples or the Mann-Whitney U-test. Results: Forty-four patients with NASH completed the trial (51.4 ± 11.6 years). At baseline, 87% of participants had a mild liver fibrosis degree on biopsy, normal values of liver enzymes, transient elastography values consistent with grade 1 fibrosis in both groups, increased waist circumference (WC), a BMI of 30.97 kg/m2, and 76% presented with metabolic syndrome (MetS). After the intervention, no differences were observed between the probiotic and placebo groups in terms of MetS, WC, BMI scores, or liver enzyme levels (p > 0.05 for all). The elastography values remained consistent with grade 1 fibrosis in both groups. Although CK-18 was reduced in both groups, a larger effect size was noted in the probiotic group (D = 1.336). sTLR-4 was also reduced in both groups, with no difference between groups (p = 0.885). Conclusion: Intervention with probiotics in the early stages of NASH demonstrated no significant change in hepatic and clinical parameters. Clinical trial registration: ClinicalTrials.gov, identifier NCT0346782.

8.
Int J Mol Sci ; 25(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38612423

ABSTRACT

Periodontitis, characterized by persistent inflammation in the periodontium, is intricately connected to systemic diseases, including oral cancer. Bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, play a pivotal role in periodontitis development because they contribute to dysbiosis and tissue destruction. Thus, comprehending the interplay between these bacteria and their impacts on inflammation holds significant relevance in clinical understanding and treatment advancement. In the present work, we explored, for the first time, their impacts on the expressions of pro-inflammatory mediators after infecting oral keratinocytes (OKs) with a co-culture of pre-incubated P. gingivalis and F. nucleatum. Our results show that the co-culture increases IL-1ß, IL-8, and TNF-α expressions, synergistically augments IL-6, and translocates NF-kB to the cell nucleus. These changes in pro-inflammatory mediators-associated with chronic inflammation and cancer-correlate with an increase in cell migration following infection with the co-cultured bacteria or P. gingivalis alone. This effect depends on TLR4 because TLR4 knockdown notably impacts IL-6 expression and cell migration. Our study unveils, for the first time, crucial insights into the outcomes of their co-culture on virulence, unraveling the role of bacterial interactions in polymicrobial diseases and potential links to oral cancer.


Subject(s)
Mouth Neoplasms , Periodontitis , Humans , Coculture Techniques , Interleukin-6 , Toll-Like Receptor 4 , Inflammation , Inflammation Mediators , Keratinocytes
9.
Cells ; 13(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38534318

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Receptors, Nicotinic , Humans , Parkinson Disease/metabolism , Receptors, Nicotinic/metabolism , Neurodegenerative Diseases/metabolism , Nicotine/metabolism , Dopamine/metabolism , Astrocytes/metabolism
10.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473959

ABSTRACT

Advanced glycation end products (AGEs) prime macrophages for lipopolysaccharide (LPS)-induced inflammation. We investigated the persistence of cellular AGE-sensitization to LPS, considering the nuclear content of p50 and p65 nuclear factor kappa B (NFKB) subunits and the expression of inflammatory genes. Macrophages treated with control (C) or AGE-albumin were rested for varying intervals in medium alone before being incubated with LPS. Comparisons were made using one-way ANOVA or Student t-test (n = 6). AGE-albumin primed macrophages for increased responsiveness to LPS, resulting in elevated levels of TNF, IL-6, and IL-1beta (1.5%, 9.4%, and 5.6%, respectively), compared to C-albumin. TNF, IL-6, and IL-1 beta secretion persisted for up to 24 h even after the removal of AGE-albumin (area under the curve greater by 1.6, 16, and 5.2 times, respectively). The expressions of Il6 and RelA were higher 8 h after albumin removal, and Il6 and Abca1 were higher 24 h after albumin removal. The nuclear content of p50 remained similar, but p65 showed a sustained increase (2.9 times) for up to 24 h in AGE-albumin-treated cells. The prolonged activation of the p65 subunit of NFKB contributes to the persistent effect of AGEs on macrophage inflammatory priming, which could be targeted for therapies to prevent complications based on the AGE-RAGE-NFKB axis.


Subject(s)
Interleukin-6 , NF-kappa B , NF-kappa B/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Glycation End Products, Advanced/metabolism , Albumins/metabolism
11.
FASEB J ; 38(6): e23566, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38526868

ABSTRACT

Trypanosoma cruzi is the causative agent of Chagas disease, a chronic pathology that affects the heart and/or digestive system. This parasite invades and multiplies in virtually all nucleated cells, using a variety of host cell receptors for infection. T. cruzi has a gene that encodes an ecotin-like inhibitor of serine peptidases, ISP2. We generated ISP2-null mutants (Δisp2) in T. cruzi Dm28c using CRISPR/Cas9. Epimastigotes of Δisp2 grew normally in vitro but were more susceptible to lysis by human serum compared to parental and ISP2 add-back lines. Tissue culture trypomastigotes of Δisp2 were more infective to human muscle cells in vitro, which was reverted by the serine peptidase inhibitors aprotinin and camostat, suggesting that host cell epitheliasin/TMPRSS2 is the target of ISP2. Pretreatment of host cells with an antagonist to the protease-activated receptor 2 (PAR2) or an inhibitor of Toll-like receptor 4 (TLR4) selectively counteracted the increased cell invasion by Δisp2, but did not affect invasion by parental and add-back lines. The same was observed following targeted gene silencing of PAR2, TLR4 or TMPRSS2 in host cells by siRNA. Furthermore, Δisp2 caused increased tissue edema in a BALB/c mouse footpad infection model after 3 h differently to that observed following infection with parental and add-back lines. We propose that ISP2 contributes to protect T. cruzi from the anti-microbial effects of human serum and to prevent triggering of PAR2 and TLR4 in host cells, resulting in the modulation of host cell invasion and contributing to decrease inflammation during acute infection.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Animals , Mice , Humans , Toll-Like Receptor 4/genetics , Receptor, PAR-2/genetics , Chagas Disease/genetics , Chagas Disease/parasitology , Antiviral Agents/pharmacology , Serine Proteinase Inhibitors/pharmacology , Inflammation , Serine , Serine Endopeptidases/genetics
12.
Asian Pac J Cancer Prev ; 25(3): 757-766, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38546058

ABSTRACT

BACKGROUND: This review investigated the association of COX-2, TNF-α, TLR4, and IKKα with the survival of patients with oral squamous cell carcinoma (SCC). METHODS: A systematic search was conducted in the databases PUBMED, Web of Science, LILACS, EMBASE, Scopus, and Cochrane Library. The studies should assess the expression of those proteins in the tumor and survival outcomes. RESULTS: Twenty-one articles were included. The meta-analysis results leaned towards an association of COX-2 overexpression with a lower overall survival. The estimated hazard ratio was 1.51 (95% CI 0.97, 2.33), but not statistically significant (p=0.07). A low heterogeneity was observed (I2=0%). Regarding TNF-α, TLR4, and IKKα, statistically significant results for the association with survival were presented, but there was not enough data to a meta-analysis. CONCLUSION: COX-2 overexpression may be associated with a poorer prognosis in oral SCC. The insufficiency of studies about TNF-α, TLR4, and IKKα restrained their validation as predictors of prognosis.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck , Tumor Necrosis Factor-alpha , I-kappa B Kinase , Cyclooxygenase 2 , Toll-Like Receptor 4 , Mouth Neoplasms/pathology , Prognosis
13.
Front Public Health ; 12: 1250343, 2024.
Article in English | MEDLINE | ID: mdl-38525341

ABSTRACT

Background: The COVID-19 pandemic has proved deadly all over the globe; however, one of the most lethal outbreaks occurred in Ecuador. Aims: This study aims to highlight the pandemic's impact on the most affected countries worldwide in terms of excess deaths per capita and per day. Methods: An ecological study of all-cause mortality recorded in Ecuador was performed. To calculate the excess deaths relative to the historical average for the same dates in 2017, 2018, and 2019, we developed a bootstrap method based on the central tendency measure of mean. A Poisson fitting analysis was used to identify trends on officially recorded all-cause deaths and COVID-19 deaths. A bootstrapping technique was used to emulate the sampling distribution of our expected deaths estimator µâŒ¢deaths by simulating the data generation and model fitting processes daily since the first confirmed case. Results: In Ecuador, during 2020, 115,070 deaths were reported and 42,453 were cataloged as excess mortality when compared to 2017-2019 period. Ecuador is the country with the highest recorded excess mortality in the world within the shortest timespan. In one single day, Ecuador recorded 1,120 deaths (6/100,000), which represents an additional 408% of the expected fatalities. Conclusion: Adjusting for population size and time, the hardest-hit country due to the COVID-19 pandemic was Ecuador. The mortality excess rate shows that the SARS-CoV-2 virus spread rapidly in Ecuador, especially in the coastal region. Our results and the proposed new methodology could help to address the real situation of the number of deaths during the initial phase of pandemics.


Subject(s)
COVID-19 , Pandemics , Humans , Ecuador/epidemiology , COVID-19/epidemiology , Disease Outbreaks , Population Density
14.
Hypertension ; 81(5): 977-990, 2024 May.
Article in English | MEDLINE | ID: mdl-38372140

ABSTRACT

To celebrate 100 years of American Heart Association-supported cardiovascular disease research, this review article highlights milestone papers that have significantly contributed to the current understanding of the signaling mechanisms driving hypertension and associated cardiovascular disorders. This article also includes a few of the future research directions arising from these critical findings. To accomplish this important mission, 4 principal investigators gathered their efforts to cover distinct yet intricately related areas of signaling mechanisms pertaining to the pathogenesis of hypertension. The renin-angiotensin system, canonical and novel contractile and vasodilatory pathways in the resistance vasculature, vascular smooth muscle regulation by membrane channels, and noncanonical regulation of blood pressure and vascular function will be described and discussed as major subjects.


Subject(s)
Cardiovascular System , Hypertension , Humans , Signal Transduction , Blood Pressure , Renin-Angiotensin System/physiology , Angiotensin II/metabolism
15.
Immunobiology ; 229(1): 152782, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38159527

ABSTRACT

BACKGROUND: Multiple blood cell abnormalities participate in the development of inflammation in systemic lupus erythematosus (SLE). Although platelets have been suggested as one of these contributors through the release of their content during activation, there are limited specific data about their role as immune players in SLE. MATERIALS AND METHODS: Thirteen SLE patients were included. Flow cytometry was used to measure Toll-like receptors (TLR) 2, 4, and 9 in resting platelets, platelet-activation markers (PAC-1 binding, P-selectin, CD63, and CD40 ligand -L) and platelet-leukocyte aggregates before and after specific TLR stimulation. Soluble CD40L and von Willebrand factor (vWf) release from stimulated platelets was measured using ELISA. RESULTS: In resting conditions, SLE platelets showed normal expression levels of TLR 2, 4 and 9. Platelet surface activation markers, soluble CD40L, and vWf release were normal at baseline and after TLR stimulation. Platelet-monocyte aggregates were elevated in resting conditions in SLE samples and showed only a marginal increase after TLR stimulation, while baseline and stimulated platelet-neutrophil and platelet-lymphocyte aggregates were normal. C-reactive protein levels positively correlated with platelet-monocyte aggregates both at baseline and after stimulation with the TLR-2 agonist PAM3CSK4, suggesting these complexes could reflect the inflammatory activity in SLE. In our cohort, 12 of 13 patients received treatment with hydroxychloroquine (HCQ), a known inhibitor of endosomal activity and a potential inhibitor of platelet activation. The fact that SLE platelets showed an adequate response to TLR agonists suggests that, despite this treatment, they retain the ability to respond to the increased levels of damage-associated molecular patterns (DAMPs), which represent known TLR ligands, present in the circulation of SLE patients. Interestingly, elevated plasma levels of high mobility group box 1 (HMGB1), a classical DAMP, correlated with vWf release from TLR-stimulated platelets, suggesting that HMGB1 may also be released by platelets, thereby creating a positive feedback loop for platelet activation that contributes to inflammation. CONCLUSION: Our study demonstrates normal platelet TLR expression and function together with increased circulating platelet-monocyte aggregates. In addition, a direct correlation was observed between plasma HMGB1 levels and platelet vWf release following TLR2 stimulation. This platelet behavior in a group of patients undergoing HCQ treatment suggests that platelets could play a role in the inflammatory state of SLE.


Subject(s)
HMGB1 Protein , Lupus Erythematosus, Systemic , Humans , HMGB1 Protein/metabolism , CD40 Ligand , von Willebrand Factor/metabolism , Toll-Like Receptors/metabolism , Blood Platelets/metabolism , Inflammation/metabolism , Toll-Like Receptor 9
16.
Cir Cir ; 91(5): 601-614, 2023.
Article in English | MEDLINE | ID: mdl-37844897

ABSTRACT

BACKGROUND: Graft-versus-host disease (GVHD) is a major complication after allogeneic hematopoietic stem cell transplantation. OBJECTIVE: To elucidate the role of Toll-like receptor 4 (TLR4), the major receptor for bacterial lipopolysaccharide, in the development of GVHD, we constructed a GVHD model in TLR4 knockout (TLR4-/-) mice and monitored the cell chimerism. METHODS: In this study, we used polymerase chain reaction to identify whether TLR4 knockout (TLR4-/-) mice were established. Before transplantation, we pretreated mice with irradiation so as to obtain an appropriate irradiation dose. Flow cytometry was applied to measure the chimerism status, the distributions of antigen-presenting cells (APCs), and T-cells in TLR4+/+ and TLR4-/- recipient mice. RESULTS: The general condition of TLR4-/- recipients was better than that of TLR4+/+ recipients, and the TLR4-/- recipient mice showed less severe GVHD manifestations than the TLR4+/+ recipient mice. Most of the APCs and T-cells in the host mouse spleen were derived from donor cells, and CD4+ T-cells, including memory T-cells, were in the majority in host mice. CONCLUSION: In general, our data show that TLR4 deletion attenuated GVHD development, which suggests that TLR4 could be used as a novel target and therapeutic paradigm in GVHD therapies.


ANTECEDENTES: La enfermedad de injerto contra huésped (EICH) es una complicación importante después del trasplante alogénico de células madre hematopoyéticas. OBJETIVOS: Para dilucidar el papel de TLR4, el principal receptor de LPS bacteriano, en el desarrollo de GVHD, construimos un modelo de GVHD en ratones knockout para TLR4 (TLR4-/-) y monitoreamos el quimerismo celular. MÉTODOS: En este estudio, usamos PCR para identificar si se establecieron ratones knockout para TLR4 (TLR4-/-). Antes del trasplante, pretratamos a los ratones con irradiación para obtener la dosis de irradiación adecuada. Se aplicó citometría de flujo para medir el estado de quimerismo, las distribuciones de APC y células T en ratones receptores TLR4+/+ y TLR4-/-. RESULTADOS: El estado general de los receptores de TLR4-/- fue mejor que el de los receptores de TLR4+/+, y los ratones receptores de TLR4-/- mostraron manifestaciones de GVHD menos graves que los ratones receptores de TLR4+/+. La mayoría de las APC y las células T en el bazo del ratón huésped se derivaron de las células del donante, y las células T CD4+, incluidas las células T de memoria, se encontraban en su mayoría en los ratones huéspedes. CONCLUSIÓN: En general, nuestros datos muestran que la eliminación de TLR4 atenuó el desarrollo de GVHD, lo que sugiere que TLR4 podría usarse como un nuevo objetivo y paradigma terapéutico en las terapias de GVHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mice , Animals , Toll-Like Receptor 4/genetics , Mice, Knockout , Chimerism , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Acute Disease
17.
Birth Defects Res ; 115(16): 1500-1512, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37526179

ABSTRACT

INTRODUCTION: Zika virus (ZIKV) is a human teratogen that causes congenital Zika syndrome (CZS). AXL, TLR3, and STAT2 are proteins involved in the ZIKV's entry into cells (AXL) and host's immune response (TLR3 and STAT2). In this study, we evaluated the role of genetic polymorphisms in these three genes as risk factors to CZS, and highlighted which proteins that interact with them could be important for ZIKV infection and teratogenesis. MATERIALS AND METHODS: We evaluate eighty-eight children exposed to ZIKV during the pregnancy, 40 with CZS and 48 without congenital anomalies. The evaluated polymorphisms in AXL (rs1051008), TLR3 (rs3775291), and STAT2 (rs2066811) were genotyped using TaqMan® Genotyping Assays. A protein-protein interaction network was created in STRING database and analyzed in Cytoscape software. RESULTS: We did not find any statistical significant association among the polymorphisms and the occurrence of CZS. Through the analyses of the network composed by AXL, TLR3, STAT2 and their interactions targets, we found that EGFR and SRC could be important proteins for the ZIKV infection and its teratogenesis. CONCLUSION: In summary, our results demonstrated that the evaluated polymorphisms do not seem to represent risk factors for CZS; however, EGFR and SRC appear to be important proteins that should be investigated in future studies.


Subject(s)
Teratogenesis , Zika Virus Infection , Zika Virus , Pregnancy , Child , Female , Humans , Zika Virus Infection/genetics , Zika Virus/physiology , Axl Receptor Tyrosine Kinase , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Protein Interaction Maps/genetics , ErbB Receptors/metabolism , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism
18.
Res Pract Thromb Haemost ; 7(4): 100184, 2023 May.
Article in English | MEDLINE | ID: mdl-37538496

ABSTRACT

Background: CD34+ cells, megakaryocytes (MKs), and platelets express toll-like receptors (TLRs) that enable these cells to amplify the host innate immune response. However, the role of TLR7/TLR8 activation in megakaryopoiesis has not yet been investigated. Objectives: We evaluated the effect of coxsackievirus B3 (CVB3) and synthetic TLR7/TLR8 agonists on the development of human MKs and production of platelets. Methods: CD34+ cells from human umbilical cord were inoculated with CVB3 or stimulated with synthetic TLR7/TLR8 agonists and then cultured in the presence of thrombopoietin. Results: CD34+ cells, MK progenitor cells, and mature MKs expressed TLR7 and TLR8, and exposure to CVB3 resulted in productive infection, as determined by the presence of viral infectious particles in culture supernatants. Cell expansion, differentiation into MKs, MK maturation, and platelet biogenesis were significantly reduced in CD34+-infected cultures. The reduction in MK growth was not due to an alteration in cellular proliferation but was accompanied by an increase in cellular apoptosis and pyroptosis. Impairment of MK generation and maturation of viable cells were also associated with decreased expression of transcription factors involved in these processes. These effects were completely abrogated by TLR7 but not TLR8 antagonists and mimicked by TLR7 but not TLR8 agonists. CVB3 infection of CD34+ cells increased the immunophenotype of MKs characterized as CD148+/CD48+ or CD41+/CD53+ cells. Conclusion: These data suggest a novel role of TLR7 in megakaryo/thrombopoiesis that may contribute to a better understanding of the molecular basis underlying thrombocytopenia and the immunologic role of MKs in viral infection processes.

19.
Arch Virol ; 168(7): 178, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37310504

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a high mortality rate. The clinical course is attributed to the severity of pneumonia and systemic complications. In COVID-19 patients and murine models of SARS-CoV-2 infection, the disease may be accompanied by excessive production of cytokines, leading to an accumulation of immune cells in affected organs such as lungs. Previous reports have shown that SARS-CoV-2 infection antagonizes interferon (IFN)-dependent antiviral response, thereby preventing the expression of IFN-stimulated genes (ISGs). Lower IFN levels have been linked to more-severe COVID-19. Interleukin 27 (IL27) is a heterodimeric cytokine composed of IL27p28 and EBI3 subunits, which induce both pro- and anti-inflammatory responses. Recently, we and others have reported that IL27 also induces a strong antiviral response in an IFN-independent manner. Here, we investigated transcription levels of both IL27 subunits in COVID-19 patients. The results show that SARS-CoV-2 infection modulates TLR1/2-MyD88 signaling in PBMCs and monocytes and induces NF-κB activation and expression of NF-κB-target genes that are dependent on a robust pro-inflammatory response, including EBI3; and activates IRF1 signaling which induces IL27p28 mRNA expression. The results suggest that IL27 induces a robust STAT1-dependent pro-inflammatory and antiviral response in an IFN-independent manner in COVID-derived PBMCs and monocytes as a function of a severe clinical course of COVID-19. Similar results were observed in macrophages stimulated with the SARS-CoV-2 spike protein. Thus, IL27 can trigger an antiviral response in the host, suggesting the possibility of novel therapeutics against SARS-CoV-2 infection in humans.


Subject(s)
COVID-19 , Interleukin-27 , Humans , Antiviral Agents/therapeutic use , COVID-19/immunology , Cytokines , Disease Progression , Interleukin-27/immunology , NF-kappa B , SARS-CoV-2
20.
Eur J Pharmacol ; 952: 175804, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37244377

ABSTRACT

Chronic stress affects millions of people around the world, and it can trigger different behavioral disorders like nociceptive hypersensitivity and anxiety, among others. However, the mechanisms underlaying these chronic stress-induced behavioral disorders have not been yet elucidated. This study was designed to understand the role of high-mobility group box-1 (HMGB1) and toll-like receptor 4 (TLR4) in chronic stress-induced nociceptive hypersensitivity. Chronic restraint stress induced bilateral tactile allodynia, anxiety-like behaviors, phosphorylation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38MAPK) and activation of spinal microglia. Moreover, chronic stress enhanced HMGB1 and TLR4 protein expression at the dorsal root ganglion, but not at the spinal cord. Intrathecal injection of HMGB1 or TLR4 antagonists reduced tactile allodynia and anxiety-like behaviors induced by chronic stress. Additionally, deletion of TLR4 diminished the establishment of chronic stress-induced tactile allodynia in male and female mice. Lastly, the antiallodynic effect of HMGB1 and TLR4 antagonists were similar in stressed male and female rats and mice. Our results suggest that chronic restraint stress induces nociceptive hypersensitivity, anxiety-like behaviors, and up-regulation of spinal HMGB1 and TLR4 expression. Blockade of HMGB1 and TLR4 reverses chronic restraint stress-induced nociceptive hypersensitivity and anxiety-like behaviors and restores altered HMGB1 and TLR4 expression. The antiallodynic effects of HMGB1 and TLR4 blockers in this model are sex independent. TLR4 could be a potential pharmacological target for the treatment of the nociceptive hypersensitivity associated with widespread chronic pain.


Subject(s)
HMGB1 Protein , Hyperalgesia , Animals , Female , Male , Mice , Rats , Alarmins/metabolism , Chronic Disease , HMGB1 Protein/metabolism , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Hyperalgesia/metabolism , Nociception , p38 Mitogen-Activated Protein Kinases/metabolism , Spinal Cord , Toll-Like Receptor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL