Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Insects ; 11(5)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32353938

ABSTRACT

Global climate change is resulting in a wide range of biotic responses, including changes in diel activity and seasonal phenology patterns, range shifts polewards in each hemisphere and/or to higher elevations, and altered intensity and frequency of interactions between species in ecosystems. Oak (Thaumetopoea processionea) and pine (T. pityocampa) processionary moths (hereafter OPM and PPM, respectively) are thermophilic species that are native to central and southern Europe. The larvae of both species are gregarious and produce large silken 'nests' that they use to congregate when not feeding. During outbreaks, processionary caterpillars are capable of stripping foliage from their food plants (oak and pine trees), generating considerable economic damage. Moreover, the third to last instar caterpillars of both species produce copious hairs as a means of defence against natural enemies, including both vertebrate and invertebrate predators, and parasitoids. These hairs contain the toxin thaumetopoein that causes strong allergic reactions when it comes into contact with human skin or other membranes. In response to a warming climate, PPM is expanding its range northwards, while OPM outbreaks are increasing in frequency and intensity, particularly in northern Germany, the Netherlands, and southern U.K., where it was either absent or rare previously. Here, we discuss how warming and escape from co-evolved natural enemies has benefitted both species, and suggest possible strategies for biological control.

2.
Mol Phylogenet Evol ; 140: 106573, 2019 11.
Article in English | MEDLINE | ID: mdl-31374259

ABSTRACT

Mygalomorph spiders of the family Theraphosidae, known to the broader public as tarantulas, are among the most recognizable arachnids on earth due to their large size and widespread distribution. Their use of urticating setae is a notable adaptation that has evolved exclusively in certain New World theraphosids. Thus far, the evolutionary history of Theraphosidae remains poorly understood; theraphosid systematics still largely relies on morphological datasets, which suffer from high degrees of homoplasy, and traditional Sanger sequencing of preselected genes failed to provide strong support for supra-generic clades. In this study, we provide the first robust phylogenetic hypothesis of theraphosid evolution inferred from transcriptome data. A core ortholog approach was used to generate a phylogeny from 2460 orthologous genes across 25 theraphosid genera, representing all of the major theraphosid subfamilies, except Selenogyrinae. Our phylogeny recovers an unprecedented monophyletic group that comprises the vast majority of New World theraphosid subfamilies including Aviculariinae, Schismatothelinae and Theraphosinae. Concurrently, we provide additional evidence for the integrity of questionable subfamilies, such as Poecilotheriinae and Psalmopoeinae, and support the non-monophyly of Ischnocolinae. The deeper relationships between almost all subfamilies are confidently inferred. We also used our phylogeny in tandem with published morphological data to perform ancestral state analyses on urticating setae, and contextualize our reconstructions with emphasis on the complex evolutionary history of the trait.


Subject(s)
Phylogeny , Sensilla/anatomy & histology , Spiders/anatomy & histology , Spiders/genetics , Transcriptome/genetics , Animals , Likelihood Functions , Sensilla/ultrastructure , Spiders/classification
3.
Zookeys ; (601): 89-109, 2016.
Article in English | MEDLINE | ID: mdl-27551189

ABSTRACT

A new monotypic Theraphosidae genus, Kankuamo Perafán, Galvis & Pérez-Miles, gen. n., is described from Colombia, with a new type of urticating setae. These setae differ from others principally by having a small distal oval patch of lanceolate reversed barbs. Males of Kankuamo gen. n. additionally differ by having a palpal bulb organ very divergent from all known species, with many conspicuous keels dispersed across the median tegulum to the tip, mostly with serrated edges. Females differ by having spermathecae with a single notched receptacle, with two granulated lobes and several irregular sclerotized longitudinal striations. The new urticating setae, type VII, is characterized, illustrated and its releasing mechanism is discussed. It is hypothesized that these setae are the first in Theraphosinae subfamily whose release mechanism is by direct contact. Kankuamo gen. n. is described and illustrated on the basis of the type species Kankuamo marquezi Perafán, Galvis & Gutiérrez, sp. n., and their remarkable characteristics, morphological affinities and cladistic relationship are analyzed.

SELECTION OF CITATIONS
SEARCH DETAIL