Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters











Publication year range
1.
PeerJ Comput Sci ; 10: e2259, 2024.
Article in English | MEDLINE | ID: mdl-39314695

ABSTRACT

Routing in vehicular ad hoc networks (VANETs) enables vehicles to communicate for safety and non-safety applications. However, there are limitations in wireless communication that can degrade VANET performance, so it is crucial to optimize the operation of routing protocols to address this. Various routing protocols employed the expected transmission count (ETX) in their operation as one way to achieve the required efficiency and robustness. ETX is used to estimate link quality for improved route selection. While some studies have evaluated the utilization of ETX in specific protocols, they lack a comprehensive analysis across protocols under varied network conditions. This research provides a comprehensive comparative evaluation of ETX-based routing protocols for VANETs using the nomadic community mobility model. It covers a foundational routing protocol, ad hoc on-demand distance vector (AODV), as well as newer variants that utilize ETX, lightweight ETX (LETX), and power-based light reverse ETX (PLR-ETX), which are referred to herein as AODV-ETX, AODV-LETX, and AODV-PLR, respectively. The protocols are thoroughly analyzed via ns-3 simulations under different traffic and mobility scenarios. Our evaluation model considers five performance parameters including throughput, routing overhead, end-to-end delay, packet loss, and underutilization ratio. The analysis provides insight into designing robust and adaptive ETX routing for VANET to better serve emerging intelligent transportation system applications through a better understanding of protocol performance under different network conditions. The key findings show that ETX-optimized routing can provide significant performance enhancements in terms of end-to-end delay, throughput, routing overhead, packet loss and underutilization ratio. The extensive simulations demonstrated that AODV-PLR outperforms its counterparts AODV-ETX and AODV-LETX and the foundational AODV routing protocol across the performance metrics.

2.
Sensors (Basel) ; 24(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39001113

ABSTRACT

The development of intelligent transportation systems (ITS), vehicular ad hoc networks (VANETs), and autonomous driving (AD) has progressed rapidly in recent years, driven by artificial intelligence (AI), the internet of things (IoT), and their integration with dedicated short-range communications (DSRC) systems and fifth-generation (5G) networks. This has led to improved mobility conditions in different road propagation environments: urban, suburban, rural, and highway. The use of these communication technologies has enabled drivers and pedestrians to be more aware of the need to improve their behavior and decision making in adverse traffic conditions by sharing information from cameras, radars, and sensors widely deployed in vehicles and road infrastructure. However, wireless data transmission in VANETs is affected by the specific conditions of the propagation environment, weather, terrain, traffic density, and frequency bands used. In this paper, we characterize the path loss based on the extensive measurement campaign carrier out in vehicular environments at 700 MHz and 5.9 GHz under realistic road traffic conditions. From a linear dual-slope path loss propagation model, the results of the path loss exponents and the standard deviations of the shadowing are reported. This study focused on three different environments, i.e., urban with high traffic density (U-HD), urban with moderate/low traffic density (U-LD), and suburban (SU). The results presented here can be easily incorporated into VANET simulators to develop, evaluate, and validate new protocols and system architecture configurations under more realistic propagation conditions.

3.
Sensors (Basel) ; 24(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732859

ABSTRACT

Vehicular ad hoc networks (VANETs) use multiple channels to communicate using wireless access in vehicular environment (WAVE) standards to provide a variety of vehicle-related applications. The current IEEE 802.11p WAVE communication channel structure is composed of one control channel (CCH) and several service channels (SCHs). SCHs are used for non-safety data transmission, while the CCH is used for broadcasting beacons, control, and safety. WAVE devices transmit data that alternate between CCHs and SCHs, and each channel is active for a duration called the CCH interval (CCHI) and SCH interval (SCHI), respectively. Currently, both intervals are fixed at 50 ms. However, fixed-length intervals cannot effectively respond to dynamically changing traffic loads. Additionally, when many vehicles are simultaneously using the limited channel resources for data transmission, the network performance significantly degrades due to numerous packet collisions. Herein, we propose an adaptive resource allocation technique for efficient data transmission. The technique dynamically adjusts the SCHI and CCHI to improve network performance. Moreover, to reduce data collisions and optimize the network's backoff distribution, the proposed scheme applies reinforcement learning (RL) to provide an intelligent channel access algorithm. The simulation results demonstrate that the proposed scheme can ensure high throughputs and low transmission delays.

4.
Sensors (Basel) ; 24(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38733019

ABSTRACT

The burgeoning interest in intelligent transportation systems (ITS) and the widespread adoption of in-vehicle amenities like infotainment have spurred a heightened fascination with vehicular ad-hoc networks (VANETs). Multi-hop routing protocols are pivotal in actualizing these in-vehicle services, such as infotainment, wirelessly. This study presents a novel protocol called multiple junction-based traffic-aware routing (MJTAR) for VANET vehicles operating in urban environments. MJTAR represents an advancement over the improved greedy traffic-aware routing (GyTAR) protocol. MJTAR introduces a distributed mechanism capable of recognizing vehicle traffic and computing curve metric distances based on two-hop junctions. Additionally, it employs a technique to dynamically select the most optimal multiple junctions between source and destination using the ant colony optimization (ACO) algorithm. We implemented the proposed protocol using the network simulator 3 (NS-3) and simulation of urban mobility (SUMO) simulators and conducted performance evaluations by comparing it with GSR and GyTAR. Our evaluation demonstrates that the proposed protocol surpasses GSR and GyTAR by over 20% in terms of packet delivery ratio, with the end-to-end delay reduced to less than 1.3 s on average.

5.
Sensors (Basel) ; 24(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38610544

ABSTRACT

The growth in linked and autonomous vehicles has led to the emergence of vehicular ad hoc networks (VANETs) as a means to enhance road safety, traffic efficiency, and passenger comfort. However, VANETs face challenges in facilitating trustworthiness and high-quality services due to communication delays caused by traffic, dynamic topology changes, variable speeds, and other influencing factors. Hence, there is a need for a reliable data dissemination scheme capable of reducing communication delays among hops by identifying effective forwarder nodes. In this paper, we propose a novel, weighted, estimated, spider monkey-based, nature-inspired optimization (w-SMNO) method to generate a set of efficient relays. Additionally, we introduce a dynamic weight assignment and configuration model to enhance system accuracy using a neural network based on backpropagation with gradient descent optimization techniques to minimize errors in the machine learning model. The w-SMNO also incorporates a distinct algorithm for effective relay selection among multiple monkey spider groups. The simulation results demonstrate substantial improvements in w-SMNO, with a 35.7% increase in coverage, a 41.2% reduction in the end-to-end delay, a 36.4% improvement in the message delivery rate, and a 38.4% decrease in the collision rate compared to the state-of-the-art approaches.

6.
Sensors (Basel) ; 24(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38339534

ABSTRACT

A vehicular ad hoc network (VANET) is a sophisticated wireless communication infrastructure incorporating centralized and decentralized control mechanisms, orchestrating seamless data exchange among vehicles. This intricate communication system relies on the advanced capabilities of 5G connectivity, employing specialized topological arrangements to enhance data packet transmission. These vehicles communicate amongst themselves and establish connections with roadside units (RSUs). In the dynamic landscape of vehicular communication, disruptions, especially in scenarios involving high-speed vehicles, pose challenges. A notable concern is the emergence of black hole attacks, where a vehicle acts maliciously, obstructing the forwarding of data packets to subsequent vehicles, thereby compromising the secure dissemination of content within the VANET. We present an intelligent cluster-based routing protocol to mitigate these challenges in VANET routing. The system operates through two pivotal phases: first, utilizing an artificial neural network (ANN) model to detect malicious nodes, and second, establishing clusters via enhanced clustering algorithms with appointed cluster heads (CH) for each cluster. Subsequently, an optimal path for data transmission is predicted, aiming to minimize packet transmission delays. Our approach integrates a modified ad hoc on-demand distance vector (AODV) protocol for on-demand route discovery and optimal path selection, enhancing request and reply (RREQ and RREP) protocols. Evaluation of routing performance involves the BHT dataset, leveraging the ANN classifier to compute accuracy, precision, recall, F1 score, and loss. The NS-2.33 simulator facilitates the assessment of end-to-end delay, network throughput, and hop count during the path prediction phase. Remarkably, our methodology achieves 98.97% accuracy in detecting black hole attacks through the ANN classification model, outperforming existing techniques across various network routing parameters.

7.
Sensors (Basel) ; 24(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38400202

ABSTRACT

The reliability of the communication link is quite common and challenging to handle as the topology changes frequently in vehicular ad hoc networks (VANETs). Another problem with VANETs is that the vehicles are from different manufacturers. Hence, the heterogeneity of hardware is obvious. These heterogeneity and reliability problems affect the message dissemination in VANETs. This paper aims to address these challenges by proposing a robust routing protocol capable of ensuring reliable, scalable, and heterogeneity-tolerant message dissemination in VANETs. We first introduced a hybrid hierarchical architecture based on software-defined networking (SDN) principles for VANETs, leveraging SDN's inherent scalability and adaptability to heterogeneity. Further, a road-side unit (RSU)-assisted cloud-based location-aware hybrid routing for software-defined VANETs (SD-VANETs) that we call RC-LAHR was proposed. RC-LAHR was rigorously tested and analyzed for its performance in terms of packet delivery ratio (PDR) and end-to-end delay (EED), along with a comprehensive assessment of network traffic and load impacts on cloud infrastructure and RSUs. The routing protocol is compared with state-of-the-art protocols, Greedy Perimeter Stateless Routing (GPSR) and Opportunistic and Position-Based Routing (OPBR). The proposed routing protocol performs well as compared to GPSR and OPBR. The result shows that the EED is reduced to 20% and the PDR is increased to 30%. The network reliability is also increased up to 5% as compared to the OPBR and GPSR.

8.
PeerJ Comput Sci ; 9: e1676, 2023.
Article in English | MEDLINE | ID: mdl-38077534

ABSTRACT

Many studies have shown that air quality in cities is affected due to emissions of carbon from vehicles. As a result, policymakers (e.g., municipalities) intensely search for new ways to reduce air pollution due to its relation to health diseases. With this concern, connected vehicle technologies can leverage alternative on-road emissions control policies. The present investigation studies the impact on air pollution by (i) updating vehicles' routes to avoid pollution exposure (route choice policy), (ii) updating vehicles' speed limits (speed control policy), and (iii) considering electric vehicles (EVs). Vehicles are informed in advance about route conditions (i.e., on-road emissions) using the vehicular network. We found that by updating vehicle routes, 7.43% less CO emissions are produced within the evaluated region. Also, we find no evidence of significant emissions reductions in the case of limiting vehicles' speed. Lastly, with 30% of EV penetration, safe CO emissions levels are reached.

9.
Sensors (Basel) ; 23(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37960470

ABSTRACT

Vehicle malfunctions have a direct impact on both human and road safety, making vehicle network security an important and critical challenge. Vehicular ad hoc networks (VANETs) have grown to be indispensable in recent years for enabling intelligent transport systems, guaranteeing traffic safety, and averting collisions. However, because of numerous types of assaults, such as Distributed Denial of Service (DDoS) and Denial of Service (DoS), VANETs have significant difficulties. A powerful Network Intrusion Detection System (NIDS) powered by Artificial Intelligence (AI) is required to overcome these security issues. This research presents an innovative method for creating an AI-based NIDS that uses Deep Learning methods. The suggested model specifically incorporates the Self Attention-Based Bidirectional Long Short-Term Memory (SA-BiLSTM) for classification and the Cascaded Convolution Neural Network (CCNN) for learning high-level features. The Multi-variant Gradient-Based Optimization algorithm (MV-GBO) is applied to improve CCNN and SA-BiLSTM further to enhance the model's performance. Additionally, information gained using MV-GBO-based feature extraction is employed to enhance feature learning. The effectiveness of the proposed model is evaluated on reliable datasets such as KDD-CUP99, ToN-IoT, and VeReMi, which are utilized on the MATLAB platform. The proposed model achieved 99% accuracy on all the datasets.

10.
Sensors (Basel) ; 23(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37687956

ABSTRACT

The Vehicular Self-Organizing Network (VANET) is a burgeoning research topic within Intelligent Transportation Systems, holding promise in enhancing safety and convenience for drivers. In general, VANETs require large amounts of data to be shared among vehicles within the network. But then two challenges arise. First, data security, privacy, and reliability need to be ensured. Second, data management and security solutions must be very scalable, because current and future transportation systems are very dense. However, existing Vehicle-to-Vehicle solutions fall short of guaranteeing the veracity of crucial traffic and vehicle safety data and identifying and excluding malicious vehicles. The introduction of blockchain technology in VANETs seeks to address these issues. But blockchain-enabled solutions, such as the Starling system, are too computationally heavy to be scalable enough. Our proposed NeoStarling system focuses on proving a scalable and efficient secure and reliable obstacle mapping using blockchain. An opportunistic mutual authentication protocol, based on hash functions, is only triggered when vehicles travel a certain distance. Lightweight cryptography and an optimized message exchange enable an improved scalability. The evaluation results show that our collaborative approach reduces the frequency of authentications and increases system efficiency by 35%. In addition, scalability is improved by 50% compared to previous mechanisms.

11.
Sensors (Basel) ; 23(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37447839

ABSTRACT

Vehicle Ad-hoc network (VANET) can provide technical support and solutions for the construction of intelligent and efficient transportation systems, and the routing protocol directly affects the efficiency of VANET. The rapid movement of nodes and uneven density distribution affect the routing stability and data transmission efficiency in VANET. To improve the local optimality and routing loops of the path-aware greedy perimeter stateless routing protocol (PA-GPSR) in urban sparse networks, a weight-based path-aware greedy perimeter stateless routing protocol (W-PAGPSR) is proposed. The protocol is divided into two stages. Firstly, in the routing establishment stage, the node distance, reliable node density, cumulative communication duration, and node movement direction are integrated to indicate the communication reliability of the node, and the next hop node is selected using the weight greedy forwarding strategy to achieve reliable transmission of data packets. Secondly, in the routing maintenance stage, based on the data packet delivery angle and reliable node density, the next hop node is selected for forwarding using the weight perimeter forwarding strategy to achieve routing repair. The simulation results show that compared to the greedy peripheral stateless routing protocol (GPSR), for the maximum distance-minimum angle greedy peripheral stateless routing (MM-GPSR) and PA-GPSR protocols, the packet loss rate of the protocol is reduced by an average of 24.47%, 25.02%, and 14.12%, respectively; the average end-to-end delay is reduced by an average of 48.34%, 79.96%, and 21.45%, respectively; and the network throughput is increased by an average of 47.68%, 58.39%, and 20.33%, respectively. This protocol improves network throughput while reducing the average end-to-end delay and packet loss rate.


Subject(s)
Algorithms , Wireless Technology , Reproducibility of Results , Computer Simulation , Computer Communication Networks
12.
Sensors (Basel) ; 23(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37420930

ABSTRACT

Vehicular ad hoc networks (VANETs) are used for improving traffic efficiency and road safety. However, VANETs are vulnerable to various attacks from malicious vehicles. Malicious vehicles can disrupt the normal operation of VANET applications by broadcasting bogus event messages that may cause accidents, threatening people's lives. Therefore, the receiver node needs to evaluate the authenticity and trustworthiness of the sender vehicles and their messages before acting. Although several solutions for trust management in VANETs have been proposed to address these issues of malicious vehicles, existing trust management schemes have two main issues. Firstly, these schemes have no authentication components and assume the nodes are authenticated before communicating. Consequently, these schemes do not meet VANET security and privacy requirements. Secondly, existing trust management schemes are not designed to operate in various contexts of VANETs that occur frequently due to sudden variations in the network dynamics, making existing solutions impractical for VANETs. In this paper, we present a novel blockchain-assisted privacy-preserving and context-aware trust management framework that combines a blockchain-assisted privacy-preserving authentication scheme and a context-aware trust management scheme for securing communications in VANETs. The authentication scheme is proposed to enable anonymous and mutual authentication of vehicular nodes and their messages and meet VANET efficiency, security, and privacy requirements. The context-aware trust management scheme is proposed to evaluate the trustworthiness of the sender vehicles and their messages, and successfully detect malicious vehicles and their false/bogus messages and eliminate them from the network, thereby ensuring safe, secure, and efficient communications in VANETs. In contrast to existing trust schemes, the proposed framework can operate and adapt to various contexts/scenarios in VANETs while meeting all VANET security and privacy requirements. According to efficiency analysis and simulation results, the proposed framework outperforms the baseline schemes and demonstrates to be secure, effective, and robust for enhancing vehicular communication security.


Subject(s)
Blockchain , Humans , Awareness , Communication , Privacy
13.
Sensors (Basel) ; 23(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37514720

ABSTRACT

Traffic systems have been built as a result of recent technological advancements. In application, dependable communication technology is essential to link any system needs. VANET technology is used to communicate data about intelligent traffic lights, which are focused on infrastructure during traffic accidents and mechanisms to reduce traffic congestion. To ensure reliable data transfer in VANET, appropriate routing protocols must be used. This research aims to improve data transmission in VANETs implemented in intelligent traffic lights. This study investigates the capability of combining the DSDV routing protocol with the routing protocol AODV to boost AODV on an OMNET++ simulator utilizing the 802.11p wireless standard. According to the simulation results obtained by analyzing the delay parameters, network QoS, and throughput on each protocol, the DSDV-AODV routing protocol performs better in three scenarios compared to QoS, delay, and throughput parameters in every scenario that uses network topology adapted to the conditions on the road intersections. The topology with 50 fixed + 50 mobile nodes yields the best results, with 0.00062 s delay parameters, a network QoS of 640 bits/s, and a throughput of 629.437 bits/s. Aside from the poor results on the network QoS parameters, the addition of mobile nodes to the topology influences both the results of delay and throughput metrics.

14.
Wirel Pers Commun ; 130(3): 1929-1962, 2023.
Article in English | MEDLINE | ID: mdl-37206634

ABSTRACT

The COVID-19 pandemic has created an emergency across the globe. The number of corona positive and death cases is still rising worldwide. All countries' governments are taking various steps to control the infection of COVID-19. One step to control the coronavirus's spreading is to quarantine. But the number of active cases at the quarantine center is increasing daily. Also, the doctors, nurses, and paramedical staff providing service to the people at the quarantine center are getting infected. This demands the automatic and regular monitoring of people at the quarantine center. This paper proposed a novel and automated method for monitoring people at the quarantine center in two phases. These are the health data transmission phase and health data analysis phase. The health data transmission phase proposed a geographic-based routing that involves components like Network-in-box, Roadside-unit, and vehicles. An effective route is determined using route value to transmit data from the quarantine center to the observation center. The route value depends on the factors such as density, shortest path, delay, vehicular data carrying delay, and attenuation. The performance metrics considered for this phase are E2E delay, number of network gaps, and packet delivery ratio, and the proposed work performs better than the existing routing like geographic source routing, anchor-based street traffic aware routing, Peripheral node based GEographic DIstance Routing . The analysis of health data is done at the observation center. In the health data analysis phase, the health data is classified into multi-class using a support vector machine. There are four categories of health data: normal, low-risk, medium-risk, and high-risk. The parameters used to measure the performance of this phase are precision, recall, accuracy, and F-1 score. The overall testing accuracy is found to be 96.8%, demonstrating strong potential for our technique to be adopted in practice.

15.
Sensors (Basel) ; 23(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36904798

ABSTRACT

Modern vehicle communication development is a continuous process in which cutting-edge security systems are required. Security is a main problem in the Vehicular Ad Hoc Network (VANET). Malicious node detection is one of the critical issues found in the VANET environment, with the ability to communicate and enhance the mechanism to enlarge the field. The vehicles are attacked by malicious nodes, especially DDoS attack detection. Several solutions are presented to overcome the issue, but none are solved in a real-time scenario using machine learning. During DDoS attacks, multiple vehicles are used in the attack as a flood on the targeted vehicle, so communication packets are not received, and replies to requests do not correspond in this regard. In this research, we selected the problem of malicious node detection and proposed a real-time malicious node detection system using machine learning. We proposed a distributed multi-layer classifier and evaluated the results using OMNET++ and SUMO with machine learning classification using GBT, LR, MLPC, RF, and SVM models. The group of normal vehicles and attacking vehicles dataset is considered to apply the proposed model. The simulation results effectively enhance the attack classification with an accuracy of 99%. Under LR and SVM, the system achieved 94 and 97%, respectively. The RF and GBT achieved better performance with 98% and 97% accuracy values, respectively. Since we have adopted Amazon Web Services, the network's performance has improved because training and testing time do not increase when we include more nodes in the network.

16.
Sensors (Basel) ; 23(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36850721

ABSTRACT

A vehicular Ad-Hoc Network (VANET) is a type of Mobile Ad-Hoc Networks (MANETs) that uses wireless routers inside each vehicle to act as a node. The need for effective solutions to urban traffic congestion issues has increased recently due to the growing number of automobile connections in the car communications system. To ensure a high level of service and avoid unsafe situations brought on by congestion or a broadcast storm, data dissemination in a VANET network requires an effective approach. Effective multi-objective optimization methods are required to tackle this because of the implied competing nature of multi-metric approaches. A meta-heuristic technique with a high level of solution interactions can handle efficient optimization. To accomplish this, a meta-heuristic search algorithm particle optimization was chosen. In this paper, we have created a network consisting of vehicles as nodes. The aim is to send emergency messages immediately to the stationary nodes. The normal messages will be sent to the FIFO queue. To send these messages to a destination node, multiple routes were found using Time delay-based Multipath Routing (TMR) method, and to find the optimal and secure path Particle Swarm Optimization (PSO) is used. Our method is compared with different optimization methods such as Ant Colony Optimization (ACO), Firefly Optimization (FFO), and Enhanced Flying Ant Colony Optimization (EFACO). Significant improvements in terms of throughput and packet loss ratio, reduced end-to-end delay, rounding overhead ratio, and the energy consumption are revealed by the experimental results.

17.
Sensors (Basel) ; 23(4)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36850911

ABSTRACT

Cellular vehicle-to-everything (C-V2X) is a communication technology that supports various safety, mobility, and environmental applications, given its higher reliability properties compared to other communication technologies. The performance of these C-V2X-enabled intelligent transportation system (ITS) applications is affected by the performance of the C-V2X communication technology (mainly packet loss). Similarly, the performance of the C-V2X communication is dependent on the vehicular traffic density which is affected by the traffic mobility patterns and vehicle routing strategies. Consequently, it is critical to develop a tool that can simulate, analyze, and evaluate the mutual interactions of the transportation and communication systems at the application level to quantify the benefits of C-V2X-enabled ITS applications realistically. In this paper, we demonstrate the benefits gained when using C-V2X Vehicle-to-Infrastructure (V2I) communication technology in an energy-efficient dynamic routing application. Specifically, we develop a Connected Energy-Efficient Dynamic Routing (C-EEDR) application using C-V2X as a communication medium in an integrated vehicular traffic and communication simulator (INTEGRATION). The results demonstrate that the C-EEDR application achieves fuel savings of up to 16.6% and 14.7% in the IDEAL and C-V2X communication cases, respectively, for a peak hour demand on the downtown Los Angeles network considering a 50% level of market penetration of connected vehicles. The results demonstrate that the fuel savings increase with increasing levels of market penetration at lower traffic demand levels (25% and 50% the peak demand). At higher traffic demand levels (75% and 100%), the fuel savings increase with increasing levels of market penetration with maximum benefits at a 50% market penetration rate. Although the communication system is affected by the high density of vehicles at the high traffic demand levels (75% and 100% the peak demand), the C-EEDR application manages to perform reliably, producing system-wide fuel consumption savings.The C-EEDR application achieves fuel savings of 15.2% and 11.7% for the IDEAL communication and 14% and 9% for the C-V2X communication at the 75% and 100% market penetration rates, respectively. Finally, the paper demonstrates that the C-V2X communication constraints only affect the performance of the C-EEDR application at the full demand level when the market penetration of the connected vehicles exceeds 25%. This degradation, however, is minimal (less than a 2.5% reduction in fuel savings).

18.
Data Brief ; 47: 108964, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36852002

ABSTRACT

Despite not being designed for vehicular use, the high bandwidth offered by IEEE 802.11ad makes it an enticing proposition for opportunistic Vehicle-to-Infrastructure (V2I) communication. Because it operates at a high frequency of 60 GHz, 802.11ad suffers from high attenuation. To combat this, it uses antenna directionality to improve communication range. Directionality is primarily achieved by selecting an antenna configuration, or sector, from a list of preconfigured ones. Choosing a good antenna sector is difficult in V2I environments, as the fast mobility involved affects the alignment between communicating nodes. This article describes a dataset that supports analysis of Commercial Off-The-Shelf (COTS) 802.11ad device behavior in an experimental V2I communication scenario. More specifically, the dataset summarizes the results from a set of experiments in which a mobile client drove around a stationary Access Point (AP) while downloading data from it. Information regarding the client's mobility, control frames exchanged, and achieved throughput was collected. This dataset can support realistic analysis of 802.11ad COTS equipment behaviors, such as antenna selection and communication range, in a vehicular communication scenario.

19.
Sensors (Basel) ; 23(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36772244

ABSTRACT

The vehicular ad hoc network (VANET) constitutes a key technology for realizing intelligent transportation services. However, VANET is characterized by diverse message types, complex security attributes of communication nodes, and rapid network topology changes. In this case, how to ensure safe, efficient, convenient, and comfortable message services for users has become a challenge that should not be ignored. To improve the flexibility of routing matching multiple message types in VANET, this paper proposes a secure intelligent message forwarding strategy based on deep reinforcement learning (DRL). The key supporting elements of the model in the strategy are reasonably designed in combination with the scenario, and sufficient training of the model is carried out by deep Q networks (DQN). In the strategy, the state space is composed of the distance between candidate and destination nodes, the security attribute of candidate nodes and the type of message to be sent. The node can adaptively select the routing scheme according to the complex state space. Simulation and analysis show that the proposed strategy has the advantages of fast convergence, well generalization ability, high transmission security, and low network delay. The strategy has flexible and rich service patterns and provides flexible security for VANET message services.

20.
Sensors (Basel) ; 23(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36772471

ABSTRACT

Improving models for managing the networks of firefighting unmanned ground vehicles in crowded areas, as a recommendation system (RS), represented a difficult challenge. This challenge comes from the peculiarities of these types of networks. These networks are distinguished by the network coverage area size, frequent network connection failures, and quick network structure changes. The research aims to improve the communication network of self-driving firefighting unmanned ground vehicles by determining the best routing track to the desired fire area. The suggested new model intends to improve the RS regarding the optimum tracking route for firefighting unmanned ground vehicles by employing the ant colony optimization technique. This optimization method represents one of the swarm theories utilized in vehicles ad-hoc networks and social networks. According to the results, the proposed model can enhance the navigation of self-driving firefighting unmanned ground vehicles towards the fire region, allowing firefighting unmanned ground vehicles to take the shortest routes possible, while avoiding closed roads and traffic accidents. This study aids in the control and management of ad-hoc vehicle networks, vehicles of everything, and the internet of things.

SELECTION OF CITATIONS
SEARCH DETAIL