Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Pathogens ; 12(6)2023 May 23.
Article in English | MEDLINE | ID: mdl-37375441

ABSTRACT

Uropathogenic Escherichia coli express hairlike proteinaceous surface projections, known as chaperone-usher pathway (CUP) pili. Type 1 pili are CUP pili with well-established pathogenic properties. The FimH adhesin subunit of type 1 pili plays a key role in the pathogenesis of urinary tract infections (UTIs) as it mediates the adhesion of the bacteria to urothelial cells of the bladder. In this study, two breast cancer cell lines, MDA-MB-231 and MCF-7, were used to demonstrate the cytotoxic activities of type 1 piliated uropathogenic E. coli UTI89 on breast cancer cells in a type 1 pili and FimH-mediated manner. E. coli were grown in static and shaking conditions to induce or inhibit optimal type 1 pili biogenesis, respectively. Deletion constructs of UTI89 ΔfimH and a complemented strain (UTI89 ΔfimH/pfimH) were further utilized to genetically assess the effect of type 1 pili and FimH on cancer cell viability. After incubation with the different strains, cytotoxicity was measured using trypan blue exclusion assays. UTI89 grown statically caused significant cytotoxicity in both breast cancer cell lines whereas cytotoxicity was reduced when the cells were incubated with bacteria grown under shaking conditions. The incubation of both MDA-MB-231 and MCF-7 with UTI89 Δfim operon or ΔfimH showed a significant reduction in cytotoxicity exerted by the bacterial strains, revealing that type 1 pili expression was necessary for cytotoxicity. Complementing the ΔfimH strain with pfimH reversed the phenotype, leading to a significant increase in cytotoxicity. Incubating type 1 pili expressing bacteria with the competitive FimH inhibitor D-mannose before cancer cell treatment also led to a significant reduction in cytotoxicity on both MDA-MB-231 and MCF-7 cancer cells, compared to vehicle control or D-mannose alone, indicating the requirement for functional FimH for cytotoxicity. Overall, our results reveal that, as opposed to UTI89 lacking type 1 pili, type 1 piliated UTI89 causes significant cancer cell mortality in a FimH-mediated manner, that is decreased with D-mannose.

2.
Angew Chem Int Ed Engl ; 62(37): e202305120, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37248171

ABSTRACT

In NMR spectroscopy, residual dipolar couplings (RDCs) have emerged as one of the most exquisite probes of biological structure and dynamics. The measurement of RDCs relies on the partial alignment of the molecule of interest, for example by using a liquid crystal as a solvent. Here, we establish bacterial type 1 pili as an alternative liquid-crystalline alignment medium for the measurement of RDCs. To achieve alignment at pilus concentrations that allow for efficient NMR sample preparation, we elongated wild-type pili by recombinant overproduction of the main structural pilus subunit. Building on the extraordinary stability of type 1 pili against spontaneous dissociation and unfolding, we show that the medium is compatible with challenging experimental conditions such as high temperature, the presence of detergents, organic solvents or very acidic pH, setting it apart from most established alignment media. Using human ubiquitin, HIV-1 TAR RNA and camphor as spectroscopic probes, we demonstrate the applicability of the medium for the determination of RDCs of proteins, nucleic acids and small molecules. Our results show that type 1 pili represent a very useful alternative to existing alignment media and may readily assist the characterization of molecular structure and dynamics by NMR.


Subject(s)
Fimbriae, Bacterial , Proteins , Humans , Magnetic Resonance Spectroscopy/methods , Proteins/chemistry , Solvents , Ubiquitin/chemistry
3.
Microbiology (Reading) ; 168(3)2022 03.
Article in English | MEDLINE | ID: mdl-35316170

ABSTRACT

Uropathogenic Escherichia coli (UPEC) cause millions of urinary tract infections each year in the United States. Type 1 pili are important for adherence of UPEC to uroepithelial cells in the human and murine urinary tracts where osmolality and pH vary. Previous work has shown that an acidic pH adversely affects the expression of type 1 pili. To determine if acid tolerance gene products may be regulating E. coli fim gene expression, a bank of K-12 strain acid tolerance gene mutants were screened using fimA-lux, fimB-lux, and fimE-lux fusions on single copy number plasmids. We have determined that a mutation in gadE increased transcription of all three fim genes, suggesting that GadE may be acting as a repressor in a low pH environment. Complementation of the gadE mutation restored fim gene transcription to wild-type levels. Moreover, mutations in gadX, gadW, crp, and cya also affected transcription of the three fim genes. To verify the role GadE plays in type 1 pilus expression, the NU149 gadE UPEC strain was tested. The gadE mutant had higher fimE gene transcript levels, a higher frequency of Phase-OFF positioning of fimS, and hemagglutination titres that were lower in strain NU149 gadE cultured in low pH medium as compared to the wild-type bacteria. The data demonstrate that UPEC fim genes are regulated directly or indirectly by the GadE protein and this could have some future bearing on the ability to prevent urinary tract infections by acidifying the urine and shutting off fim gene expression.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Uropathogenic Escherichia coli , Animals , DNA-Binding Proteins/genetics , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Humans , Integrases/chemistry , Integrases/genetics , Integrases/metabolism , Mice , Transcription, Genetic , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism
4.
mSphere ; 4(2)2019 04 10.
Article in English | MEDLINE | ID: mdl-30971446

ABSTRACT

Most urinary tract infections (UTIs) are caused by uropathogenic Escherichia coli (UPEC), which depends on an extracellular organelle (type 1 pili) for adherence to bladder cells during infection. Type 1 pilus expression is partially regulated by inversion of a piece of DNA referred to as fimS, which contains the promoter for the fim operon encoding type 1 pili. fimS inversion is regulated by up to five recombinases collectively known as Fim recombinases. These Fim recombinases are currently known to regulate two other switches: the ipuS and hyxS switches. A long-standing question has been whether the Fim recombinases regulate the inversion of other switches, perhaps to coordinate expression for adhesion or virulence. We answered this question using whole-genome sequencing with a newly developed algorithm (structural variation detection using relative entropy [SVRE]) for calling structural variations using paired-end short-read sequencing. SVRE identified all of the previously known switches, refining the specificity of which recombinases act at which switches. Strikingly, we found no new inversions that were mediated by the Fim recombinases. We conclude that the Fim recombinases are each highly specific for a small number of switches. We hypothesize that the unlinked Fim recombinases have been recruited to regulate fimS, and fimS only, as a secondary locus; this further implies that regulation of type 1 pilus expression (and its role in gastrointestinal and/or genitourinary colonization) is important enough, on its own, to influence the evolution and maintenance of multiple additional genes within the accessory genome of E. coliIMPORTANCE UTI is a common ailment that affects more than half of all women during their lifetime. The leading cause of UTIs is UPEC, which relies on type 1 pili to colonize and persist within the bladder during infection. The regulation of type 1 pili is remarkable for an epigenetic mechanism in which a section of DNA containing a promoter is inverted. The inversion mechanism relies on what are thought to be dedicated recombinase genes; however, the full repertoire for these recombinases is not known. We show here that there are no additional targets beyond those already identified for the recombinases in the entire genome of two UPEC strains, arguing that type 1 pilus expression itself is the driving evolutionary force for the presence of these recombinase genes. This further suggests that targeting the type 1 pilus is a rational alternative nonantibiotic strategy for the treatment of UTI.


Subject(s)
Fimbriae Proteins/genetics , Fimbriae, Bacterial/genetics , Gene Expression Regulation, Bacterial , Sequence Inversion , Uropathogenic Escherichia coli/genetics , Algorithms , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Entropy , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Fimbriae Proteins/chemistry , Humans , Integrases/chemistry , Integrases/genetics , Promoter Regions, Genetic , Urinary Tract Infections/microbiology , Virulence/genetics
5.
J Biomol NMR ; 73(6-7): 281-291, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31028572

ABSTRACT

Uropathogenic Escherichia coli invades and colonizes hosts by attaching to cells using adhesive pili on the bacterial surface. Although many biophysical techniques have been used to study the structure and mechanical properties of pili, many important details are still unknown. Here we use proton-detected solid-state NMR experiments to investigate solvent accessibility and structural dynamics. Deuterium back-exchange at labile sites of the perdeuterated, fully proton back-exchanged pili was conducted to investigate hydrogen/deuterium (H/D) exchange patterns of backbone amide protons in pre-assembled pili. We found distinct H/D exchange patterns in lateral and axial intermolecular interfaces in pili. Amide protons protected from H/D exchange in pili are mainly located in the core region of the monomeric subunit and in the lateral intermolecular interface, whereas the axial intermolecular interface and the exterior region of pili are highly exposed to H/D exchange. Additionally, we performed molecular dynamics simulations of the type 1 pilus rod and estimated the probability of H/D exchange based on hydrogen bond dynamics. The comparison of the experimental observables and simulation data provides insights into stability and mechanical properties of pili.


Subject(s)
Deuterium/chemistry , Fimbriae Proteins/chemistry , Hydrogen/chemistry , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Protons , Algorithms , Protein Conformation
6.
J Immunol Sci ; 2(2): 13-18, 2018.
Article in English | MEDLINE | ID: mdl-30393787

ABSTRACT

Host-associated microbial communities modulate numerous aspects of host physiology at the epithelial interface within mucosal environments. Perturbations to this symbiotic relationship between host and microbiota has been linked to numerous microbial-driven pathological states, including Crohn's disease (CD). This is in part driven by the outgrowth of aggressive resident bacterial strains such as adherent and invasive Escherichia coli (AIEC) and changes in bacterial physiology and function that promote enhanced mucosal association of pathobionts and aberrant stimulation of mucosal immunity. Endogenous bacteria from host-associated microbial communities can adopt a sessile lifestyle and form multicellular structures known as biofilms that are generated through the expression of extracellular adhesion factors that include curli amyloid fibrils, cellulose and type 1 pili. In addition to enabling bacterial attachment to mucosal surfaces, biofilm components also stimulate immune responses and can therefore instigate or perpetuate microbial-driven inflammatory diseases such as CD. These host-bacterial interactions provide pharmacological targets that can potentially be exploited to limit mucosal adherence of aggressive enteric bacteria, inappropriate stimulation of inflammatory immune responses and consequent development of chronic intestinal inflammation.

7.
Elife ; 72018 01 18.
Article in English | MEDLINE | ID: mdl-29345620

ABSTRACT

Uropathogenic E. coli (UPEC), which cause urinary tract infections (UTI), utilize type 1 pili, a chaperone usher pathway (CUP) pilus, to cause UTI and colonize the gut. The pilus rod, comprised of repeating FimA subunits, provides a structural scaffold for displaying the tip adhesin, FimH. We solved the 4.2 Å resolution structure of the type 1 pilus rod using cryo-electron microscopy. Residues forming the interactive surfaces that determine the mechanical properties of the rod were maintained by selection based on a global alignment of fimA sequences. We identified mutations that did not alter pilus production in vitro but reduced the force required to unwind the rod. UPEC expressing these mutant pili were significantly attenuated in bladder infection and intestinal colonization in mice. This study elucidates an unappreciated functional role for the molecular spring-like property of type 1 pilus rods in host-pathogen interactions and carries important implications for other pilus-mediated diseases.


Subject(s)
Adhesins, Bacterial/metabolism , Adhesins, Bacterial/ultrastructure , Bacterial Adhesion , Escherichia coli Infections/microbiology , Fimbriae, Bacterial/metabolism , Host-Pathogen Interactions , Uropathogenic Escherichia coli/ultrastructure , Animals , Cryoelectron Microscopy , Disease Models, Animal , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/ultrastructure , Mice , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/physiology
8.
Infect Immun ; 86(2)2018 02.
Article in English | MEDLINE | ID: mdl-29158434

ABSTRACT

The bacterial second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) has been shown to influence the expression of virulence factors in certain pathogenic bacteria, but little is known about its activity in the increasingly antibiotic-resistant pathogen Klebsiella pneumoniae Here, the expression in K. pneumoniae of a heterologous diguanylate cyclase increased the bacterial c-di-GMP concentration and attenuated pathogenesis in murine pneumonia. This attenuation remained evident in mice lacking the c-di-GMP sensor STING, indicating that the high c-di-GMP concentration exerted its influence not on host responses but on bacterial physiology. While serum resistance and capsule expression were unaffected by the increased c-di-GMP concentration, both type 3 and type 1 pili were strongly upregulated. Importantly, attenuation of K. pneumoniae virulence by high c-di-GMP levels was abrogated when type 1 pilus expression was silenced. We conclude that increased type 1 piliation may hamper K. pneumoniae virulence in the respiratory tract and that c-di-GMP signaling represents a potential therapeutic target for antibiotic-resistant K. pneumoniae in this niche.


Subject(s)
Cyclic GMP/analogs & derivatives , Klebsiella pneumoniae/pathogenicity , Lung/microbiology , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/pathology , Animals , Cyclic GMP/metabolism , Disease Models, Animal , Female , Fimbriae, Bacterial/metabolism , Gene Knockdown Techniques , Mice, Inbred C57BL , Up-Regulation , Virulence
9.
Proc Natl Acad Sci U S A ; 113(15): 4182-7, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27035967

ABSTRACT

Type 1 pili (T1P) are major virulence factors for uropathogenic Escherichia coli (UPEC), which cause both acute and recurrent urinary tract infections. T1P expression therefore is of direct relevance for disease. T1P are phase variable (both piliated and nonpiliated bacteria exist in a clonal population) and are controlled by an invertible DNA switch (fimS), which contains the promoter for the fim operon encoding T1P. Inversion of fimS is stochastic but may be biased by environmental conditions and other signals that ultimately converge at fimS itself. Previous studies of fimS sequences important for T1P phase variation have focused on laboratory-adapted E coli strains and have been limited in the number of mutations or by alteration of the fimS genomic context. We surmounted these limitations by using saturating genomic mutagenesis of fimS coupled with accurate sequencing to detect both mutations and phase status simultaneously. In addition to the sequences known to be important for biasing fimS inversion, our method also identifies a previously unknown pair of 5' UTR inverted repeats that act by altering the relative fimA levels to control phase variation. Thus we have uncovered an additional layer of T1P regulation potentially impacting virulence and the coordinate expression of multiple pilus systems.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/genetics , Fimbriae, Bacterial/genetics , Mutagenesis , Promoter Regions, Genetic , Urinary Bladder/microbiology , Escherichia coli/pathogenicity , RNA, Messenger/genetics
10.
Expert Opin Ther Pat ; 26(2): 175-97, 2016.
Article in English | MEDLINE | ID: mdl-26651364

ABSTRACT

INTRODUCTION: Type 1 pili are utilized by Gram-negative bacteria to adhere to host tissue and thus are a key virulence factor in urinary tract infections (UTIs) and Crohn's disease (CD). This adhesion is mediated through specific binding of the terminal adhesin, FimH, to mannosylated host glycoproteins. FimH is essential for UTI pathogenesis and thus is a promising therapeutic target. AREAS COVERED: Herein, we review the structural frameworks of FimH antagonists disclosed in the patent literature. X-ray crystallographic binding studies of D-mannose and early FimH antagonists have uncovered key molecular interactions. Exploiting this knowledge, mannosides with extraordinarily high binding affinities have been designed. Structure-activity relationships (SAR) and structure-property relationship (SPR) studies have resulted in the rapid development of orally bioavailable FimH antagonists with promising therapeutic potential for UTI and CD. EXPERT OPINION: It is our opinion that biaryl or 'two-ring' mannosides, which represent the largest and most thoroughly tested class of FimH antagonists, also hold the most promise as a novel treatment for UTIs. These antagonists have also been shown to have efficacy in treating CD. Judging from the strong preclinical data, we predict that one or more FimH antagonists will be entering the clinic within the next 1-2 years.


Subject(s)
Crohn Disease/drug therapy , Fimbriae Proteins/antagonists & inhibitors , Urinary Tract Infections/drug therapy , Adhesins, Escherichia coli , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Crohn Disease/microbiology , Drug Design , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/pathogenicity , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Humans , Mannose/chemistry , Patents as Topic , Structure-Activity Relationship , Urinary Tract Infections/microbiology
11.
J Mol Biol ; 426(3): 542-9, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24184277

ABSTRACT

Type 1 pili are filamentous organelles mediating the attachment of uropathogenic Escherichia coli to epithelial cells of host organisms. The helical pilus rod consists of up to 3000 copies of the main structural subunit FimA that interact via donor strand complementation, where the incomplete Ig-like fold of FimA is completed by insertion of the N-terminal extension (donor strand) of the following FimA subunit. Recently, it was shown that FimA also exists in a monomeric, assembly-incompetent form and that FimA monomers act as inhibitors of apoptosis in infected host cells. Here we present the NMR structure of monomeric wild-type FimA with its natural N-terminal donor strand complementing the Ig fold. Compared to FimA subunits in the assembled pilus, intramolecular self-complementation in the monomer stabilizes the FimA fold with significantly less interactions, and the natural FimA donor strand is inserted in the opposite orientation. In addition, we show that a motif of two glycine residues in the FimA donor strand, separated by five residues, is the prerequisite of the alternative, parallel donor strand insertion mechanism in the FimA monomer and that this motif is preserved in FimA homologs of many enteroinvasive pathogens. We conclude that FimA is a unique case of a protein with alternative, functionally relevant folding possibilities, with the FimA polymer forming the highly stable pilus rod and the FimA monomer promoting pathogen propagation by apoptosis suppression of infected epithelial target cells.


Subject(s)
Escherichia coli/metabolism , Fimbriae Proteins/chemistry , Fimbriae, Bacterial/metabolism , Genetic Complementation Test , Amino Acid Sequence , Crystallography, X-Ray , Escherichia coli/genetics , Fimbriae Proteins/genetics , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Subunits , Sequence Homology, Amino Acid
12.
J Antimicrob Chemother ; 69(4): 1017-26, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24324225

ABSTRACT

OBJECTIVES: To identify and to characterize small-molecule inhibitors that target the subunit polymerization of the type 1 pilus assembly in uropathogenic Escherichia coli (UPEC). METHODS: Using an SDS-PAGE-based assay, in silico pre-filtered small-molecule compounds were screened for specific inhibitory activity against the critical subunit polymerization step of the chaperone-usher pathway during pilus biogenesis. The biological activity of one of the compounds was validated in assays monitoring UPEC type 1 pilus biogenesis, type 1 pilus-dependent biofilm formation and adherence to human bladder epithelial cells. The time dependence of the in vivo inhibitory activity and the overall effect of the compound on UPEC growth were determined. RESULTS: N-(4-chloro-phenyl)-2-{5-[4-(pyrrolidine-1-sulfonyl)-phenyl]-[1,3,4]oxadiazol-2-yl sulfanyl}-acetamide (AL1) inhibited in vitro pilus subunit polymerization. In bacterial cultures, AL1 disrupted UPEC type 1 pilus biogenesis and pilus-dependent biofilm formation, and resulted in the reduction of bacterial adherence to human bladder epithelial cells, without affecting bacterial cell growth. Bacterial exposure to the inhibitor led to an almost instantaneous loss of type 1 pili. CONCLUSIONS: We have identified and characterized a small molecule that interferes with the assembly of type 1 pili. The molecule targets the polymerization step during the subunit incorporation cycle of the chaperone-usher pathway. Our discovery provides new insight into the design and development of novel anti-virulence therapies targeting key virulence factors of bacterial pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Adhesion/drug effects , Fimbriae, Bacterial/drug effects , Macromolecular Substances/metabolism , Protein Multimerization/drug effects , Protein Subunits/metabolism , Uropathogenic Escherichia coli/drug effects , Animals , Biofilms/drug effects , Cell Line , Epithelial Cells/microbiology , Humans , Uropathogenic Escherichia coli/physiology
14.
World J Clin Infect Dis ; 1(1): 17-25, 2011 Dec 30.
Article in English | MEDLINE | ID: mdl-23638406

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections in women, causing significant morbidity and mortality in this population. Adherence to host epithelial cells is a pivotal step in the pathogenesis of UPEC. One of the most important virulence factors involved in mediating this attachment is the type 1 pilus (type 1 fimbria) encoded by a set of fim genes arranged in an operon. The expression of type 1 pili is controlled by a phenomenon known as phase variation, which reversibly switches between the expression of type 1 pili (Phase-ON) and loss of expression (Phase-OFF). Phase-ON cells have the promoter for the fimA structural gene on an invertible DNA element called fimS, which lines up to allow transcription, whereas transcription of the structural gene is silenced in Phase-OFF cells. The orientation of the fimS invertible element is controlled by two site-specific recombinases, FimB and FimE. Environmental conditions cause transcriptional and post-transcriptional changes in UPEC cells that affect the level of regulatory proteins, which in turn play vital roles in modulating this phase switching ability. The role of fim gene regulation in UPEC pathogenesis will be discussed.

SELECTION OF CITATIONS
SEARCH DETAIL