Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters











Publication year range
1.
Int J Phytoremediation ; : 1-12, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258771

ABSTRACT

Floating treatment wetlands (FTWs) are natural solutions for purifying polluted water, providing a green surface area and improving city landscape. This study investigated if the efficiency of FTWs can be improved by aeration for treating contaminated canal water. The three used plant species were Canna generalis, Phragmites australis, and Cyperus alternifolius. The experiment was carried out in three FTWs with aeration and three without aeration to compare the removal for COD, NH4+-N, E. coli, PO43--P, and Fe. In the aerated FTWs, air blowers were installed to run at two different air flow rates of 2.5 L min-1 (Batch 1) and 1.0 L min-1 (Batch 2). Aeration increased the dissolved oxygen concentrations in each tank, which came over 6.5 mg L-1 in both batches. This study sheds light on the positive impact of aeration has on COD and NH4+-N removal: these are nearly three-fold higher compared to non-aeration conditions and reached approximately 99% (1.7-log reduction) for E. coli removal. Additionally, the plant growth rate in the aerated FTWs was higher than in the non-aerated ones. The average shoot growth rate of Phragmites australis was 0.76 cm d-1 for the aerated FTW which was two-fold higher compared to the non-aerated one.


This article investigates the treatment performance of Floating Treatment Wetlands (FTWs) coupled with aeration to reduce the diffuse pollution in canal water. The results showed that the aeration enhanced the treatment of organics and nutrients, and the plant growth of the aerated FTWs was two-fold higher than that of non-aerated FTWs, which has a phytoremediation potential for treating canal water in Ho Chi Minh city.

2.
Sci Total Environ ; 952: 175864, 2024 Nov 20.
Article in English | MEDLINE | ID: mdl-39216754

ABSTRACT

Combined sewer overflows (CSOs) release a significant amount of pollutants, including microplastics (MPs), due to the discharge of untreated water into receiving water bodies. Constructed Wetlands (CWs) offer a promising strategy for CSO treatment and have recently attracted attention as a potential solution for MP mitigation. Nevertheless, limited research on MP dynamics within CSO events and MP removal performance in full-scale CW systems poses a barrier to this frontier of application. This research aims to address both these knowledge gaps, representing the first investigation of a multi-stage CSO-CW for MP removal. The study presents one year of seasonal data from the CSO-CW upstream of the WWTP in Carimate (Italy), evaluating the correlation of MP abundance with different water quality/quantity parameters and associated ecological risks. The results show a clear trend in MP abundance, which increases with rainfall intensity. The strong correlation between MP concentration, flow rate, and total suspended solids (TSS) validates the first flush phenomenon hypothesis and its impact on MP release during CSOs. Chemical characterization identifies acrylonitrile-butadiene-styrene (ABS), polyethylene (PE), and polypropylene (PP) as predominant polymers. The first vertical subsurface flow (VF) stage showed removal rates ranging from 40 % to 77 %. However, the unexpected increase in MP concentrations after the second free water surface (FWS) stage suggests the stochasticity of CSO events and the different hydraulic characteristics of the CW units have diverse effects on MP retention. These data confirm filtration as the main retention mechanism for MP within CW systems. The MP ecological risk assessment indicates a high-risk category for most of the water samples, mainly related to the frequent presence of ABS fragments. The results contribute to the current understanding of MPs released by CSOs and provide insights into the performance of different treatment units within a large-scale CSO-CW system, suggesting the requirement for further attention.

