Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.326
Filter
2.
Curr Biol ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39096906

ABSTRACT

All species shed DNA during life or in death, providing an opportunity to monitor biodiversity via environmental DNA (eDNA). In recent years, combining eDNA, high-throughput sequencing technologies, bioinformatics, and increasingly complete sequence databases has promised a non-invasive and non-destructive environmental monitoring tool. Modern agricultural systems are often large monocultures and so are highly vulnerable to disease outbreaks. Pest and pathogen monitoring in agricultural ecosystems is key for efficient and early disease prevention, lower pesticide use, and better food security. Although the air is rich in biodiversity, it has the lowest DNA concentration of all environmental media and yet is the route for windborne spread of many damaging crop pathogens. Our work suggests that ecosystems can be monitored efficiently using airborne nucleic acid information. Here, we show that the airborne DNA of microbes can be recovered, shotgun sequenced, and taxonomically classified, including down to the species level. We show that by monitoring a field growing key crops we can identify the presence of agriculturally significant pathogens and quantify their changing abundance over a period of 1.5 months, often correlating with weather variables. We add to the evidence that aerial eDNA can be used as a source for biomonitoring in terrestrial ecosystems, specifically highlighting agriculturally relevant species and how pathogen levels correlate with weather conditions. Our ability to detect dynamically changing levels of species and strains highlights the value of airborne eDNA in agriculture, monitoring biodiversity changes, and tracking taxa of interest.

3.
Methods Mol Biol ; 2838: 163-170, 2024.
Article in English | MEDLINE | ID: mdl-39126631

ABSTRACT

Real-time RT-PCR for the detection of epizootic hemorrhagic disease virus (EHDV) in clinical samples is a fast and sensitive tool for the diagnosis and confirmation of disease. Several real-time RT-PCR methods have been reported over the last 10 years. In this chapter, we describe seven duplex real-time RT-PCR assays to amplify part of genome segment 2 of EHDV to enable serotype identification. The assay includes the detection of an endogenous control gene-beta-actin.


Subject(s)
Hemorrhagic Disease Virus, Epizootic , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Hemorrhagic Disease Virus, Epizootic/genetics , Hemorrhagic Disease Virus, Epizootic/isolation & purification , Hemorrhagic Disease Virus, Epizootic/classification , Animals , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Reoviridae Infections/veterinary , Reoviridae Infections/virology , Reoviridae Infections/diagnosis , RNA, Viral/genetics
4.
Methods Mol Biol ; 2838: 185-195, 2024.
Article in English | MEDLINE | ID: mdl-39126633

ABSTRACT

The emergence of EHDV in Europe during the autumn of 2022 reinforces the need for molecular tools (RT-PCR) for rapid detection of animals infected with this virus. Viral genome testing can be performed on whole blood under anticoagulant, spleen, and bloody organ homogenates from ruminants. It can also be performed on cell culture following viral isolation tests. Various so-called classical or end-point RT-PCRs will be described, which permit the amplification of a part of the viral genome (targeting segment 7) allowing the detection of EHDV whatever the serotype (pan-RT-PCR) and also to amplify a portion of the gene coding the viral protein (VP) 2 enabling serotyping. The PCR amplification products are visualized by agarose gel electrophoresis. Sequencing of the type-specific RT-PCR amplification products allows for the serotype of the virus to be determined.


Subject(s)
Hemorrhagic Disease Virus, Epizootic , Reverse Transcriptase Polymerase Chain Reaction , Animals , Hemorrhagic Disease Virus, Epizootic/genetics , Hemorrhagic Disease Virus, Epizootic/isolation & purification , Hemorrhagic Disease Virus, Epizootic/classification , Reverse Transcriptase Polymerase Chain Reaction/methods , Reoviridae Infections/veterinary , Reoviridae Infections/virology , Reoviridae Infections/diagnosis , RNA, Viral/genetics , Genome, Viral , Serotyping/methods
7.
HLA ; 104(2): e15632, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39132735

ABSTRACT

Molecular HLA typing techniques are currently undergoing a rapid evolution. While real-time PCR is established as the standard method in tissue typing laboratories regarding allocation of solid organs, next generation sequencing (NGS) for high-resolution HLA typing is becoming indispensable but is not yet suitable for deceased donors. By contrast, high-resolution typing is essential for stem cell transplantation and is increasingly required for questions relating to various disease associations. In this multicentre clinical study, the TGS technique using nanopore sequencing is investigated applying NanoTYPE™ kit and NanoTYPER™ software (Omixon Biocomputing Ltd., Budapest, Hungary) regarding the concordance of the results with NGS and its practicability in diagnostic laboratories. The results of 381 samples show a concordance of 99.58% for 11 HLA loci, HLA-A, -B, -C, -DRB1, -DRB3, -DRB4, -DRB5, -DQA1, -DQB1, -DPA1 and -DPB1. The quality control (QC) data shows a very high quality of the sequencing performed in each laboratory, 34,926 (97.15%) QC values were returned as 'passed', 862 (2.4%) as 'inspect' and 162 (0.45%) as 'failed'. We show that an 'inspect' or 'failed' QC warning does not automatically lead to incorrect HLA typing. The advantages of nanopore sequencing are speed, flexibility, reusability of the flow cells and easy implementation in the laboratory. There are challenges, such as exon coverage and the handling of large amounts of data. Finally, nanopore sequencing presents potential for applications in basic research within the field of epigenetics and genomics and holds significance for clinical concerns.


Subject(s)
HLA Antigens , High-Throughput Nucleotide Sequencing , Histocompatibility Testing , Humans , Histocompatibility Testing/methods , High-Throughput Nucleotide Sequencing/methods , HLA Antigens/genetics , Software , Alleles , Genotype , Quality Control , Nanopore Sequencing/methods , Genotyping Techniques/methods
8.
Front Vet Sci ; 11: 1443855, 2024.
Article in English | MEDLINE | ID: mdl-39144078

ABSTRACT

Introduction: Spillover events of Mycoplasma ovipneumoniae have devastating effects on the wild sheep populations. Multilocus sequence typing (MLST) is used to monitor spillover events and the spread of M. ovipneumoniae between the sheep populations. Most studies involving the typing of M. ovipneumoniae have used Sanger sequencing. However, this technology is time-consuming, expensive, and is not well suited to efficient batch sample processing. Methods: Our study aimed to develop and validate an MLST workflow for typing of M. ovipneumoniae using Nanopore Rapid Barcoding sequencing and multiplex polymerase chain reaction (PCR). We compare the workflow with Nanopore Native Barcoding library preparation and Illumina MiSeq amplicon protocols to determine the most accurate and cost-effective method for sequencing multiplex amplicons. A multiplex PCR was optimized for four housekeeping genes of M. ovipneumoniae using archived DNA samples (N = 68) from nasal swabs. Results: Sequences recovered from Nanopore Rapid Barcoding correctly identified all MLST types with the shortest total workflow time and lowest cost per sample when compared with Nanopore Native Barcoding and Illumina MiSeq methods. Discussion: Our proposed workflow is a convenient and effective method for strain typing of M. ovipneumoniae and can be applied to other bacterial MLST schemes. The workflow is suitable for diagnostic settings, where reduced hands-on time, cost, and multiplexing capabilities are important.

9.
Forensic Sci Int ; 362: 112184, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098141

ABSTRACT

The petrous bone contains significantly higher amounts of DNA than any other human bone. Because of highly destructive sampling and because it is not always part of the recovered remains, the need for alternative sources of DNA is important. To identify additional optimal bone types, petrous bones were compared to femurs, tali, and calcanei sampled from 66 adult skeletons from two distinct modern-era Christian cemeteries. An extraction method employing full demineralization was used to obtain DNA, real-time PCR quantification to ascertain DNA quantity and degradation, and a commercial forensic short tandem repeats (STR) PCR amplification kit to determine genetic profiles. Statistical analysis was performed to explore the differences in DNA yield, DNA degradation, and success of STR amplification. A systematic studies exploring intra-skeletal variability in DNA preservation including various excavation sites differing by time period and geographical position are rare, and the second part of the investigation was based on a comparison of both archaeological sites, which allowed us to compare the effect of different post-mortem intervals and environmental conditions on DNA preservation. The older burial site in Crnomelj was active between the 13th and 18th century, whereas the more recent Polje burial was in use from the 16th to 19th century, creating different temporal and geographical environments. Results for the Crnomelj burial site revealed that the petrous bone outperformed all other bone types studied, except the calcaneus. At the Polje archeological site calcanei, tali, and femurs yielded the same STR typing success as petrous bones. The results obtained highlight the importance of careful bone sample selection for DNA analysis of aged skeletal remains. In addition to petrous bones, calcanei were found to be an alternative source of DNA when older burial sites are investigated. When more recent burial sites are processed, calcanei, tali, and femurs should be sampled besides petrous bones, not only because they exhibited good performance, but also because of easier sampling and easier grinding in the case of trabecular bones. This study contributes valuable insights into the potential use of various skeletal types as a source of DNA for investigation of aged skeletal remains, and it offers practical implications for forensic and archaeological investigations.


Subject(s)
DNA Fingerprinting , DNA , Microsatellite Repeats , Real-Time Polymerase Chain Reaction , Humans , DNA Fingerprinting/methods , Male , DNA/analysis , DNA/isolation & purification , Adult , Middle Aged , Female , Body Remains , DNA Degradation, Necrotic , Aged , Femur/chemistry , Femur/anatomy & histology , History, Medieval , Bone and Bones/chemistry , Petrous Bone/chemistry , Petrous Bone/anatomy & histology , Aged, 80 and over , Forensic Anthropology/methods , Young Adult , Calcaneus/anatomy & histology
13.
J Infect Chemother ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39095017

ABSTRACT

BACKGROUND: Since the introduction of the national routine vaccination program against Streptococcus pneumoniae in Japan from the early 2010s, the incidence of invasive pneumococcal disease (IPD) caused by non-vaccine serotypes has increased. This study focused on non-vaccine serogroup 24 strains derived from IPD and aimed to clarify their genetic characteristics. METHODS: Between 2013 and 2022, 121 strains identified as serogroup 24 in patients with IPD were collected and applied to multilocus sequence typing and next-generation sequencing. Whole-genome data were used to delineate phylogenetic relationships and to identify virulence and antimicrobial resistance-associated genes. RESULTS: Recent trends in sequence types (STs) were characterized by an increase in the proportion of ST162 and ST2754 for 24F and 24B, respectively, after 2018. Whole-genome phylogenetic analysis demonstrated that serogroup 24 strains were organized into three clades, closely related to STs but not with serotypes. All ST162 strains were classified as Global Pneumococcal Sequence Cluster (GPSC) 6 and harbored the virulence-associated rlrA islet, with co-trimoxazole-resistance mutations in folA and folP genes. Two ST162 strains with different serotypes 24F and 24B from the same patient were phylogenetically indistinguishable, showing that these strains were derived by serotype conversion during infection. CONCLUSION: The recent changes in predominant STs were similar to those previously reported throughout Japan, except Tokyo. Little correlation between whole-genome phylogeny and serotypes and the observed serotype conversion in one patient indicate potentially variable immunogenicity of this serogroup.

15.
Med Mycol ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153965

ABSTRACT

Cryptococcosis is an important fungal infection for both humans and cats, but molecular epidemiological studies on strains isolated from cats are limited. We conducted multi-locus sequence typing (MLST) analysis and antifungal susceptibility testing of 14 Cryptococcus spp. strains from domestic cats in Japan and one strain isolated from a cat in Singapore. All 14 strains from domestic cats in Japan were identified as Cryptococcus neoformans molecular type VNI. The sequence types (STs) included eight cases of ST5, five cases of ST31, and one novel ST. VNI ST5 is the most frequently isolated strain in Japanese patients as well, while there are no records of VNI ST31 being isolated from Japanese patients. The Singaporean cat strain was identified as C. gattii VGIIb (Cryptococcus deuterogattii), ST7. We compared these results with strains previously reported to have been isolated from cats. This comparison suggested that molecular types of Cryptococcus spp. isolated from cats may differ depending on the country. In the antifungal susceptibility testing of C. neoformans, one strain each exceeded the epidemiological cutoff value (ECV) for amphotericin B and 5-fluorocytosine, while two strains exceeded the ECV for fluconazole. This study reveals the molecular epidemiology of Cryptococcus spp. isolated from cats with cryptococcosis in Japan. It suggests that investigating Cryptococcus spp. carried by cats, which share close living environments with humans, may contribute to the health of both cats and human populations.


Cryptococcosis is an important fungal disease in both humans and cats. We genotyped strains isolated from cats with cryptococcosis in Japan. Our findings revealed that the most common genotype infecting both cats and humans in Japan is identical.

16.
Article in English | MEDLINE | ID: mdl-39122971

ABSTRACT

In recent years, the concentrations of ozone and the pollution days with ozone as the primary pollutant have been increasing year by year. The sources of regional ozone mainly depend on local photochemical formation and transboundary transport. The latter is influenced by different weather circulations. How to effectively reduce the inter-regional emission to control ozone pollution under different atmospheric circulation is rarely reported. In this study, we classify the atmospheric circulation of ozone pollution days from 2014 to 2019 over Central China based on the Lamb-Jenkinson method and the global analysis data of the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA5) operation. The effectiveness of emission control to alleviate ozone pollution under different atmospheric circulation is simulated by the WRF-Chem model. Among the 26 types of circulation patterns, 9 types of pollution days account for 79.5% of the total pollution days and further classified into 5 types. The local types (A and C type) are characterized by low surface wind speed and stable weather conditions over Central China due to a high-pressure system or a southwest vortex low-pressure system, blocking the diffusion of pollutants. Sensitivity simulations of A-type show that this heavy pollution process is mainly contributed by local emission sources. Removing the anthropogenic emission of pollutants over Central China would reduce the ozone concentration by 39.1%. The other three circulation patterns show pollution of transport characteristics affected by easterly, northerly, or southerly winds (N-EC, EC, S-EC-type). Under the EC-type, removing anthropogenic pollutants of East China would reduce the ozone concentration by 22.7% in Central China.

17.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-39101782

ABSTRACT

BACKGROUND: Mobilization typing (MOB) is a classification scheme for plasmid genomes based on their relaxase gene. The host ranges of plasmids of different MOB categories are diverse, and MOB is crucial for investigating plasmid mobilization, especially the transmission of resistance genes and virulence factors. However, MOB typing of plasmid metagenomic data is challenging due to the highly fragmented characteristics of metagenomic contigs. RESULTS: We developed MOBFinder, an 11-class classifier, for categorizing plasmid fragments into 10 MOB types and a nonmobilizable category. We first performed MOB typing to classify complete plasmid genomes according to relaxase information and then constructed an artificial benchmark dataset of plasmid metagenomic fragments (PMFs) from those complete plasmid genomes whose MOB types are well annotated. Next, based on natural language models, we used word vectors to characterize the PMFs. Several random forest classification models were trained and integrated to predict fragments of different lengths. Evaluating the tool using the benchmark dataset, we found that MOBFinder outperforms previous tools such as MOBscan and MOB-suite, with an overall accuracy approximately 59% higher than that of MOB-suite. Moreover, the balanced accuracy, harmonic mean, and F1-score reached up to 99% for some MOB types. When applied to a cohort of patients with type 2 diabetes (T2D), MOBFinder offered insights suggesting that the MOBF type plasmid, which is widely present in Escherichia and Klebsiella, and the MOBQ type plasmid might accelerate antibiotic resistance transmission in patients with T2D. CONCLUSIONS: To the best of our knowledge, MOBFinder is the first tool for MOB typing of PMFs. The tool is freely available at https://github.com/FengTaoSMU/MOBFinder.


Subject(s)
Metagenomics , Plasmids , Plasmids/genetics , Metagenomics/methods , Humans , Software , Metagenome
19.
J Med Virol ; 96(8): e29804, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39092809

ABSTRACT

Although rhinoviruses play a major role in exacerbations of childhood asthma, the presence of rhinovirus (RV) RNA in plasma, referred to as viremia, has been investigated in a few studies. The aim of the study was to investigate the presence of rhinovirus viremia at the time of asthma exacerbation and to describe the molecular characteristics of rhinoviruses associated with viremia. We conducted an observational, prospective, multicenter study in eight pediatric hospitals (VIRASTHMA2). Preschool-aged recurrent wheezers (1-5 years) hospitalized for a severe exacerbation were included. Reverse-transcription polymerase chain reaction (RT-PCR) and molecular typing for RV/enteroviruses (EV) were performed on nasal swabs and plasma. Plasma specimens were available for 105 children with positive RT-PCR for RV/EV in respiratory specimens. Thirty-six (34.3%) had positive viremia. In plasma, 28 (82.4%) of the typable specimens were RV-C, five (14.7%) were EV-D68, and one was RV-A (2.9%). In all cases, the RV/EV type was identical in the plasma and respiratory specimens. In conclusion, RV/EV viremia is frequent in severe exacerbations of preschool recurrent wheezers, particularly in RV-C infections.


Subject(s)
Asthma , Picornaviridae Infections , Rhinovirus , Viremia , Humans , Viremia/virology , Child, Preschool , Rhinovirus/genetics , Rhinovirus/isolation & purification , Rhinovirus/classification , Asthma/virology , Male , Female , Prospective Studies , Picornaviridae Infections/virology , Infant , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Plasma/virology
20.
Br J Haematol ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39104129

ABSTRACT

The last decade has seen significant growth in the application of DNA-based methods for extended antigen typing, and the use of gene sequencing to consider variation in blood group genes to guide clinical care. The challenge for the field now lies in educating professionals, expanding accessibility and standardizing the use of genotyping for routine patient care. Here we discuss applications of genotyping when transfusion is not straightforward including when compatibility cannot be demonstrated by routine methods, when Rh type is unclear, when allo- and auto-antibodies are encountered in stem cell and organ transplantation, for prenatal testing to determine maternal and foetal risk for complications, and Group A subtyping for kidney and platelet donors. We summarize current commercial testing resources and new approaches to testing including high-density arrays and targeted next-generation sequencing (NGS).

SELECTION OF CITATIONS
SEARCH DETAIL