Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 717
Filter
1.
Biomed Pharmacother ; 180: 117480, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39357330

ABSTRACT

Breast cancer remains the leading cause of cancer-related morbidity and mortality among women worldwide, underscoring the urgent need for novel diagnostic and therapeutic strategies. This review explores the emerging roles of circular RNAs (circRNAs) within extracellular vesicles (exosomes) in breast cancer. circRNAs, known for their stability and tissue-specific expression, are aberrantly expressed in breast cancer and regulate critical cellular processes such as proliferation, migration, and apoptosis, positioning them as promising biomarkers. Exosomes facilitate intercellular communication by delivering circRNAs, reflecting the physiological and pathological state of their source cells. This review highlights the multifaceted roles of exosomal circRNAs in promoting tumor growth, metastasis, and drug resistance through their modulation of tumor metabolism, the tumor microenvironment, and immune responses. In particular, we emphasize their contributions to chemotherapy resistance and their potential as both diagnostic markers and therapeutic targets. By synthesizing current research, this review provides novel insights into the clinical applications of exosomal circRNAs, offering a foundation for future studies aimed at improving breast cancer management through non-invasive diagnostics and targeted therapies.

3.
Transl Oncol ; 50: 102143, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39366301

ABSTRACT

Tumor-infiltrating lymphocytes (TILs) are essential components of the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). Still, it is difficult to describe due to their heterogeneity. In this study, five cell markers from NSCLC patients were analyzed. We segmented tumor cells (TCs) and TILs using Efficientnet-B3 and explored their quantitative information and spatial distribution. After that, we simulated multiplex immunohistochemistry (mIHC) by overlapping continuous single chromogenic IHCs slices. As a result, the proportion and the density of programmed cell death-ligand 1 (PD-L1)-positive TCs were the highest in the core. CD8+ T cells were the closest to the tumor (median distance: 41.71 µm), while PD-1+T cells were the most distant (median distance: 62.2µm), and our study found that most lymphocytes clustered together within the peritumoral range of 10-30 µm where cross-talk with TCs could be achieved. We also found that the classification of TME could be achieved using CD8+ T-cell density, which is correlated with the prognosis of patients. In addition, we achieved single chromogenic IHC slices overlap based on CD4-stained IHC slices. We explored the number and spatial distribution of cells in heterogeneous TME of NSCLC patients and achieved TME classification. We also found a way to show the co-expression of multiple molecules economically.

4.
J Gene Med ; 26(9): e3723, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39228142

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) remains a formidable challenge in oncology, with its pathogenesis and progression influenced by myriad factors. Among them, the pervasive organic synthetic compound, bisphenol A (BPA), previously linked with various adverse health effects, has been speculated to play a role. This study endeavors to elucidate the complex interplay between BPA, the immune microenvironment of HCC, and the broader molecular landscape of this malignancy. METHODS: A comprehensive analysis was undertaken using data procured from both The Cancer Genome Atlas and the Comparative Toxicogenomics Database. Rigorous differential expression analyses were executed, supplemented by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. In addition, single-sample gene set enrichment analysis, gene set enrichment analysis and gene set variation analysis were employed to reveal potential molecular links and insights. Immune infiltration patterns were delineated, and a series of in vitro experiments on HCC cells were conducted to directly assess the impact of BPA exposure. RESULTS: Our findings unveiled a diverse array of active immune cells and functions within HCC. Distinct correlations emerged between high-immune-related scores, established markers of the tumor microenvironment and the expression of immune checkpoint genes. A significant discovery was the identification of key genes simultaneously associated with immune-related pathways and BPA exposure. Leveraging these genes, a prognostic model was crafted, offering predictive insights into HCC patient outcomes. Intriguingly, in vitro studies suggested that BPA exposure could promote proliferation in HCC cells. CONCLUSION: This research underscores the multifaceted nature of HCC's immune microenvironment and sheds light on BPA's potential modulatory effects therein. The constructed prognostic model, if validated further, could serve as a robust tool for risk stratification in HCC, potentially guiding therapeutic strategies. Furthermore, the implications of the findings for immunotherapy are profound, suggesting new avenues for enhancing treatment efficacy. As the battle against HCC continues, understanding of environmental modulators like BPA becomes increasingly pivotal.


Subject(s)
Benzhydryl Compounds , Carcinoma, Hepatocellular , Disease Progression , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Phenols , Tumor Microenvironment , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Benzhydryl Compounds/adverse effects , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Liver Neoplasms/chemically induced , Liver Neoplasms/pathology , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Phenols/adverse effects , Phenols/toxicity , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Gene Expression Profiling , Biomarkers, Tumor/genetics
5.
Cell Biosci ; 14(1): 113, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227992

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, characterized by difficulties in early diagnosis, prone to distant metastasis, and high recurrence rates following surgery. Extracellular vesicles (EVs) are a class of cell-derived particles, including exosomes, characterized by a phospholipid bilayer. They serve as effective carriers for intercellular communication cargo, including proteins and nucleic acids, and are widely involved in tumor progression. They are being explored as potential tumor biomarkers and novel therapeutic avenues. We provide a brief overview of the biogenesis and characteristics of EVs to better understand their classification standards. The focus of this review is on the research progress of EV-associated proteins in the field of HCC. EV-associated proteins are involved in tumor growth and regulation in HCC, participate in intercellular communication within the tumor microenvironment (TME), and are implicated in events including angiogenesis and epithelial-mesenchymal transition (EMT) during tumor metastasis. In addition, EV-associated proteins show promising diagnostic efficacy for HCC. For the treatment of HCC, they also demonstrate significant potential including enhancing the efficacy of tumor vaccines, and as targeting cargo anchors. Facing current challenges, we propose the future directions of research in this field. Above all, research on EV-associated proteins offers the potential to enhance our comprehension of HCC and offer novel insights for developing new treatment strategies.

7.
Transl Cancer Res ; 13(8): 4062-4084, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39262488

ABSTRACT

Background: The diphthamide (DPH) gene family is a group of genes that encode a set of enzymes that specifically modify eukaryotic elongation factor 2 (eEF2). Although previous studies have shown a link between the DPH genes (DPHs) and carcinogenesis, it is still unknown how the DPHs affect hepatocellular carcinoma (HCC). This study aimed to describe the expression, clinical significance, and potential mechanisms of DPHs in HCC. Methods: Real-time quantitative polymerase chain reaction (RT-qPCR), Genotype-Tissue Expression (GTEx), and The Cancer Genome Atlas (TCGA) databases were utilized to research the expression of DPHs in HCC. The relationship between the expression of DPHs and the clinicopathological characteristics of HCC patients was investigated using TCGA data, and their diagnostic value was evaluated using receiver operating characteristic (ROC) curves and their prognostic value was analyzed using Kaplan-Meier curves and univariate and multivariate Cox regression analyses. Potential reasons for the upregulation of DPH2 and DPH3 (DPH2,3) expression in HCC were analyzed using multiple databases. Additionally, this study also explored the potential biological functions of DPH2,3 in HCC via gene sets enrichment analysis (GSEA). Correlation analysis of DPH2,3 expression with immune-related genes and immune checkpoints was performed using Spearman's correlation analysis, and single-sample GSEA was used to assess the distribution of tumor-infiltrating immune cell types. Results: DPH1,7 expression was downregulated in tumor tissues while DPH2,3,5,6 expression was upregulated and showed a similar expression pattern in HCC. The results of the ROC analysis suggested that DPHs had valuable diagnostic properties in HCC. Kaplan-Meier analysis demonstrated that DPH2,3,7 had prognostic predictive value in HCC. Furthermore, univariate and multivariate Cox regression suggested that DPH2,3 was an independent predictive factor for HCC. GSEA analysis revealed that DPH2,3 might be tightly associated with Pathways in cancer, cell cycles, Fc gamma R mediated phagocytosis, etc. Additionally, DPH2,3 expression and numerous immune-related genes showed a positive connection, including chemokines receptor genes, immunosuppressive genes, chemokines genes, human leukocyte antigen (HLA) genes, and immunostimulatory genes. Further analysis of the association between 24 immune infiltrating cells and DPH2,3 revealed the greatest negative correlation between natural killer (NK) cells and Th17 cells, but the greatest positive correlation with Th2 cells. Conclusions: DPHs significantly influence the development and progression of HCC. DPH2,3 has significant diagnostic and prognostic potential and may be a promising target for immunotherapy.

8.
Heliyon ; 10(16): e35719, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39253245

ABSTRACT

Introduction: Osteosarcoma is a bone-derived malignancy that often leads to lung metastasis and death. Material and methods: The RNA-seq data of TARGET-osteosarcoma were collected from TARGET database. GSE16088 and GSE12865 datasets of osteosarcoma x from Gene Expression Database (GEO) were donwloaded. ConsensusClusterPlus was used for molecular subtype classification. Univariate Cox and Lasso regression was employed to develop a risk model. To analyze the regulatory effects of model feature genes on the malignant phenotype of osteosarcoma cell lines, qRT-PCR, Transwell and wound healing assays were performed. The abundance of immune cell infiltration was assessed using MCP-Counter, Gene Set Enrichment Analysis (GSEA), and ESTIMATE. The Tumor Immune Dysfunction and Exclusion (TIDE) software was employed to evaluate immunotherapy and response to conventional chemotherapy drugs. Results: Three clusters (C1, C2 and C3) were classified using 39 necroptosis score-associated genes. In general, C1 and C2 showed better prognosis outcome and lower death rate than C3. Specifically, C2 could benefit more from immunotherapy, while C3 was more sensitive to traditional medicines, and C1 had higher immune cell infiltration. Next, an 8-gene signature and a risk score model were developed, with a low risk score indicating better survival and immune cell infiltration. ROC analysis showed that 1-, 3-, and 5-year overall survival of osteosarcoma could be correctly predicted by the risk score model. Cellular experiments revealed that the model feature gene IFITM3 promoted the osteosarcoma cell migration and invasion. Furthermore, the overall survival of osteosarcoma patients from TARGET and validation datasets can be accurately evaluated using the nomogram model. Conclusions: Our prognostic model developed using necroptosis genes could facilitate the prognostic prediction for patients suffering from osteosarcoma, offering potential osteosarcoma targets.

9.
Cells ; 13(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39272982

ABSTRACT

BACKGROUND: Periostin (POSTN) is a type of matrix protein that functions by binding to other matrix proteins, cell surface receptors, or other molecules, such as cytokines and proteases. POSTN has four major splicing variants (PN1-4), which are primarily expressed in fibroblasts and cancer. We have reported that we should inhibit pathological POSTN (PN1-3), but not physiological POSTN (PN4). In particular, pathological POSTN with exon 17 is present in both stroma and cancer, but it is unclear whether the stroma or cancer pathological POSTN should be suppressed. METHODS AND RESULTS: We transplanted 4T1 cells (breast cancer) secreting POSTN with exon 17 into 17KO mice lacking POSTN exon 17 to suppress stromal POSTN with exon 17. The results show that 17KO mice had smaller primary tumors and fewer metastases. Furthermore, to suppress cancer POSTN with exon 17, 4T1 cells transfected with POSTN exon 17 skipping oligo or control oligo were transplanted from the tail vein into the lungs. The results show that POSTN exon 17 skipping oligo significantly suppressed lung metastasis. CONCLUSIONS: These findings suggest that it is important to suppress POSTN exon 17 in both stroma and cancer. Antibody targeting POSTN exon 17 may be a therapeutic candidate for breast cancer.


Subject(s)
Cell Adhesion Molecules , Exons , Stromal Cells , Animals , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Exons/genetics , Mice , Female , Cell Line, Tumor , Stromal Cells/metabolism , Stromal Cells/pathology , Humans , Alternative Splicing/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Mice, Knockout , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Mice, Inbred BALB C , Periostin
10.
Int J Mol Sci ; 25(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39273090

ABSTRACT

Colorectal cancer (CRC) represents a significant challenge in oncology, with increasing incidence and mortality rates worldwide, particularly among younger adults. Despite advancements in treatment modalities, the urgent need for more effective therapies persists. Immunotherapy has emerged as a beacon of hope, offering the potential for improved outcomes and quality of life. This review delves into the critical interplay between ferroptosis, an iron-dependent form of regulated cell death, and immunotherapy within the CRC context. Ferroptosis's influence extends beyond tumor cell fate, reshaping the tumor microenvironment (TME) to enhance immunotherapy's efficacy. Investigations into Ferroptosis-related Genes (OFRGs) reveal their pivotal role in modulating immune cell infiltration and TME composition, closely correlating with tumor responsiveness to immunotherapy. The integration of ferroptosis inducers with immunotherapeutic strategies, particularly through novel approaches like ferrotherapy and targeted co-delivery systems, showcases promising avenues for augmenting treatment efficacy. Furthermore, the expression patterns of OFRGs offer novel prognostic tools, potentially guiding personalized and precision therapy in CRC. This review underscores the emerging paradigm of leveraging ferroptosis to bolster immunotherapy's impact, highlighting the need for further research to translate these insights into clinical advancements. Through a deeper understanding of the ferroptosis-immunotherapy nexus, new therapeutic strategies can be developed, promising enhanced efficacy and broader applicability in CRC treatment, ultimately improving patient outcomes and quality of life in the face of this formidable disease.


Subject(s)
Colorectal Neoplasms , Ferroptosis , Immunotherapy , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Colorectal Neoplasms/therapy , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Immunotherapy/methods , Animals
11.
Sci Rep ; 14(1): 21449, 2024 09 13.
Article in English | MEDLINE | ID: mdl-39271768

ABSTRACT

Cancer stem cells (CSCs) have the potential to self-renew and induce cancer, which may contribute to a poor prognosis by enabling metastasis, recurrence, and therapy resistance. Hence, this study was performed to identify the association between CSC-related genes and triple-negative breast cancer (TNBC) development. Stemness gene sets were downloaded from StemChecker. Based on the online databases, a consensus clustering algorithm was conducted for unsupervised classification of TNBC samples. The variations between subtypes were assessed with regard to prognosis, tumor immune microenvironment (TIME), and chemotherapeutic sensitivity. The stemness-related gene signature was established and random survival forest analysis was employed to identify the core gene for validation experiments and tumor sphere formation assays. 499 patients with TNBC were classified into three subgroups and the Cluster 1 had a better OS than others. After that, WGCNA study was performed to identify genes important for Cluster 1 subtype. Out of all 8 modules, the subtype of Cluster 1 and the yellow module with 103 genes demonstrated the largest positive association. After that, a four-gene stemness-related signature was established. Based on the yellow module, the 39 potential pivotal genes were subjected to the random forest survival analysis to find out the gene that was relatively important for OS. KIF15 was confirmed as the targeted gene by LASSO and random survival forest analyses. In vitro experiments, the downregulation of KIF15 promoted the stemness of TNBC cells. The expression levels of stem cell markers Nanog, SOX2, and OCT4 were found to be elevated in TNBC cell lines after KIF15 inhibition. A stemness-associated risk model was constructed to forecast the clinical outcomes of TNBC patients. The downregulation of KIF15 expression in a subpopulation of TNBC stem cells may promote stemness and possibly TNBC progression.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Kinesins , Machine Learning , Neoplastic Stem Cells , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/mortality , Kinesins/genetics , Kinesins/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Female , Prognosis , Tumor Microenvironment/genetics , Cell Line, Tumor , Gene Expression Profiling , Algorithms
12.
J Gastrointest Oncol ; 15(4): 1836-1846, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39279959

ABSTRACT

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal, aggressive cancer due to limited response chemotherapy. The tumor microenvironment (TME) has emerged as a key player in the development of chemoresistance and in malignant progression. In this study, we hypothesized that chemotherapy response is predictable by chemotherapy-related cell types and their differentially expressed genes (DEGs). Methods: DEGs of chemoresistance cell types were identified via single cell analysis and Wilcoxon test. A chemotherapy response signature was established using a random forest model and validated with public datasets. Bulk cell fraction was analyzed using BayesPrism algorithms. Log-rank test was used to analyze survival of PDAC patients. Results: We found that natural killer (NK) cells, myeloid cells, and erythroid cells were highly infiltrated in chemo-resistant TME. A total of 36 chemoresistance-related DEGs of chemo-resistant cells were identified in chemo-resistant PDAC. Functional enrichment analysis showed that chemoresistance upregulated various inflammation-related pathways, including TGF-ß signaling. Based on these features, we constructed a random forest model to predict the response and survival for PDAC patients, which accurately distinguished high-risk and chemoresistant patients with significantly poorer prognosis in both the training and independent validation datasets. Cox regression analysis indicated that predicted labels were an independent prognostic factor in PDAC. Moreover, deconvolution of TME confirmed higher infiltration levels of M2 macrophage and NK cells in predicted chemoresistance. When combined with chemotherapy response related tumor mutations, the model showed excellent ability in predicting chemotherapy response and survival. Conclusions: The TME was closely associated with the chemotherapy response and prognosis of PDAC. Our TME-based random forest model predicted chemotherapy response with complementary knowledge to the response-related genetic mutations.

13.
Life Sci ; 357: 123059, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278618

ABSTRACT

The complex heterogeneity of tumor microenvironment (TME) of triple-negative breast cancer (TNBC) presents a significant obstacle to cytotoxic immune response and successful treatment, building up one of the most hostile oncological phenotypes. Among the most abundant TME components, tumor-associated macrophages (TAMs) have pivotal pro-tumoral functions, involving discordant roles for the nuclear factor kappa-B (NF-κB) transcription factors and directing to higher levels of pathway complexity. In both resting macrophages and TAMs, we recently revealed the existence of the uncharacterized NF-κB p65/p52 dimer. In the present study, we demonstrated its enhanced active nuclear localization in TAMs and validated selected immune target genes as directly regulated by dimer binding on DNA sequences. We demonstrated by ChIP-qPCR that p65/p52 enrichment on HSPG2 and CSF-1 regulatory regions is strictly dependent on macrophage polarization and tumor environment. Our data provide novel mechanisms of transcriptional regulation in TAMs, orchestrated by the varied and dynamic nature of NF-κB combinations, which needs to be considered when targeting this pathway in cancer therapies. Our results offer p65/p52, together with identified regulatory regions on genes impacting macrophage behavior and tumor biology, as novel molecular targets for TNBC, aimed at modulating TAMs functions towards anti-tumoral phenotypes and thus improving cancer treatment outcomes.

14.
Biomedicines ; 12(9)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39335478

ABSTRACT

Breast cancer (BC) is the most common cancer in women, and therapeutic strategies for it are based on the molecular subtypes of luminal BC, HER2 BC, and triple-negative BC (TNBC) because each subtype harbors different unique genetic aberrations. Recently, features of the tumor microenvironment (TME), especially cancer-associated fibroblasts (CAFs), have been demonstrated to play a critical role in BC progression, and we would like to understand the molecular features of BC CAFs for novel therapeutic strategies. In a recent study, 115 CAF-associated genes (CAFGs) were identified in a public database of microdissection and microarray data (GSE35602) from 13 colorectal cancer (CRC) tumors. Using a public database (GSE10797) of 28 BC tumors, a similar analysis was performed. In BC, 59 genes from the 115 CAFGs identified in CRC (CRC CAFGs) were also closely associated with a CAFs marker, SPARC (R = 0.6 or beyond), and POSTN was of particular interest as one of the BC CAFGs with the highest expression levels and a close association with SPARC expression (R = 0.94) in the cancer stroma of BC tumors. In BC stroma, POSTN was followed in expression levels by DKK3, MMP2, PDPN, and ACTA2. Unexpectedly, FAP and VIM were not as highly associated with SPARC expression in the cancer stroma of BC tumors and exhibited low expression. These findings suggested that ACTA2 might be the most relevant conventional CAFs marker in BC, and ACTA2 was actually correlated in expression with many CRC CAFGs, such as SPARC. Surprisingly, the SE ratio values of the BC CAFGs were much lower (average SE = 3.8) than those of the CRC CAFGs (SE = 10 or beyond). We summarized the current understanding of BC CAFs from the literature. Finally, in triple-negative BC (TNBC) (n = 5), SPARC expression uniquely showed a close association with COL11A1 and TAGLN expression, representing a myofibroblast (myCAFs) marker in the cancer stroma of the BC tumors, suggesting that myCAFs may be molecularly characterized by TNBC in contrast to other BC phenotypes. In summary, CAFs could have unique molecular characteristics in BC, and such TME uniqueness could be therapeutically targeted in BC.

15.
Semin Immunopathol ; 46(5): 15, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240397

ABSTRACT

Over the last few decades, scientists have recognized the critical role that various components of the extracellular matrix (ECM) play in maintaining homeostatic immunity. Besides, dysregulation in the synthesis or degradation levels of these components directly impacts the mechanisms of immune response during tissue injury caused by tumor processes or the regeneration of the tissue itself in the event of damage. ECM is a complex network of protein compounds, proteoglycans and glycosaminoglycans (GAGs). Hyaluronic acid (HA) is one of the major GAGs of this network, whose metabolism is strictly physiologically regulated and quickly altered in injury processes, affecting the behavior of different cells, from stem cells to differentiated immune cells. In this revision we discuss how the native or chemically modified HA interacts with its specific receptors and modulates intra and intercellular communication of immune cells, focusing on cancer and tissue regeneration conditions.


Subject(s)
Homeostasis , Hyaluronic Acid , Neoplasms , Regeneration , Humans , Hyaluronic Acid/metabolism , Hyaluronic Acid/chemistry , Neoplasms/metabolism , Neoplasms/immunology , Neoplasms/pathology , Animals , Extracellular Matrix/metabolism , Immunity
16.
Front Immunol ; 15: 1460308, 2024.
Article in English | MEDLINE | ID: mdl-39328412

ABSTRACT

Background: Tryptophan Metabolism-associated Genes (TMGs), such as ECHS1 and ALDH2, are crucial in cancer progression through immunosuppressive mechanisms, particularly in Gastric Cancer (GC). This study explores their effects on the Tumor Microenvironment (TME). Additionally, it examines their potential as novel immunotherapy targets. Methods: We utilized single-cell and bulk transcriptomic technologies to analyze the heterogeneity of GC. Non-negative Matrix Factorization (NMF) clustering identified key TMGs, and extensive RNA-seq analyses were performed to pinpoint prognostic genes and potential immunotherapy targets. Furthermore, through PCR analyses we found that ECHS1 and ALDH2 gene expression plays a regulatory role in the migration, invasion and inflammatory factor in AGS and SNU-1 cell lines. The interference effect of si-ECHS1 and ad-ALDH2 was validated using cell scratch assay in AGS and SNU-1 cell line. Results: We observed a statistically significant correlation between ECHS1 and ALDH2 expression and increased TME heterogeneity. Our findings also revealed that ECHS1 down-regulation and ALDH2 up-regulation contribute to reduced TME heterogeneity, decreased inflammation, and inhibited AGS and SNU-1 tumor cells migration and proliferation. GSVA enrichment analysis highlighted the NF-kappa B(NF-κB) signaling pathway as specifically regulated by TMGs. Furthermore,ECHS1 and ALDH2 modulated CD8+ and CD4+ T cell activities, impacting GC progression. In vitro experiments further solidified our conclusions by showcasing the inhibitory effects of Si-ECHS1 and ad-ALDH2 on the invasive and proliferative capabilities of AGS and SNU-1 cells. Moreover, Si-ECHS1 and ad-ALDH2 gene expression effectively reduced the expression of inflammatory factors IL-10,IL-7,CXCL8 and IL-6, leading to a remarkable alleviation of chronic inflammation and the heterogeneous nature of the TME. Conclusion: This research highlights the importance of ECHS1 and ALDH2 in GC progression and immune modulation, suggesting that targeted therapies focusing on these genes offer promising avenues for personalized immunotherapy in GC. These findings hold potential for improving patient survival and quality of life. Future studies on the NF-κB signaling pathway's role in this context are warranted to further elucidate the mechanisms underlying TMG-mediated immune modulation in GC.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Gene Expression Regulation, Neoplastic , Stomach Neoplasms , Tryptophan , Tumor Microenvironment , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Stomach Neoplasms/therapy , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Tumor Microenvironment/immunology , Cell Line, Tumor , Tryptophan/metabolism , Precision Medicine , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Movement/genetics
17.
Chin Clin Oncol ; 13(Suppl 1): AB042, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39295360

ABSTRACT

BACKGROUND: Inhibitors of programmed cell death ligand 1 (PD-L1) and vascular endothelial growth factor receptor 2 (VEGFR2) are commonly used in the clinic, but they are beneficial for only a minority of glioblastoma multiforme (GBM) patients. GBM has significant immunosuppressive properties, and there are many immunosuppressive cells and dysfunctional effector T-cell in the tumor microenvironment (TME), which is one of the important reasons for the failure of clinical treatment of GBM. P21-activated kinase 4 (PAK4) is a threonine protein kinase, and as a pivotal immune suppressor in the TME. PAK4 knockdown attenuates vascular abnormalities and promotes T-cell infiltration. METHODS: Using RNA sequencing (RNA-seq) technology, western blotting, and immunofluorescence, we identified changes in genes expression following VEGFR2 knockdown. The impact of anti-PD-L1 and anti-VEGFR2 on GBM cells apoptosis was assessed using coculture assays, western blotting, and flow cytometry. Additionally, the therapeutic efficacy of anti-PD-L1 and anti-VEGFR2 therapy was evaluated through in vivo experiments, immunohistochemistry, and immunofluorescence. RESULTS: Our studies revealed that VEGFR2 binds and phosphorylates signal transducer and activator of transcription 3 (p-STAT3), thereby regulating the expression of PAK4. Anti-PD-L1 and anti-VEGFR2 therapy can increase the secretion of interferon-gamma (IFN-γ), granzyme B, and perforin by immune cells and promoting the cytotoxic effects of cytotoxic cluster of differentiation 8 (CD8)+ T cells, and overexpression of PAK4 could reverse this effect. We also demonstrated that combination therapy with anti-PD-L1 and anti-VEGFR2 agents prevents tumor growth in an intracranial tumor model. CONCLUSIONS: Our results support that anti-VEGFR2 therapy can downregulate PAK4, reprogram the TME by increasing CD8+ T cells infiltration and activation, and enhance the therapeutic effect of anti-PD-L1 therapy on GBM cells.


Subject(s)
B7-H1 Antigen , Glioblastoma , Tumor Microenvironment , Vascular Endothelial Growth Factor Receptor-2 , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Vascular Endothelial Growth Factor Receptor-2/metabolism , B7-H1 Antigen/metabolism , Mice , Animals , Cell Line, Tumor
18.
Int Rev Cell Mol Biol ; 388: 162-205, 2024.
Article in English | MEDLINE | ID: mdl-39260936

ABSTRACT

Prostate cancer (PCa) stands as a significant global health concern, ranking among the leading causes of cancer deaths in men. While there are several treatment modalities for localized PCa, metastatic castration-resistant PCa (mCRPC) remains incurable. Despite therapeutic advancements showing promise in mCRPC, their impact on overall survival has been limited. This chapter explores the process by which tumors form, reviews our current understanding of PCa progression to mCRPC, and addresses the challenges of boosting anti-tumor immune responses in these tumors. It specifically discusses how chemotactic signaling affects the tumor microenvironment and its role in immune evasion and cancer progression. The chapter further examines the rationale of directly or indirectly targeting these pathways as adjuvant therapies for mCRPC, highlighting recent pre-clinical and clinical studies currently underway. The discussion emphasizes the potential of targeting specific chemokines and chemokine receptors as combination therapies with mainstream treatments for PCa and mCRPC to maximize long-term survival for this deadly disease.


Subject(s)
Prostatic Neoplasms , Signal Transduction , Tumor Microenvironment , Humans , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/therapy , Prostatic Neoplasms/drug therapy , Animals , Chemotaxis , Molecular Targeted Therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy
19.
Discov Oncol ; 15(1): 431, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259234

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the third most prevalent cancer worldwide, with the tumor microenvironment (TME) playing a crucial role in its progression. Aggregated autophagy (AA) has been recognized as a factor that exacerbates CRC progression. This study aims to study the relationship between aggregated autophagy and CRC using single-cell sequencing techniques. Our goal is to explain the heterogeneity of the TME and to explore the potential for targeted personalized therapies. OBJECTIVE: To study the role of AA in CRC, we employed single-cell sequencing to discern distinct subpopulations within the TME. These subpopulations were characterized by their autophagy levels and further analyzed to identify specific biological processes and marker genes. RESULTS: Our study revealed significant correlations between immune factors and both clinical and biological characteristics of the tumor microenvironment (TME), particularly in cells expressing TUBA1B and HSP90AA1. These immune factors were associated with T cell depletion, a reduction in protective factors, diminished efficacy of immune checkpoint blockade (ICB), and enhanced migration of cancer-associated fibroblasts (CAFs), resulting in pronounced inflammation. In vitro experiments showd that silencing TUBA1B and HSP90AA1 using siRNA (Si-TUBA1B and Si-HSP90AA1) significantly reduced the expression of IL-6, IL-7, CXCL1, and CXCL2 and inhibition of tumor cell growth in Caco-2 and Colo-205 cell lines. This reduction led to a substantial alleviation of chronic inflammation and highlighted the heterogeneous nature of the TME. CONCLUSION: This study marks an initial foray into understanding how AA-associated processes may potentiate the TME and weaken immune function. Our findings provide insights into the complex dynamics of the TME and highlight potential targets for therapeutic intervention, suggesting a key role for AA in the advancement of colorectal cancer.

SELECTION OF CITATIONS
SEARCH DETAIL