Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Micromachines (Basel) ; 14(11)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38004954

ABSTRACT

We present a combination of light-sheet excitation and two-dimensional fluorescence intensity ratio (FIR) measurements as a simple and promising technique for three-dimensional temperature mapping. The feasibility of this approach is demonstrated with samples fabricated with sodium yttrium fluoride nanoparticles co-doped with rare-earth ytterbium and erbium ions (NaYF4:Yb3+/Er3+) incorporated into polydimethylsiloxane (PDMS) as a host material. In addition, we also evaluate the technique using lipid-coated NaYF4:Yb3+/Er3+ nanoparticles immersed in agar. The composite materials show upconverted (UC) fluorescence bands when excited by a 980 nm near-infrared laser light-sheet. Using a single CMOS camera and a pair of interferometric optical filters to specifically image the two thermally-coupled bands (at 525 and 550 nm), the two-dimensional FIR and, hence, the temperature map can be readily obtained. The proposed method can take optically sectioned (confocal-like) images with good optical resolution over relatively large samples (up to the millimetric scale) for further 3D temperature reconstruction.

2.
Nano Lett ; 23(15): 7180-7187, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37506366

ABSTRACT

Colloidal semiconductor nanomaterials present broadband, with large cross-section, two-photon absorption (2PA) spectra, which turn them into an important platform for applications that benefit from a high nonlinear optical response. Despite that, to date, the only means to control the magnitude of the 2PA cross-section is by changing the nanoparticle volume, as it follows a universal volume scale, independent of the material composition. As the emission spectrum is connected utterly to the nanomaterial dimensions, for a given material, the magnitude of the nonlinear optical response is also coupled to the emission spectra. Here, we demonstrate a means to decouple both effects by exploring the 2PA response of different types of heterostructures, tailoring the volume dependence of the 2PA cross-section due to the different dependence of the density of final states on the nanoparticle volume. By heterostructure engineering, one can obtain 1 order of magnitude enhancement of the 2PA cross-section with minimum emission spectra shift.

3.
Polymers (Basel) ; 15(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36771805

ABSTRACT

Optical fiber sensors incorporating luminescent materials are useful for detecting physical parameters and biochemical species. Fluorescent materials integrated on the tips of optical fibers, for example, provide a means to perform fluorescence thermometry while monitoring the intensity or the spectral variations of the fluorescence signal. Similarly, certain molecules can be tracked by monitoring their characteristic emission in the UV wavelength range. A key element for these sensing approaches is the luminescent composite, which may be obtained upon allocating luminescent nanomaterials in glass or polymer hosts. In this work, we explore the fluorescence features of two composites incorporating lanthanide-doped fluorescent powders using polydimethylsiloxane (PDMS) as a host. The composites are obtained by a simple mixing procedure and can be subsequently deposited onto the end faces of optical fibers via dip coating or molding. Whereas one of the composites has shown to be useful for the fabrication of fiber optic temperature sensors, the other shows promising result for detection of UV radiation. The performance of both composites is first evaluated for the fabrication of membranes by examining features such as fluorescent stability. We further explore the influence of parameters such as particle concentration and density on the fluorescence features of the polymer blends. Finally, we demonstrate the incorporation of these PDMS fluorescent composites onto optical fibers and evaluate their sensing capabilities.

4.
ACS Appl Mater Interfaces ; 14(33): 38311-38319, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35969002

ABSTRACT

Whereas lanthanide-based upconverting particles are promising candidates for several micro- and nanothermometry applications, understanding spatially varying effects related to their internal dynamics and interactions with the environment near the surface remains challenging. To separate the bulk from the surface response, this work proposes and performs hyperspectral sample-scanning experiments to obtain spatially resolved thermometric measurements on single microparticles of NaYF4: Yb3+,Er3+. Our results showed that the particle's thermometric response depends on the excitation laser incidence position, which may directly affect the temperature readout. Furthermore, it was noticed that even minor temperature changes (<1 K) caused by room temperature variations at the spectrometer CCD sensor used to record the luminescence signal may significantly modify the measurements. This work also provides some suggestions for building 2D thermal maps that shall be helpful for understanding surface-related effects in micro- and nanothermometers using hyperspectral techniques. Therefore, the results presented herein may impact applications of lanthanide-based nanothermometers, as in the understanding of energy-transfer processes inside systems such as nanoelectronic devices or living cells.

5.
Nanotheranostics ; 6(3): 306-321, 2022.
Article in English | MEDLINE | ID: mdl-35223382

ABSTRACT

Lanthanide-based beta-tricalcium phosphate (ß-TCP) upconversion nanoparticles are exploited as a non-viral vector for imaging guided-gene therapy by virtue of their unique optical properties and multi-modality imaging ability, high transfection efficiency, high biocompatibility, dispersibility, simplicity of synthesis and surface modification. Ytterbium and thulium-doped ß-TCP nanoparticles (ßTCPYbTm) are synthesized via co-precipitation method, coated with polyethylenimine (PEI) and functionalized with a nuclear-targeting peptide (TAT). Further, in vitro studies revealed that the nanotheranostic carriers are able to transfect cells with the plasmid eGFP at a high efficiency, with approximately 60% of total cells producing the fluorescent green protein. The optimized protocol developed comprises the most efficient ßTCPYbTm/PEI configuration, the amount and the order of assembly of ßTCPYbTm:PEI, TAT, plasmid DNA and the culturing conditions. With having excellent dispersibility and high chemical affinity toward nucleic acid, calcium ions released from ßTCPYbTm:PEI nanoparticles can participate in delivering nucleic acids and other therapeutic molecules, overcoming the nuclear barriers and improving the transfection efficacy. Equally important, the feasibility of the upconversion multifunctional nanovector to serve as an effective contrast agent for imaging modality, capable of converting low-energy light to higher-energy photons via a multi-photons mechanism, endowing greater unique luminescent properties, was successfully demonstrated.


Subject(s)
Lanthanoid Series Elements , Nanoparticles , Calcium Phosphates , Genetic Therapy/methods , HeLa Cells , Humans , Nanoparticles/chemistry , Precision Medicine
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 271: 120920, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35085997

ABSTRACT

Detection of copper plays a prominent role in the environmental protection and human health. Herein, we firstly design and construct an "off-on" upconversion fluorescence resonance energy transfer (UFRET) probe with low toxicity for the Cu2+ determination by using NaYF4: Yb3+, Er3+ upconversion nanoparticles (UCNPs) and Au NPs. UCNPs with positive charge and Au NPs with negative charge are respectively employed as the donor and acceptor, and bound together to form UFRET probe. The upconversion fluorescence quenching of UCNPs occurs by Au NPs through FRET (defined as "off" state). When Cu2+ exists in samples, Cu2+ reacts with 4-mercaptobenzoic acid (4-MBA) capped on the surface of Au NPs to make Au NPs detach from UCNPs, leading to the termination of FRET and the recovery of upconversion fluorescence (defined as "on" state). "Off-on" typed UFRET probe has excellent sensing performances, including linear range of 0.02-1 µM Cu2+ concentration, the limit of detection of 18.2 nM, high selectivity to Cu2+ and good recovery. The probe has been successfully used to determine Cu2+ in spiked tap water with satisfactory results. The probe will provide theoretical and technical support for the design of new sensitive heavy metal ion detection probe.


Subject(s)
Fluorescence Resonance Energy Transfer , Nanoparticles , Copper , Fluorescence Resonance Energy Transfer/methods , Gold , Humans , Water
7.
Methods Appl Fluoresc ; 9(4)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34633297

ABSTRACT

In this work we use lanthanide based NaYF4:Er3+, Yb3+upconversion nanoparticles (UCNP) to detect ppb-level sensitibity of a xanthene dye, Rhodamine B (RB) dye, under NIR excitation. A static energy transfer was observed between the luminescent UCNP energy donors and RB acceptor in aqueous solution for three different sizes of UCNP. No specific covalent functionalization of the UCNPs was performed providing a direct method of detection, particularly promising in natural systems where the interfering fluorescence background is a detrimental limitation to the performance of the detection method. This procedure is a first approach to be applied in estuarine and coastal zone where the high content of suspended particulate matter prevents the detection of tracers.

8.
Front Chem ; 9: 712659, 2021.
Article in English | MEDLINE | ID: mdl-34368084

ABSTRACT

Among several optical non-contact thermometry methods, luminescence thermometry is the most versatile approach. Lanthanide-based luminescence nanothermometers may exploit not only downshifting, but also upconversion (UC) mechanisms. UC-based nanothermometers are interesting for biological applications: they efficiently convert near-infrared radiation to visible light, allowing local temperatures to be determined through spectroscopic investigation. Here, we have synthesized highly crystalline Er3+, Yb3+ co-doped upconverting KGd3F10 nanoparticles (NPs) by the EDTA-assisted hydrothermal method. We characterized the structure and morphology of the obtained NPs by transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and dynamic light scattering. Nonlinear spectroscopic studies with the Er3+, Yb3+: KGd3F10 powder showed intense green and red emissions under excitation at 980 and 1,550 nm. Two- and three-photon processes were attributed to the UC mechanisms under excitation at 980 and 1,550 nm. Strong NIR emission centered at 1,530 nm occurred under low 980-nm power densities. Single NPs presented strong green and red emissions under continuous wave excitation at 975.5 nm, so we evaluated their use as primary nanothermometers by employing the Luminescence Intensity Ratio technique. We determined the temperature felt by the dried NPs by integrating the intensity ratio between the thermally coupled 2H11/2→4I15/2 and 4S3/2→4I15/2 levels of Er3+ ions in the colloidal phase and at the single NP level. The best thermal sensitivity of a single Er3+, Yb3+: KGd3F10 NP was 1.17% at the single NP level for the dry state at 300 K, indicating potential application of this material as accurate nanothermometer in the thermal range of biological interest. To the best of our knowledge, this is the first promising thermometry based on single KGd3F10 particles, with potential use as biomarkers in the NIR-II region.

9.
Adv Med Sci ; 65(2): 324-331, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32563181

ABSTRACT

PURPOSE: This work investigates how Yb3+ concentration affects the luminescent properties of LaNbO4 nanoparticles for medical imaging applications. Due to the highly transparent optical window for organic tissues in the near infrared region (650-1000 nm), upconversion fluorescence allows near infrared wavelengths to penetrate deeply into tissues, which is useful in biomedical areas such as biodetection, activated phototherapy, and screening. MATERIALS/METHOD: Upconversion nanoparticles based on LaNbO4 doped with Tm3+ and Yb3+ were prepared by the one-step industrial process called Spray Pyrolysis. Samples with different Tm3+:Yb3+ molar ratios (1:4, 1:8 and 1:16) were obtained. RESULTS: The X-ray powder diffractograms of all the samples displayed the typical peaks of a crystalline material (tetragonal phase). Emission bands emerged in the blue, red, and near infrared regions, and they corresponded to the Tm3+1G4 → 3H6 (475 nm), 1G4 → 3F4 (650 nm), 3F2,3 â†’ 3H6 (690 nm), and 3H4 → 3H6 (803 nm) transitions, which indicated a two-photon absorption process. As for bio-labelling application, the results indicated that Yb3+ concentration was directly related to signal intensity. CONCLUSIONS: The intensity of positive conversion emissions depends directly on Yb3+ concentration. The bio-labelling tests pointed to the potential application of these materials. The sample containing the highest amount of Yb3+ provided better results and was easier to detect than the standard sample.


Subject(s)
Hemoglobins/chemistry , Lanthanum/chemistry , Nanoparticles/chemistry , Niobium/chemistry , Oxides/chemistry , Thulium/chemistry , Ytterbium/chemistry , Fluorescence , Humans , Luminescence
10.
J Fluoresc ; 30(4): 827-837, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32435971

ABSTRACT

The spectroscopic properties of lanthanide ions stem from absorption and emission radiation in the solar spectrum range, which promotes numerous applications in areas such as white light emission, bio-imaging, biological markers, and photovoltaic cells, among others. To intensify these properties, several matrixes have been studied, particularly the yttrium vanadate matrix due to its structural, mechanic, and physicochemical properties. The non-hydrolytic sol-gel process is a versatile way to prepare inorganic oxides doped with lanthanide ions. In this work, we describe the synthesis of yttrium vanadate matrixes doped with Eu3+, Er3+, and/or Yb3+ ions (containing 1% lanthanide ions with respect to Y3+ (molar ratio)) by the non-hydrolytic sol-gel, annealed at 800 °C for 4 h, and their characterization by X-ray diffraction and photoluminescence spectroscopy. The X-ray diffraction patterns display the peaks corresponding to the yttrium vanadate tetragonal phase. Laser excitation at 980 nm elicits Er3+ emission bands in the green and red regions and Eu3+ emission at 620 nm. Laser excitation at 322 nm; i.e., the charge transfer band, provides emission in the same regions, as well as infrared emission. This system is a promising candidate for applications in solar cells, optical amplifiers, and biomarkers because it can be excited at different wavelengths. Graphical Abstract Schematic diagram of the energy level of lanthanides and vanadate ions, and energy transfer.

11.
Front Chem ; 7: 83, 2019.
Article in English | MEDLINE | ID: mdl-30886841

ABSTRACT

Upconversion is a non-linear optical phenomenon by which low energy photons stimulate the emission of higher energy ones. Applications of upconversion materials are wide and cover diverse areas such as bio-imaging, solar cells, optical thermometry, displays, and anti-counterfeiting technologies, among others. When these materials are synthesized in the form of nanoparticles, the effect of temperature on the optical emissions depends critically on their size, creating new opportunities for innovation. However, it remains a challenge to achieve upconversion materials that can be easily processed for their direct application or for the manufacture of optoelectronic devices. In this work, we developed nanocomposite materials based on upconversion nanoparticles (UCNPs) dispersed in a polymer matrix of either polylactic acid or poly(methyl methacrylate). These materials can be processed from solution to form thin film multilayers, which can be patterned by applying soft-lithography techniques to produce the desired features in the micro-scale, and luminescent tracks when used as nanocomposite inks. The high homogeneity of the films, the uniform distribution of the UCNPs and the easygoing deposition process are the distinctive features of such an approach. Furthermore, the size-dependent thermal properties of UCNPs can be exploited by a proper formulation of the nanocomposites in order to develop materials with high thermal sensitivity and a thermochromic response. Here, we thus present different strategies for designing optical devices through patterning techniques, ink dispensing and multilayer stacking. By applying upconverting nanocomposites with unique thermal responses, local heating effects in designed nanostructures were observed.

12.
Adv Drug Deliv Rev ; 138: 105-116, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30217518

ABSTRACT

The design of a delivery system allowing targeted and controlled drug release has been considered one of the main strategies used to provide individualized cancer therapy, to improve survival statistics, and to enhance quality-of-life. External stimuli including low- and high-penetration light have been shown to have the ability to turn drug delivery on and off in a non-invasive remotely-controlled fashion. The success of this approach has been closely related to the development of a variety of drug delivery systems - from photosensitive liposomes to gold nanocages - and relies on multiple mechanisms of drug release activation. In this review, we make reference to the two extremes of the light spectrum and their potential as triggers for the delivery of antitumor drugs, along with the most recent achievements in preclinical trials and the challenges to an efficient translation of this technology to the clinical setting.


Subject(s)
Drug Delivery Systems , Light , Neoplasms/therapy , Animals , Antineoplastic Agents/administration & dosage , Humans
13.
J Biophotonics ; 11(4): e201700029, 2018 04.
Article in English | MEDLINE | ID: mdl-28703424

ABSTRACT

Core-shell nanostructures associated with photonics techniques have found innumerous applications in diagnostics and therapy. In this work, we introduce a novel core-shell nanostructure design that serves as a multimodal optical imaging contrast agent for dental adhesion evaluation. This nanostructure consists of a rare-earth-doped (NaYF4 :Yb 60%, Tm 0.5%)/NaYF4 particle as the core (hexagonal prism, ~51 nm base side length) and the highly refractive TiO2 material as the shell (~thickness of 15 nm). We show that the TiO2 shell provides enhanced contrast for optical coherence tomography (OCT), while the rare-earth-doped core upconverts excitation light from 975 nm to an emission peaked at 800 nm for photoluminescence imaging. The OCT and the photoluminescence wide-field images of human tooth were demonstrated with this nanoparticle core-shell contrast agent. In addition, the described core-shell nanoparticles (CSNps) were dispersed in the primer of a commercially available dental bonding system, allowing clear identification of dental adhesive layers with OCT. We evaluated that the presence of the CSNp in the adhesive induced an enhancement of 67% scattering coefficient to significantly increase the OCT contrast. Moreover, our results highlight that the upconversion photoluminescence in the near-infrared spectrum region is suitable for image of deep dental tissue.


Subject(s)
Contrast Media/chemistry , Fluorides/chemistry , Incisor/diagnostic imaging , Multimodal Imaging/methods , Nanoparticles , Titanium/chemistry , Tomography, Optical Coherence/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL