Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Pollut ; 335: 122306, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37541380

ABSTRACT

Pesticides are major agricultural stressors for freshwater species. Exposure to pesticides can disrupt the biotic integrity of freshwater ecosystems and impair associated ecosystem functions. Unfortunately, physiological mechanisms through which pesticides affect aquatic organisms are largely unknown. For example, the widely-used insecticide chlorantraniliprole is supposed to be highly selective for target pest species, i.e. Lepidoptera (butterflies), but its effect in aquatic non-target taxa is poorly studied. Using RNA-sequencing data, we quantified the insecticide effect on three aquatic invertebrate species: the caddisfly Lepidostoma basale, the mayfly Ephemera danica and the amphipod Gammarus pulex. Further, we tested how the insecticide-induced transcriptional response is modulated by biotic interaction between the two leaf-shredding species L. basale and G. pulex. While G. pulex was only weakly affected by chlorantraniliprole exposure, we detected strong transcriptional responses in L. basale and E. danica, implying that the stressor receptors are conserved between the target taxon Lepidoptera and other insect groups. We found in both insect species evidence for alterations of the developmental program. If transcriptional changes in the developmental program induce alterations in emergence phenology, pronounced effects on food web dynamics in a cross-ecosystem context are expected.


Subject(s)
Amphipoda , Butterflies , Ephemeroptera , Insecticides , Pesticides , Animals , Insecticides/toxicity , Ecosystem , Insecta , Transcriptome , Invertebrates , Pesticides/analysis , Amphipoda/physiology
2.
BMC Genomics ; 23(1): 816, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482300

ABSTRACT

BACKGROUND: Freshwaters are exposed to multiple anthropogenic stressors, leading to habitat degradation and biodiversity decline. In particular, agricultural stressors are known to result in decreased abundances and community shifts towards more tolerant taxa. However, the combined effects of stressors are difficult to predict as they can interact in complex ways, leading to enhanced (synergistic) or decreased (antagonistic) response patterns. Furthermore, stress responses may remain undetected if only the abundance changes in ecological experiments are considered, as organisms may have physiological protective pathways to counteract stressor effects. Therefore, we here used transcriptome-wide sequencing data to quantify single and combined effects of elevated fine sediment deposition, increased salinity and reduced flow velocity on the gene expression of the amphipod Gammarus fossarum in a mesocosm field experiment. RESULTS: Stressor exposure resulted in a strong transcriptional suppression of genes involved in metabolic and energy consuming cellular processes, indicating that G. fossarum responds to stressor exposure by directing energy to vitally essential processes. Treatments involving increased salinity induced by far the strongest transcriptional response, contrasting the observed abundance patterns where no effect was detected. Specifically, increased salinity induced the expression of detoxification enzymes and ion transporter genes, which control the membrane permeability of sodium, potassium or chloride. Stressor interactions at the physiological level were mainly antagonistic, such as the combined effect of increased fine sediment and reduced flow velocity. The compensation of the fine sediment induced effect by reduced flow velocity is in line with observations based on specimen abundance data. CONCLUSIONS: Our findings show that gene expression data provide new mechanistic insights in responses of freshwater organisms to multiple anthropogenic stressors. The assessment of stressor effects at the transcriptomic level and its integration with stressor effects at the level of specimen abundances significantly contribute to our understanding of multiple stressor effects in freshwater ecosystems.


Subject(s)
Ecosystem
3.
Ecotoxicol Environ Saf ; 225: 112793, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34544019

ABSTRACT

Understanding the effects of chronic exposure to pollutants over generations is of primary importance for the protection of humans and the environment; however, to date, knowledge on the molecular mechanisms underlying multigenerational adverse effects is scarce. We employed a systems biology approach to analyze effects of chronic exposure to gamma radiation at molecular, tissue and individual levels in the nematode Caenorhabditis elegans. Our data show a decrease of 23% in the number of offspring on the first generation F0 and more than 40% in subsequent generations F1, F2 and F3. To unveil the impact on the germline, an in-depth analysis of reproductive processes involved in gametes formation was performed for all four generations. We measured a decrease in the number of mitotic germ cells accompanied by increased cell-cycle arrest in the distal part of the gonad. Further impact on the germline was manifested by decreased sperm quantity and quality. In order to obtain insight in the molecular mechanisms leading to decreased fecundity, gene expression was investigated via whole genome RNA sequencing. The transcriptomic analysis revealed modulation of transcription factors, as well as genes involved in stress response, unfolded protein response, lipid metabolism and reproduction. Furthermore, a drastic increase in the number of differentially expressed genes involved in defense response was measured in the last two generations, suggesting a cumulative stress effect of ionizing radiation exposure. Transcription factor binding site enrichment analysis and the use of transgenic strain identified daf-16/FOXO as a master regulator of genes differentially expressed in response to radiation. The presented data provide new knowledge with respect to the molecular mechanisms involved in reproductive toxic effects and accumulated stress resulting from multigenerational exposure to ionizing radiation.


Subject(s)
Caenorhabditis elegans , Systems Biology , Animals , Caenorhabditis elegans/genetics , Germ Cells , Humans , Radiation, Ionizing , Systems Analysis
SELECTION OF CITATIONS
SEARCH DETAIL