3.
Sci Total Environ ; 934: 173237, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38761940

ABSTRACT

Per- and poly-fluoroalkyl substances (PFAS) have emerged as newly regulated micropollutants, characterised by extreme recalcitrance and environmental toxicity. Constructed wetlands (CWs), as a nature-based solution, have gained widespread application in sustainable water and wastewater treatment and offer multiple environmental and societal benefits. Despite CWs potential, knowledge gaps persist in their PFAS removal capacities, associated mechanisms, and modelling of PFAS fate. This study carried out a systematic literature review, supplemented by unpublished experimental data, demonstrating the promise of CWs for PFAS removal from the influents of varying sources and characteristics. Median removal performances of 64, 46, and 0 % were observed in five free water surface (FWS), four horizontal subsurface flow (HF), and 18 vertical flow (VF) wetlands, respectively. PFAS adsorption by the substrate or plant root/rhizosphere was deemed as a key removal mechanism. Nevertheless, the available dataset resulted unsuitable for a quantitative analysis. Data-driven models, including multiple regression models and machine learning-based Artificial Neural Networks (ANN), were employed to predict PFAS removal. These models showed better predictive performance compared to various mechanistic models, which include two adsorption isotherms. The results affirmed that artificial intelligence is an efficient tool for modelling the removal of emerging contaminants with limited knowledge of chemical properties. In summary, this study consolidated evidence supporting the use of CWs for mitigating new legacy PFAS contaminants. Further research, especially long-term monitoring of full-scale CWs treating real wastewater, is crucial to obtain additional data for model development and validation.

4.
Bioresour Technol ; 402: 130794, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703966

ABSTRACT

Carbon deficits in inflow frequently lead to inefficient nitrogen removal in constructed wetlands (CWs) treating tailwater. Solid carbon sources, commonly employed to enhance denitrification in CWs, increase carbon emissions. In this study, MnO2 was incorporated into polycaprolactone substrates within CWs, significantly enhancing NH4+-N and NO3--N removal efficiencies by 48.26-59.78 % and 96.84-137.23 %, respectively. These improvements were attributed to enriched nitrogen-removal-related enzymes and increased plant absorption. Under high nitrogen loads (9.55 ± 0.34 g/m3/d), emissions of greenhouse gases (CO2, CH4, and N2O) decreased by 147.23-202.51 %, 14.53-86.76 %, and 63.36-87.36 %, respectively. N2O emissions were reduced through bolstered microbial nitrogen removal pathways by polycaprolactone and MnO2. CH4 accumulation was mitigated by the increased methanotrophs and dampened methanogenesis, modulated by manganese. Additionally, manganese-induced increases in photosynthetic pigment contents (21.28-64.65 %) fostered CO2 sequestration through plant photosynthesis. This research provides innovative perspectives on enhancing nitrogen removal and reducing greenhouse gas emissions in constructed wetlands with polymeric substrates.


Subject(s)
Carbon , Methane , Nitrogen , Wetlands , Nitrogen/metabolism , Carbon/metabolism , Methane/metabolism , Polyesters/metabolism , Polyesters/chemistry , Manganese/pharmacology , Plants/metabolism , Denitrification , Nitrous Oxide/metabolism , Carbon Dioxide/metabolism , Biodegradation, Environmental , Photosynthesis
5.
Chemosphere ; 358: 142142, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677619

ABSTRACT

The presence of non-reactive phosphorus (NRP) in environmental waters presents a potential risk of eutrophication and poses challenges for the removal of all phosphorus (P) fractions. This study presents the first investigation on the removal performance and mechanism of three model NRP compounds, sodium tripolyphosphate (STPP), adenosine 5'-monophosphate (AMP) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC), in the sediment microbial fuel cell-floating treatment wetland (SMFC-FTW). Coupling SMFC with plants proved to be effective at removing NRP via electrochemical oxidation and plant uptake, particularly the challenging-to-degrade phosphonates that contain C-P bonds. Compared with the control group, the removal efficiencies of the model NRP in SMFC were observed to increase by 11.9%-20.8%. SMFC promoted the conversion of NRP to soluble reactive phosphorus (sRP) and the transfer of P to sediment. Furthermore, the electrochemical process enhanced both plant growth and P uptake, and increased P assimilation by 72.6%. The presence of plants in the bioelectrochemical system influenced the occurrence and fate of P by efficiently assimilating sRP and supporting microbial transformation of NRP. Consequently, plants enhanced the removal efficiencies of all P fractions in the overlying water. This study demonstrated that SMFC-FTW is a promising technology to remove various NRP species in environmental waters.


Subject(s)
Bioelectric Energy Sources , Geologic Sediments , Phosphorus , Water Pollutants, Chemical , Wetlands , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Biodegradation, Environmental , Eutrophication , Waste Disposal, Fluid/methods
6.
J Environ Manage ; 351: 119681, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043314

ABSTRACT

In the present study, the technical feasibility of an electrocoagulation-treatment wetland continuous flow system, for the removal of organic matter from landfill leachate (LL), was evaluated. The response surface methodology (MSR) was used to assess the individual and combined effects of the applied potential and distance between electrodes, on the removal efficiency and optimization of the electrocoagulation process. The hybrid treatment wetland system consisted of a vertical flow system coupled to a horizontal subsurface flow system, both planted with Canna indica. For a chemical oxygen demand (COD) concentration - without pretreatment of 5142.8 ± 2.5 mg L-1, the removal percentage for the electrocoagulation system was 79.4 ± 0.16%, under the optimal working conditions (Potential: 20 V; Distance: 2.0 cm). The COD removal efficiency in the treatment wetland with Canna indica showed a dependence with the hydraulic retention time, reaching 59.2 ± 0.2 % over 15 days. The overall efficiency of the system was about 91.5 ± 0.02 % removal of COD. In addition, a decrease in the biochemical oxygen demand (94.8 ± 0.14%) and total suspended solids (88.2 ± 0.22%), also related to the contamination levels of the LL, were obtained. This study, for the first time, shows that the coupling of electrocoagulation together with a treatment wetland system is a good alternative for the removal of organic contaminants present in LL.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Wetlands , Electrocoagulation/methods , Biological Oxygen Demand Analysis , Electrodes
7.
Front Microbiol ; 14: 1223838, 2023.
Article in English | MEDLINE | ID: mdl-37577448

ABSTRACT

Xenobiotics often challenge the principle of microbial infallibility. One example is acesulfame introduced in the 1980s as zero-calorie sweetener, which was recalcitrant in wastewater treatment plants until the early 2010s. Then, efficient removal has been reported with increasing frequency. By studying acesulfame metabolism in alphaproteobacterial degraders of the genera Bosea and Chelatococcus, we experimentally confirmed the previously postulated route of two subsequent hydrolysis steps via acetoacetamide-N-sulfonate (ANSA) to acetoacetate and sulfamate. Genome comparison of wildtype Bosea sp. 100-5 and an acesulfame degradation-defective mutant revealed the involvement of two plasmid-borne gene clusters. The acesulfame-hydrolyzing sulfatase is strictly manganese-dependent and belongs to the metallo beta-lactamase family. In all degraders analyzed, it is encoded on a highly conserved gene cluster embedded in a composite transposon. The ANSA amidase, on the other hand, is an amidase signature domain enzyme encoded in another gene cluster showing variable length among degrading strains. Transposition of the sulfatase gene cluster between chromosome and plasmid explains how the two catabolic gene clusters recently combined for the degradation of acesulfame. Searching available genomes and metagenomes for the two hydrolases and associated genes indicates that the acesulfame plasmid evolved and spread worldwide in short time. While the sulfatase is unprecedented and unique for acesulfame degraders, the amidase occurs in different genetic environments and likely evolved for the degradation of other substrates. Evolution of the acesulfame degradation pathway might have been supported by the presence of structurally related natural and anthropogenic compounds, such as aminoacyl sulfamate ribonucleotide or sulfonamide antibiotics.

8.
Sci Total Environ ; 899: 165595, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37467995

ABSTRACT

Floating treatment wetlands (FTW) are nature-based solutions for the purification of open water systems such as rivers, ponds, and lakes polluted by diffuse sources as untreated or partially treated domestic wastewater and agricultural run-off. Compared with other physicochemical and biological technologies, FTW is a technology with low-cost, simple configuration, easy to operate; has a relatively high efficiency, and is energy-saving, and aesthetic. Water remediation in FTWs is supported by plant uptake and the growth of a biofilm on the water plant roots, so the selection of the macrophyte species is critical, not only to pollutant removal but also to the local ecosystem integrity, especially for full-scale implementation. The key factors such as buoyant frame/raft, plant growth support media, water depth, seasonal variation, and temperature have a considerable role in the design, operation, maintenance, and pollutant treatment performance of FTW. Harvesting is a necessary process to maintain efficient operation by limiting the re-pollution of plants in the decay phase. Furthermore, the harvested plant biomass can serve as a green source for the recovery of energy and value-added products.


Subject(s)
Water Pollutants, Chemical , Wetlands , Ecosystem , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Plants , Water , Nitrogen/analysis
9.
Sci Total Environ ; 895: 165131, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37364834

ABSTRACT

Artificial aeration is a widely used approach in wastewater treatment to enhance the removal of pollutants, however, traditional aeration techniques have been challenging due to the low oxygen transfer rate (OTR). Nanobubble aeration has emerged as a promising technology that utilise nano-scale bubbles to achieve higher OTRs owing to their large surface area and unique properties such as longevity and reactive oxygen species generation. This study, for the first time, investigated the feasibility of coupling nanobubble technology with constructed wetlands (CWs) for treating livestock wastewater. The results demonstrated that nanobubble-aerated CWs achieved significantly higher removal efficiencies of total organic carbon (TOC) and ammonia (NH4+-N), at 49 % and 65 %, respectively, compared to traditional aeration treatment (36 % and 48 %) and the control group (27 % and 22 %). The enhanced performance of the nanobubble-aerated CWs can be attributed to the nearly three times higher amount of nanobubbles (Ø < 1 µm) generated from the nanobubble pump (3.68 × 108 particles/mL) compared to the normal aeration pump. Moreover, the microbial fuel cells (MFCs) embedded in the nanobubble-aerated CWs harvested 5.5 times higher electricity energy (29 mW/m2) compared to the other groups. The results suggested that nanobubble technology has the potential to trigger the innovation of CWs by enhancing their capacity for water treatment and energy recovery. Further research needs are proposed to optimise the generation of nanobubbles, allowing them to be effectively coupled with different technologies for engineering implementation.


Subject(s)
Bioelectric Energy Sources , Water Purification , Waste Disposal, Fluid/methods , Wetlands , Wastewater , Nitrogen/analysis
10.
Sci Total Environ ; 877: 162669, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36907411

ABSTRACT

Floating Treatment Wetlands (FTWs) are an emerging ecological engineering technology being applied the restoration of eutrophic urban water bodies. Documented water-quality benefits of FTW include nutrient removal, transformation of pollutants, and reduction in bacterial contamination. However, translating findings from short-duration lab and mesocosm scale experiments, into sizing criteria that might be applied to field installations is not straightforward. This study presents the results of three well established (>3 years) pilot-scale (40-280 m2) FTW installations in Baltimore, Boston, and Chicago. We quantify annual phosphorus removal through harvesting of above-ground vegetation and find an average removal rate of 2 g-P m-2. In our own study and in a review of literature, we find limited evidence of enhanced sedimentation as a pathway for phosphorus removal. In addition to water-quality benefits, FTW planted with native species, provide valuable wetland habitat; and theoretically improve ecological function. We document efforts to quantify the local effect of FTW installations on benthic and sessile macroinvertebrates, zooplankton, bloom-forming cyanobacteria, and fish. Data from these three projects suggest that, even on a small scale, FTW produce localized changes in biotic structure that reflect improving environmental quality. This study provides a simple and defensible method for sizing FTW for nutrient removal in eutrophic waterbodies. We propose several key research pathways which would advance our understanding of the effects FTW have on the ecosystem they are deployed in.


Subject(s)
Water Pollutants, Chemical , Wetlands , Ecosystem , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Nitrogen/analysis , Phosphorus/metabolism , Water
11.
Sci Total Environ ; 858(Pt 1): 159723, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36309266

ABSTRACT

Nature-based solutions such as constructed wetlands (CW) are considered as a sustainable, green technology for greywater treatment. However, their efficiency to remove microplastics is not well-known even though greywater is considered as a significant source of microfiber pollution. In this study, the removal of fiber microplastics from greywater using a vertical flow constructed wetland (VFCW) was investigated. For the purposes of this study, an experimental wetland was constructed, planted with the flowering plant Zantedeschia aethiopica and filled with a substrate made of sand/gravel of several sizes. The system's performance was monitored for five months during which it received real laundry wastewater. Promising results were obtained showing the significant removal of microfibers from the influent (> 95 %). Moreover, the ability of the system to remove microfibers from laundry wastewater was not significantly affected from the hydraulic loading rate (HLR) applied. The average microfibers concentration decreased from 71 ± 25 microparticles/L in the influent to 1 ± 1 microparticles/L in the effluent of VFCW when an HLR of 63.7 mm/d was applied. High removal efficiencies were also observed for COD and turbidity (93 % and 94 %, respectively). Thus, the results indicate a significant improvement in the overall quality of laundry wastewater due to the use of the VFCW.


Subject(s)
Waste Disposal, Fluid , Wetlands , Waste Disposal, Fluid/methods , Microplastics , Plastics , Wastewater , Nitrogen
12.
Sci Total Environ ; 862: 160799, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36493836

ABSTRACT

Sludge treatment wetland-microbial fuel cell (STW-MFC) is a unique sludge treatment process that produces bioelectricity, but its technology is still in its infancy. This study investigated the electrochemical properties, organic matter characteristics, leachate purification, and microbial community structure of STW-MFCs as affected by electrode location. When electrodes were placed in the filler layer, the STW-MFC system presented a higher power generation capacity (maximum output power density: 0.498 W/m3; peak cell voltage: 0.879 V) and organic matter degradation efficiency. The hydrophilic fraction was the main dissolved organic carbon fraction in sludge extracellular biological organic matter (EBOM) and leachate dissolved organic matter (DOM). Aromatics were mainly concentrated in the hydrophobic acid fraction. The UV-254 content of sludge EBOM decreased mainly in the hydrophilic and transphilic acid fractions. The excitation-emission matrix analysis showed that tryptophan-like protein was more easily eliminated than tyrosine-like protein. In addition, there was a strong correlation between voltage and NH4+ removal efficiency; a negative correlation between total chemical oxygen demand (TCOD), total nitrogen (TN), and total phosphorus (TP) removal efficiency, and a negative correlation between pH and TN, TP, and NH4+ removal efficiencies. High-throughput sequencing showed that the system was most abundant in Thermomonas, Geothrix and Geobacter when the electrodes were placed in the filled layer, while the levels of genes for membrane transport, carbohydrate metabolism and energy metabolism functions were higher than in other systems. This work will support STW- MFC widespread implementation by illuminating the underlying mechanics of different anode positions.


Subject(s)
Bioelectric Energy Sources , Sewage/chemistry , Wetlands , Electrodes , Dissolved Organic Matter , Electricity
13.
Water Environ Res ; 94(8): e10767, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35941098

ABSTRACT

A novel tubular bioreactor-enhanced floating treatment wetland (TB-EFTW) was developed for the in situ treatment of high nitrate river water. When compared with the enhanced floating treatment wetland (EFTW), the TB-EFTW system achieved 30% higher total nitrogen removal efficiency. Further, the average TN level of the TB-EFTW effluent was below the Grade IV requirement (1.5 mg/L) specified in Chinese standard (GB3838-2002). Microbial analysis revealed that both aerobic and anoxic denitrifying bacteria coexisted in the new system. The relative abundance of aerobic and anoxic denitrifiers were 42.69% and 22% at the middle and end of the tubular bioreactor (TB), respectively. It is reasonable to assume that effective nitrogen removal can mainly be attributed to the addition of solid carbon source and the spatial difference in DO distribution (oxic-anoxic areas in sequence) inside the TB. The initial investment cost and operating costs associated with the TB-EFTW system are approximately 14,000 and 3500 yuan per 1000 m3 river water, respectively. Considering its low cost, minimal maintenance requirements, and effective nitrogen removal, this newly developed system can be regarded as a promising technology for treating high nitrate river water. PRACTITIONER POINTS: A novel TB-EFTW system was developed to upgrade traditional in situ treatment techniques. The TB-EFTW could achieve 30% higher nitrogen removal efficiency than EFTWs. Both aerobic and anoxic denitrifying bacteria coexisted in the system. The system shows better technical and economic performance compared with routine techniques.

14.
Sci Total Environ ; 845: 157318, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35839882

ABSTRACT

The environmental prevalence of antimicrobial resistance (AMR) has come into focus under the One Health concept. Wastewater treatment systems are among the significant sources of AMR in the environment. In such systems, it is uncertain to which extent antimicrobials present at sub-inhibitory concentrations constitute a selective pressure for bacterial maintenance and acquisition of antibiotic resistance (AR) genes. Here, we mapped AMR to inhibitors of folate biosynthesis in an aerated and a non-aerated horizontal subsurface flow treatment wetland receiving the same pre-treated municipal wastewater. General water characteristics and the concentrations of folate inhibitors were determined to define the ambient conditions over the longitudinal axis of the two treatment wetlands. Profiling of AMR as well as class 1 integrons, a carrier of AR genes against folate inhibitors and other antimicrobials, was conducted by cultivation-dependent and -independent methods. The wetlands achieved mean reductions of AR gene copy numbers in the effluents of at least 2 log, with the aerated system performing better. The folate inhibitors had no noticeable effect on the prevalence of respective AR genes. However, there was a transient increase of AR gene copy numbers and AR gene cassette composition in class 1 integrons in the aerated wetland. The comparison of all data from both wetlands suggests that higher levels of cellular stress in the aerated system promoted the mobility of AR genes via enhancing the activity of the DNA recombinase of the class 1 integron. The findings highlight that environmental conditions that modulate the activity of this genetic element can be more important for the fate of associated AR genes in treatment wetlands than the ambient concentration of the respective antimicrobial agents. By extrapolation, the results suggest that cellular stress also contributes to the mobility of AR gene in other wastewater treatment systems.


Subject(s)
Waste Disposal, Fluid , Wetlands , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Folic Acid , Integrons/genetics , Waste Disposal, Fluid/methods , Wastewater/microbiology
15.
J Environ Manage ; 317: 115416, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35653839

ABSTRACT

Conventional oil spill recovery may cause significant damage to shoreline habitats during the removal of oiled material and from human and equipment interaction. In addition, these methods are costly and can leave a significant amount of residual oil in the environment. Biological remediation strategies may be a less invasive option for recovering oil from sensitive regions, with potential to increase recovery. Floating treatment wetlands are a growing area of interest for biodegradation of oil facilitated by plant-bacterial partnerships. Plants are able to stimulate microbial colonization in the rhizosphere, creating greater opportunity for contaminant interaction and degradation. A literature review analysis revealed thirteen articles researching this topic, and found that floating treatment wetlands have high potential to degrade oil contaminants. In some instances, plants and inoculated bacteria exhibited the highest degradation potential, however, plants alone had higher degradation potential than bacteria alone. Research is needed to explore how floating treatment wetlands perform in field-based trials and under variable environmental conditions.


Subject(s)
Petroleum Pollution , Petroleum , Bacteria/metabolism , Biodegradation, Environmental , Humans , Petroleum/metabolism , Petroleum Pollution/analysis , Rhizosphere , Wetlands
16.
J Environ Manage ; 318: 115463, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35724571

ABSTRACT

Efforts to improve water quality of eutrophic ponds often involve implementing changes to watershed management practices to reduce external nutrient loads. While this is required for long-term recovery and prevention, eutrophic conditions are often sustained through the recycling of internal nutrients already present within the waterbody. In particular, internal phosphorus bound to organic material and adsorbed to sediment has the potential to delay lake recovery for decades. Thus, pond and watershed management techniques are needed that not only reduce external nutrient loading but also mitigate the effects of internal nutrients already present. Therefore, our objective was to demonstrate a biological and chemical approach to remove and sequester nutrients present and entering an urban retention pond. A novel biological and chemical management technique was designed by constructing a 37 m2 (6.1 m × 6.1 m) floating treatment wetland coupled with a slow-release lanthanum composite inserted inside an airlift pump. The floating treatment wetland promoted microbial denitrification and plant uptake of nitrogen and phosphorus, while the airlift pump slowly released lanthanum to the water column over the growing season to reduce soluble reactive phosphorus. The design was tested at the microcosm and field scales, where nitrate-N and phosphate-P removal from the water column was significant (α = 0.05) at the microcosm scale and observed at the field scale. Two seasons of field sampling showed both nitrate-N and phosphate-P concentrations were reduced from 50 µg L-1 in 2020 to <10 µg L-1 in 2021. Load calculations of incoming nitrate-N and phosphate-P entering the retention pond from the surrounding watershed indicate the presented biological-chemical treatment is sustainable and will minimize the effects of nutrient loading from nonpoint source pollution.


Subject(s)
Water Pollutants, Chemical , Water Quality , Eutrophication , Lanthanum , Nitrates , Nitrogen/analysis , Phosphates , Phosphorus/analysis , Ponds , Water Pollutants, Chemical/analysis
17.
Biology (Basel) ; 11(2)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35205055

ABSTRACT

The retention of heavy metals in water treatment wetlands is well documented, but little understood. Fluxes to and from sediments for moderate concentrations of dissolved metals are particularly unknown. Treatment wetlands are dried out seasonally or occasionally for maintenance. The extent to which heavy metals may be released by drying/re-flooding is of particular concern because of the potential for toxic levels of metals to be mobilized. A 36 ha treatment wetland receiving treated oil refinery effluent in California was dried for 6 months, then re-flooded to an average depth of >10 cm. The concentrations of 11 metals, As and Se in inflow, outflow, and porewaters were measured weekly for 4 months. Mass flux rates showed that the wetland acted as a sink for As and Se, six metals (Co, Cr, Mg, Mn, Ni, and Sr) and S were overall sources and five showed zero net flux (Ba, Cu, Fe, Mo, and Zn). Porewater results indicate that oxidation of the sediments caused the source metals to be released. Removal for As > Cu, Fe, Mo, Zn > Co, Mn, Ni was consistent with the thermodynamically-predicted 'sulfide ladder', suggesting that available sulfide was insufficient to re-sequester the entire pool of mobile chalcophile elements. Our results suggest that less-soluble sulfide metals may be immobilized prior to more-soluble metals following drying/re-flooding in coastal systems with multiple metal contaminants. Ponding for up to several weeks, depending on the metals of concern, will facilitate metal re-immobilization within sediments before waters are released and minimize impacts downstream. Research on how to speed-up the conversion of soluble metals to their insoluble sulfides or other immobilized forms is urgently needed.

18.
J Hazard Mater ; 429: 128326, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35101757

ABSTRACT

Strategies for remediation of per- and polyfluoroalkyl substances (PFAS) generally prioritise highly contaminated source areas. However, the mobility of PFAS in the environment often results in extensive low-level contamination of surface waters across broad areas. Constructed Floating Wetlands (CFWs) promote the growth of plants in buoyant structures where pollutants are assimilated into plant biomass. This study examined the hydroponic growth of Juncus krausii, Baumea articulata and Phragmites australis over a 28-day period for remediation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) contaminated (0.2 µg/L to 30 µg/L) urban stormwater. With increasing PFOA and PFOS concentrations, accumulation in plant species increased although root and shoot distribution varied depending on PFAS functional group. Less PFOA than PFOS accumulated in plant roots (0.006-0.16 versus 0.008-0.68 µg/g), while more PFOA accumulated in the plant shoots (0.02-0.55 versus 0.01-0.16 µg/g) indicating translocation to upper plant portions. Phragmites australis accumulated the highest overall plant tissue concentrations of PFOA and PFOS. The NanoSIMS data demonstrated that PFAS associated with roots and shoots was absorbed and not just surface bound. These results illustrate that CFWs have the potential to be used to reduce PFAS contaminants in surface waters.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Plants , Water , Water Pollutants, Chemical/analysis , Wetlands
19.
Sci Total Environ ; 824: 153981, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35181353

ABSTRACT

This study investigated the spatial distribution of clogging matter in a full-scale horizontal subsurface flow treatment wetland (HSSF TW) based on an electrical resistivity tomography (ERT) method, comparing the performance of two different electrode configurations (i.e., Schlumberger and Wenner arrays). The results indicated that during the draining phase, the substrate apparent resistivities of the full-scale HSSF TWs were negatively correlated with the clogging matter fraction (v/v), and a functional relationship between the two parameters was established using a first-order k-C* model. The detected clogging matter fraction (v/v) based on the Schlumberger array showed higher accuracy (linear slope = 0.900, R-squared = 0.902) than the Wenner array (linear slope = 0.685, R-squared = 0.685). Most of the severe substrate clogging in the full-scale HSSF TW occurred within a 10-m flow distance, and the distribution of the clogging matter showed different characteristics at different substrate depths. From a cross section positioned 1 m from the inlet, the average clogging matter fraction (v/v) at a 0-0.30 m depth (23.1 ± 14.9%) was significantly higher than that at a 0.30-0.80 m depth (5.0 ± 2.1%). The clogging matter at a 5-m flow distance was evenly distributed at different substrate depths. Only a few localized clogging zones were observed in the cross section at a 10-m flow distance. This study provided an accurate and feasible method for investigating the volume fraction of clogging matters containing different organic contents and demonstrates the spatial heterogeneity of clogging matter in HSSF TWs.


Subject(s)
Waste Disposal, Fluid , Wetlands , Electricity , Electrodes , Tomography , Waste Disposal, Fluid/methods
20.
J Environ Manage ; 307: 114548, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35078061

ABSTRACT

A bioelectrochemical assisted sludge treatment wetland (BE-STW) is a promising technology used in the elimination of organic compounds and recovery of bio-energy. In this study, four BE-STW systems were constructed to investigate the effects of some substrates (i.e. graphite particles, zeolite, ceramsite, and gravel) on organic compounds biodegradation and transformation, electricity production, and anodic bacterial community. The maximum output voltages were 0.939, 0.870, 0.741 and 0.835 V, and the maximum power densities were 0.467, 0.143, 0.110, and 0.131 W/m3 for the graphite particles (BS-GP), zeolite (BS-Z), ceramsite (BS-C), and gravel (BS-G) systems, respectively. Also, the dissolved organic carbon (DOC) removal rates were 61.84%, 28.54%, 25.56%, and 18.34% in BS-GP, BS-G, BS-Z, and BS-C, respectively. The degradation of aromatic compounds in sludge extracellular biological organic matter (EBOM) was mainly due to the decrease of hydrophilic fraction (HPI) and transphilic acid fraction (TPI-A) contents. Moreover, aromatic proteins were preferentially removed in BS-Z. For BS-C, the tyrosine-like proteins and humic acid-like substances in TPI-A were totally removed. An excitation-emission matrix (EEM) analysis showed that the fluorescent intensity of the humic acid-like substances was the lowest in BS-GP, and no fluorescence peaks of fulvic acid-like substances were observed. Finally, at the genus level, Longilinea, Terrimonas, Ottowia, and Saccharibacteria_genera_incertae_sedis were the dominant bacteria in BE-STW, and Methylophilus was also only detected in BS-GP. These results confirmed that substrate materials have a significant impact on the preferentially degraded organic matter in BE-STWs, which can provide a theoretical basis for the practical application of STW in the future.


Subject(s)
Microbiota , Sewage , Humic Substances , Organic Chemicals , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL