Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 348
Filter
1.
Biochem Biophys Res Commun ; 736: 150453, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39126896

ABSTRACT

PQBP3 is a protein binding to polyglutamine tract sequences that are expanded in a group of neurodegenerative diseases called polyglutamine diseases. The function of PQBP3 was revealed recently as an inhibitor protein of proteasome-dependent degradation of Lamin B1 that is shifted from nucleolus to peripheral region of nucleus to keep nuclear membrane stability. Here, we address whether PQBP3 is an intrinsically disordered protein (IDP) like other polyglutamine binding proteins including PQBP1, PQBP5 and VCP. Multiple bioinformatics analyses predict that N-terminal region of PQBP3 is unstructured. High-speed atomic force microscopy (HS-AFM) reveals that N-terminal region of PQBP3 is dynamically changed in the structure consistently with the predictions of the bioinformatics analyses. These data support that PQBP3 is also an IDP.

2.
Int J Biol Sci ; 20(9): 3530-3543, 2024.
Article in English | MEDLINE | ID: mdl-38993551

ABSTRACT

During muscle regeneration, interferon-gamma (IFN-γ) coordinates inflammatory responses critical for activation of quiescent muscle stem cells upon injury via the Janus kinase (JAK) - signal transducer and activator of transcription 1 (STAT1) pathway. Dysregulation of JAK-STAT1 signaling results in impaired muscle regeneration, leading to muscle dysfunction or muscle atrophy. Until now, the underlying molecular mechanism of how JAK-STAT1 signaling resolves during muscle regeneration remains largely elusive. Here, we demonstrate that epithelial-stromal interaction 1 (Epsti1), an interferon response gene, has a crucial role in regulating the IFN-γ-JAK-STAT1 signaling at early stage of muscle regeneration. Epsti1-deficient mice exhibit impaired muscle regeneration with elevated inflammation response. In addition, Epsti1-deficient myoblasts display aberrant interferon responses. Epsti1 interacts with valosin-containing protein (VCP) and mediates the proteasomal degradation of IFN-γ-activated STAT1, likely contributing to dampening STAT1-mediated inflammation. In line with the notion, mice lacking Epsti1 exhibit exacerbated muscle atrophy accompanied by increased inflammatory response in cancer cachexia model. Our study suggests a crucial function of Epsti1 in the resolution of IFN-γ-JAK-STAT1 signaling through interaction with VCP which provides insights into the unexplored mechanism of crosstalk between inflammatory response and muscle regeneration.


Subject(s)
Interferon-gamma , Regeneration , STAT1 Transcription Factor , STAT1 Transcription Factor/metabolism , Animals , Mice , Regeneration/physiology , Interferon-gamma/metabolism , Signal Transduction , Inflammation/metabolism , Muscle, Skeletal/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout
3.
Subcell Biochem ; 104: 485-501, 2024.
Article in English | MEDLINE | ID: mdl-38963497

ABSTRACT

Valosin-containing protein (VCP), also known as p97, is an evolutionarily conserved AAA+ ATPase essential for cellular homeostasis. Cooperating with different sets of cofactors, VCP is involved in multiple cellular processes through either the ubiquitin-proteasome system (UPS) or the autophagy/lysosomal route. Pathogenic mutations frequently found at the interface between the NTD domain and D1 ATPase domain have been shown to cause malfunction of VCP, leading to degenerative disorders including the inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD), amyotrophic lateral sclerosis (ALS), and cancers. Therefore, VCP has been considered as a potential therapeutic target for neurodegeneration and cancer. Most of previous studies found VCP predominantly exists and functions as a hexamer, which unfolds and extracts ubiquitinated substrates from protein complexes for degradation. However, recent studies have characterized a new VCP dodecameric state and revealed a controlling mechanism of VCP oligomeric states mediated by the D2 domain nucleotide occupancy. Here, we summarize our recent knowledge on VCP oligomerization, regulation, and potential implications of VCP in cellular function and pathogenic progression.


Subject(s)
Valosin Containing Protein , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Valosin Containing Protein/chemistry , Humans , Protein Multimerization , Animals , Mutation , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/chemistry , Osteitis Deformans/genetics , Osteitis Deformans/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/chemistry , Myositis, Inclusion Body/genetics , Myositis, Inclusion Body/metabolism , Muscular Dystrophies, Limb-Girdle
4.
bioRxiv ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38948861

ABSTRACT

Under stress conditions, cells reprogram their molecular machineries to mitigate damage and promote survival. Ubiquitin signaling is globally increased during oxidative stress, controlling protein fate and supporting stress defenses at several subcellular compartments. However, the rules driving subcellular ubiquitin localization to promote these concerted response mechanisms remain understudied. Here, we show that K63-linked ubiquitin chains, known to promote proteasome-independent pathways, accumulate primarily in non-cytosolic compartments during oxidative stress induced by sodium arsenite in mammalian cells. Our subcellular ubiquitin proteomic analyses of non-cytosolic compartments expanded 10-fold the pool of proteins known to be ubiquitinated during arsenite stress (2,046) and revealed their involvement in pathways related to immune signaling and translation control. Moreover, subcellular proteome analyses revealed proteins that are recruited to non-cytosolic compartments under stress, including a significant enrichment of helper ubiquitin-binding adaptors of the ATPase VCP that processes ubiquitinated substrates for downstream signaling. We further show that VCP recruitment to non-cytosolic compartments under arsenite stress occurs in a ubiquitin-dependent manner mediated by its adaptor NPLOC4. Additionally, we show that VCP and NPLOC4 activities are critical to sustain low levels of non-cytosolic K63-linked ubiquitin chains, supporting a cyclical model of ubiquitin conjugation and removal that is disrupted by cellular exposure to reactive oxygen species. This work deepens our understanding of the role of localized ubiquitin and VCP signaling in the basic mechanisms of stress response and highlights new pathways and molecular players that are essential to reshape the composition and function of the human subcellular proteome under dynamic environments.

5.
Cell Rep ; 43(7): 114492, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39002125

ABSTRACT

In budding yeast, the nucleolus serves as the site to sequester Cdc14, a phosphatase essential for mitotic exit. Nucleolar proteins Tof2, Net1, and Fob1 are required for this sequestration. Although it is known that these nucleolar proteins are SUMOylated, how SUMOylation regulates their activity remains unknown. Here, we show that Tof2 exhibits cell-cycle-regulated nucleolar delocalization and turnover. Depletion of the nuclear small ubiquitin-like modifier (SUMO) protease Ulp2 not only causes Tof2 polySUMOylation, nucleolar delocalization, and degradation but also leads to Cdc14 nucleolar release and activation. This outcome depends on polySUMOylation and the activity of downstream enzymes, including SUMO-targeted ubiquitin ligase and Cdc48/p97 segregase. We further developed a system to tether SUMO machinery to Tof2 and generated a SUMO-deficient tof2 mutant, and the results indicate that Tof2 polySUMOylation is necessary and sufficient for its nucleolar delocalization and degradation. Together, our work reveals a polySUMO-dependent mechanism that delocalizes Tof2 from the nucleolus to facilitate mitotic exit.


Subject(s)
Cell Nucleolus , Mitosis , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Sumoylation , Cell Nucleolus/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Protein Tyrosine Phosphatases/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Nuclear Proteins/metabolism , Endopeptidases/metabolism , Valosin Containing Protein/metabolism
6.
J Thorac Dis ; 16(6): 3805-3817, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38983178

ABSTRACT

Background: Recurrent laryngeal nerve (RLN) paralysis following oesophagectomy may increase postoperative morbidity and mortality. However, clinical studies on this complication are uncommon. The aim of this study was to report the clinical course of patients with RLN paralysis following oesophageal cancer surgery. Methods: We retrospectively examined patients who underwent oesophagectomy for oesophageal carcinoma at Asan Medical Center between January 2013 and November 2018. We enrolled 189 patients with RLN paralysis confirmed using laryngoscopy in this study. Results: Of the 189 patients, 22 patients had bilateral RLN paralysis, and 167 patients had unilateral RLN paralysis. Every patient received oral feeding rehabilitation, and 145 (76.7%) patients received hyaluronic acid injection laryngoplasty. During the postoperative period, 21 (11.1%) patients experienced aspiration pneumonia and recovered. One patient died of severe pulmonary complication. Twenty-four (12.7%) patients underwent feeding jejunotomy, while 11 (5.9%) patients underwent tracheostomy. In total, 173 (91.5%) patients were discharged with oral nutrition, and the median time to begin oral diet was 9 days. Statistical analysis using logistic regression revealed that only the advanced T stage affected nerve recovery. More than 50% of the patients showed nerve recovery within 6 months, and 165 (87.9%) patients fully or partially recovered during the observation period. Conclusions: RLN paralysis following oesophagectomy in oesophageal carcinoma is a predictable complication. In patients with RLN paralysis, early detection and intervention through multidisciplinary cooperation are required, and the incidence of postoperative complications can be reduced by implementing the appropriate management.

7.
Front Mol Biosci ; 11: 1369000, 2024.
Article in English | MEDLINE | ID: mdl-38828393

ABSTRACT

Dominant mutations in the rhodopsin gene (Rho) contribute to 25% of autosomal dominant retinitis pigmentosa (adRP), characterized by photoreceptor loss and progressive blindness. One such mutation, Rho ∆I256 , carries a 3-bp deletion, resulting in the loss of one of two isoleucines at codons 255 and 256. Our investigation, using recombinant expression in HEK293 and COS-7 cells, revealed that Rho ∆I256, akin to the known adRP mutation Rho P23H, induces the formation of rhodopsin protein (RHO) aggregates at the perinuclear region. Co-expression of Rho ∆I256 or Rho P23H with wild-type Rho WT, mimicking the heterozygous genotype of adRP patients, demonstrated the dominant-negative effect, as all isoforms were retained in perinuclear aggregates, impeding membrane trafficking. In retinal explants from WT mice, mislocalization of labeled adRP isoforms at the outer nuclear layer was observed. Further analysis revealed that RHO∆I256 aggregates are retained at the endoplasmic reticulum (ER), undergo ER-associated degradation (ERAD), and colocalize with the AAA-ATPase escort chaperone valosin-containing protein (VCP). These aggregates are polyubiquitinated and partially colocalized with the 20S proteasome subunit beta-5 (PSMB5). Pharmacological inhibition of proteasome- or VCP activity increased RHO∆I256 aggregate size. In summary, RHO∆I256 exhibits dominant pathogenicity by sequestering normal RHOWT in ER aggregates, preventing its membrane trafficking and following the ERAD degradation.

8.
Res Sq ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38826306

ABSTRACT

Background: Neurodegenerative tauopathies may progress based on seeding by pathological tau assemblies, whereby an aggregate is released from one cell, gains entry to an adjacent or connected cell, and serves as a specific template for its own replication in the cytoplasm. In vitro seeding reactions typically take days, yet seeding into the complex cytoplasmic milieu happens within hours, implicating a machinery with unknown players that controls this process in the acute phase. Methods: We used proximity labeling to identify factors that control seed amplification within 5h of seed exposure. We fused split-APEX2 to the C-terminus of tau repeat domain (RD) to reconstitute peroxidase activity 5h after seeded intracellular tau aggregation. Valosin containing protein (VCP/p97) was the top hit. VCP harbors dominant mutations that underlie two neurodegenerative diseases, multisystem proteinopathy and vacuolar tauopathy, but its mechanistic role is unclear. We used immortalized cells and human neurons to study the effects of VCP on tau seeding. We exposed cells to fibrils or brain homogenates in cell culture media and measured effects on uptake and induction of intracellular tau aggregation following various genetic and chemical manipulations of VCP. Results: VCP knockdown reduced tau seeding. Chemical inhibitors had opposing effects on aggregation in HEK293T tau biosensor cells and human neurons alike: ML-240 increased seeding efficiency, whereas NMS-873 decreased it. The inhibitors were effective only when administered within 8h of seed exposure, indicating a role for VCP early in seed processing. We screened 30 VCP co-factors in HEK293T biosensor cells by genetic knockout or knockdown. Reduction of ATXN3, NSFL1C, UBE4B, NGLY1, and OTUB1 decreased tau seeding, as did NPLOC4, which also uniquely increased soluble tau levels. By contrast, reduction of FAF2 increased tau seeding. Conclusions: Divergent effects on tau seeding of chemical inhibitors and cofactor reduction indicate that VCP regulates this process. This is consistent with a dedicated cytoplasmic processing complex based on VCP that directs seeds acutely towards degradation vs. amplification.

9.
Autophagy ; : 1-14, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38762759

ABSTRACT

Macroautophagy/autophagy is essential for the degradation and recycling of cytoplasmic materials. The initiation of this process is determined by phosphatidylinositol-3-kinase (PtdIns3K) complex, which is regulated by factor BECN1 (beclin 1). UFMylation is a novel ubiquitin-like modification that has been demonstrated to modulate several cellular activities. However, the role of UFMylation in regulating autophagy has not been fully elucidated. Here, we found that VCP/p97 is UFMylated on K109 by the E3 UFL1 (UFM1 specific ligase 1) and this modification promotes BECN1 stabilization and assembly of the PtdIns3K complex, suggesting a role for VCP/p97 UFMylation in autophagy initiation. Mechanistically, VCP/p97 UFMylation stabilizes BECN1 through ATXN3 (ataxin 3)-mediated deubiquitination. As a key component of the PtdIns3K complex, stabilized BECN1 facilitates assembly of this complex. Re-expression of VCP/p97, but not the UFMylation-defective mutant, rescued the VCP/p97 depletion-induced increase in MAP1LC3B/LC3B protein expression. We also showed that several pathogenic VCP/p97 mutations identified in a variety of neurological disorders and cancers were associated with reduced UFMylation, thus implicating VCP/p97 UFMylation as a potential therapeutic target for these diseases. Abbreviation: ATG14:autophagy related 14; Baf A1:bafilomycin A1;CMT2Y: Charcot-Marie-Toothdisease, axonal, 2Y; CYB5R3: cytochromeb5 reductase 3; DDRGK1: DDRGK domain containing 1; DMEM:Dulbecco'smodified Eagle's medium;ER:endoplasmic reticulum; FBS:fetalbovine serum;FTDALS6:frontotemporaldementia and/or amyotrophic lateral sclerosis 6; IBMPFD1:inclusion bodymyopathy with early-onset Paget disease with or withoutfrontotemporal dementia 1; LC-MS/MS:liquid chromatography tandem mass spectrometry; MAP1LC3B/LC3B:microtubule associated protein 1 light chain 3 beta; MS: massspectrometry; NPLOC4: NPL4 homolog, ubiquitin recognition factor;PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3;PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PtdIns3K:phosphatidylinositol 3-kinase; RPL26: ribosomal protein L26; RPN1:ribophorin I; SQSTM1/p62: sequestosome 1; UBA5: ubiquitin likemodifier activating enzyme 5; UFC1: ubiquitin-fold modifierconjugating enzyme 1; UFD1: ubiquitin recognition factor in ERassociated degradation 1; UFL1: UFM1 specific ligase 1; UFM1:ubiquitin fold modifier 1; UFSP2: UFM1 specific peptidase 2; UVRAG:UV radiation resistance associated; VCP/p97: valosin containingprotein; WT: wild-type.

10.
J Neurol ; 271(7): 3978-3990, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38816479

ABSTRACT

Motor neuron disorders comprise a clinically and pathologically heterogeneous group of neurologic diseases characterized by progressive degeneration of motor neurons (including both sporadic and hereditary diseases), affecting the upper motor neurons, lower motor neurons, or both. Hereditary motor neuron disorders themselves represent a vast and heterogeneous group, with numerous clinical and genetic overlaps that can be a source of error. This narrative review aims at providing an overview of the main types of inherited motor neuron disorders by recounting the stages in their historical descriptions. For practical purposes, this review of the literature sets out their various clinical characteristics and updates the list of all the genes involved in the various forms of inherited motor neuron disorders, including spinal muscular atrophy, familial amyotrophic lateral sclerosis, hereditary spastic paraplegia, distal hereditary motor neuropathies/neuronopathies, Kennedy's disease, riboflavin transporter deficiencies, VCPopathy and the neurogenic scapuloperoneal syndrome.


Subject(s)
Motor Neuron Disease , Humans , Motor Neuron Disease/history , Motor Neuron Disease/genetics , History, 20th Century , History, 19th Century , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/history
11.
Biomed Pharmacother ; 175: 116660, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701563

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has an extremely devastating nature with poor prognosis and increasing incidence, making it a formidable challenge in the global fight against cancer-related mortality. In this innovative preclinical investigation, the VCP/p97 inhibitor CB-5083 (CB), miR-142, a PD-L1 inhibitor, and immunoadjuvant resiquimod (R848; R) were synergistically encapsulated in solid lipid nanoparticles (SLNs). These SLNs demonstrated features of peptides targeting PD-L1, EGFR, and the endoplasmic reticulum, enclosed in a pH-responsive polyglutamic (PGA)-polyethylene glycol (PEG) shell. The homogeneous size and zeta potential of the nanoparticles were stable for 28 days at 4°C. The study substantiated the concurrent modulation of key pathways by the CB, miR, and R-loaded nanoformulation, prominently affecting VCP/Bip/ATF6, PD-L1/TGF-ß/IL-4, -8, -10, and TNF-α/IFN-γ/IL-1, -12/GM-CSF/CCL4 pathways. This adaptable nanoformulation induced durable antitumor immune responses and inhibited Panc-02 tumor growth by enhancing T cell infiltration, dendritic cell maturation, and suppressing Tregs and TAMs in mice bearing Panc-02 tumors. Furthermore, tissue distribution studies, biochemical assays, and histological examinations highlighted enhanced safety with PGA and peptide-modified nanoformulations for CB, miR, and/or R in Panc-02-bearing mice. This versatile nanoformulation allows tailored adjustment of the tumor microenvironment, thereby optimizing the localized delivery of combined therapy. These compelling findings advocate the potential development of a pH-sensitive, three-in-one PGA-PEG nanoformulation that combines a VCP inhibitor, a PD-L1 inhibitor, and an immunoadjuvant for cancer treatment via combinatorial chemo-immunotherapy.


Subject(s)
Immunotherapy , Nanoparticles , Pancreatic Neoplasms , Tumor Microenvironment , Animals , Tumor Microenvironment/drug effects , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Humans , Immunotherapy/methods , Mice , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , B7-H1 Antigen/antagonists & inhibitors , Nanoparticle Drug Delivery System/chemistry , Female , Polyethylene Glycols/chemistry , Immune Checkpoint Inhibitors/pharmacology , Liposomes
12.
J Med Case Rep ; 18(1): 149, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38570807

ABSTRACT

BACKGROUND: The main cause of vocal cord palsy (VCP) is idiopathic impairment of the recurrent laryngeal nerve (RLN). However, solid tumors along the pathway of the RLN can also impact the nerve's function. We presented a patient with a thyroid lesion and VCP due to a bulky metastatic mass (uterine cancer) on the aortic arch field in the mediastinum. The report aims to show the significance of comorbid tumors in thyroid pathology and the importance of additional diagnostic methods in avoiding unnecessary surgeries. A patient's lifetime and the outcome of the disease were also presented. CASE PRESENTATION: A 58-year-old Ukrainian woman with a hoarse voice, intermittent dry cough, and weakness was presented to an endocrine surgeon. Thyroid pathology included signs of hypothyroidism treated with Thyroxine 112.5 µg and a nodule in the left lobe. The lesion is located on the posterior aspect of the lobe, which could probably be a cause of RLN involvement. Fine needle aspiration biopsy (FNAB) was performed twice with Bethesda category 2 result. Fibrolaryngoscopy (FLS) revealed the median position of the left vocal cord. Idiopathic, laryngeal, and thyroid causes of the VCP were excluded. Additionally, the patient displayed her anamnesis of the endometrial clear cell carcinoma following hysterectomy, external beam radiation therapy, and chemotherapy. The mediastinal metastasis was revealed sixteen years later. A chest computed tomography (CT) with intravenous contrast was done. A bulky tumor was found right under the aortic arch. Subsequently, the voice complaints reduced significantly after 4 chemotherapy courses. Cancer progression had led to the appearance of lymph node metastases on the supraclavicular region. Following six months the 60-year-old patient had passed away. CONCLUSION: A history of the disease should always be kept in mind when assessing a patient's complaints. VCP in case of thyroid pathology and previous secondary malignancy may be caused by metastatic tumor anywhere along the RLN pathway. Such a rare case shows the importance of additional methods of examination which may avoid unnecessary thyroid surgeries.


Subject(s)
Uterine Neoplasms , Vocal Cord Paralysis , Female , Humans , Middle Aged , Lymphatic Metastasis , Mediastinum/pathology , Thyroid Gland/pathology , Thyroidectomy/adverse effects , Uterine Neoplasms/surgery , Vocal Cord Paralysis/etiology
13.
Inflammation ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563877

ABSTRACT

Lysosomal membrane permeabilization caused either via phagocytosis of particulates or the uptake of protein aggregates can trigger the activation of NLRP3 inflammasome- an intense inflammatory response that drives the release of the pro-inflammatory cytokine IL-1ß by regulating the activity of CASPASE 1. The maintenance of lysosomal homeostasis and lysosomal membrane integrity is facilitated by the AAA+ ATPase, VCP/p97 (VCP). However, the relationship between VCP and NLRP3 inflammasome activity remains unexplored. Here, we demonstrate that the VCP inhibitors, DBeQ and ML240 elicit the activation of NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs) when used as activation stimuli. Moreover, genetic inhibition of VCP or VCP chemical inhibition enhances lysosomal membrane damage and augments LLoME-associated NLRP3 inflammasome activation in BMDMs. Similarly, VCP inactivation also augments NLRP3 inflammasome activation mediated by aggregated alpha-synuclein fibrils and lysosomal damage. These data suggest that VCP is a participant in the complex regulation of NLRP3 inflammasome activation.

14.
Neurobiol Dis ; 196: 106517, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38679111

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a relentlessly progressive and fatal disease, caused by the degeneration of upper and lower motor neurons within the brain and spinal cord in the ageing human. The dying neurons contain cytoplasmic inclusions linked to the onset and progression of the disease. Here, we use a Drosophila model of ALS8 (VAPP58S) to understand the modulation of these inclusions in the ageing adult brain. The adult VAPP58S fly shows progressive deterioration in motor function till its demise 25 days post-eclosion. The density of VAPP58S-positive brain inclusions is stable for 5-15 days of age. In contrast, adding a single copy of VAPWT to the VAPP58S animal leads to a large decrease in inclusion density with concomitant rescue of motor function and lifespan. ER stress, a contributing factor in disease, shows reduction with ageing for the disease model. Autophagy, rather than the Ubiquitin Proteasome system, is the dominant mechanism for aggregate clearance. We explored the ability of Drosophila Valosin-containing protein (VCP/TER94), the ALS14 locus, which is involved in cellular protein clearance, to regulate age-dependent aggregation. Contrary to expectation, TER94 overexpression increased VAPP58S punctae density, while its knockdown led to enhanced clearance. Expression of a dominant positive allele, TER94R152H, further stabilised VAPP58S puncta, cementing roles for an ALS8-ALS14 axis. Our results are explained by a mechanism where autophagy is modulated by TER94 knockdown. Our study sheds light on the complex regulatory events involved in the neuronal maintenance of ALS8 aggregates, suggesting a context-dependent switch between proteasomal and autophagy-based mechanisms as the larvae develop into an adult. A deeper understanding of the nucleation and clearance of the inclusions, which affect cellular stress and function, is essential for understanding the initiation and progression of ALS.


Subject(s)
Aging , Amyotrophic Lateral Sclerosis , Brain , Drosophila Proteins , Inclusion Bodies , Animals , Aging/metabolism , Aging/pathology , Aging/physiology , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , Animals, Genetically Modified , Autophagy/physiology , Brain/metabolism , Brain/pathology , Disease Models, Animal , Drosophila , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Neurons/metabolism , Neurons/pathology , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics
15.
Muscle Nerve ; 69(6): 699-707, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38551101

ABSTRACT

INTRODUCTION/AIMS: VCP multisystem proteinopathy 1 (MSP1), encompassing inclusion body myopathy (IBM), Paget's disease of bone (PDB) and frontotemporal dementia (FTD) (IBMPFD), features progressive muscle weakness, fatty infiltration, and disorganized bone structure in Pagetic bones. The aim of this study is to utilize dual-energy x-ray absorptiometry (DXA) parameters to examine it as a biomarker of muscle and bone disease in MSP1. METHODS: DXA scans were obtained in 28 patients to assess body composition parameters (bone mineral density [BMD], T-score, total fat, and lean mass) across different groups: total VCP disease (n = 19), including myopathy without Paget's ("myopathy"; n = 12) and myopathy with Paget's ("Paget"; n = 7), and unaffected first-degree relatives serving as controls (n = 6). RESULTS: In the VCP disease group, significant declines in left hip BMD and Z-scores were noted versus the control group (p ≤ .03). The VCP disease group showed decreased whole body lean mass % (p = .04), and increased total body fat % (p = .04) compared to controls. Subgroup comparisons indicated osteopenia in 33.3% and osteoporosis in 8.3% of the myopathy group, with 14.3% exhibiting osteopenia in the Paget group. Moreover, the Paget group displayed higher lumbar L1-L4 T-score values than the myopathy group. DISCUSSION: In MSP1, DXA revealed reduced bone and lean mass, and increased fat mass. These DXA insights could aid in monitoring disease progression of muscle loss and secondary osteopenia/osteoporosis in MSP1, providing value both clinically and in clinical research.


Subject(s)
Absorptiometry, Photon , Bone Density , Muscular Dystrophies, Limb-Girdle , Myositis, Inclusion Body , Osteitis Deformans , Humans , Male , Female , Middle Aged , Cross-Sectional Studies , Aged , Myositis, Inclusion Body/diagnostic imaging , Myositis, Inclusion Body/pathology , Myositis, Inclusion Body/genetics , Osteitis Deformans/diagnostic imaging , Osteitis Deformans/genetics , Osteitis Deformans/complications , Adult , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Body Composition , Valosin Containing Protein/genetics , Adenosine Triphosphatases/genetics
16.
J Cancer ; 15(8): 2229-2244, 2024.
Article in English | MEDLINE | ID: mdl-38495507

ABSTRACT

Background: Keratin 80(KRT80) encodes a type II intermediate filament protein, known for maintaining cell integrity of cells and its involvement in the tumorigenesis and progression of various cancers. However, comprehensive research on its relevance to lung adenocarcinoma remains limited. Methods: In this study, we utilized multiple databases to investigate the transcriptional expression of KRT80 and its correlation with clinicopathological features. A range of assays, including the Cell Counting Kit 8 assay, colony formation assay, cell migration assay, and flow cytometry, were employed to elucidate the impact of KRT80 on the malignant behavior of lung adenocarcinoma. Immunoprecipitation and mass spectrometry were also used to identify putative genes interacting with KRT80. Results: The expression of KRT80 was elevated in lung adenocarcinoma and patients with high levels of KRT80 expression had poor clinical outcomes. Silencing KRT80 suppressed cell viability, and migration, while overexpression had the opposite effect. In addition, Immunoprecipitation and mass spectrometry revealed an interaction between KRT80 and valosin-containing protein (VCP), with VCP knockdown reducing the stability of KRT80 protein. Overexpression of KRT80 mitigated the inhibitory effect of VCP knockdown to some extent. Conclusion: Our findings collectively suggest that KRT80 is a promising diagnostic and prognostic indicator for lung adenocarcinoma. Additionally, the interaction between KRT80 and VCP plays a crucial role in the progression of lung adenocarcinoma, which implies that KRT80 is a promising therapeutic target.

17.
bioRxiv ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38370658

ABSTRACT

The proto-oncogene c-MYC is a key representative of the MYC transcription factor network regulating growth and metabolism. MML-1 (Myc- and Mondo-like) is its homolog in C. elegans. The functional and molecular cooperation between c-MYC and H3 lysine 79 methyltransferase DOT1L was demonstrated in several human cancer types, and we have earlier discovered the connection between C. elegans MML-1 and DOT-1.1. Here, we demonstrate the critical role of DOT1L/DOT-1.1 in regulating c-MYC/MML-1 target genes genome-wide by ensuring the removal of "spent" transcription factors from chromatin by the nuclear proteasome. Moreover, we uncover a previously unrecognized proteolytic activity of DOT1L, which may facilitate c-MYC turnover. This new mechanism of c-MYC regulation by DOT1L may lead to the development of new approaches for cancer treatment.

18.
Clin Park Relat Disord ; 10: 100236, 2024.
Article in English | MEDLINE | ID: mdl-38283104

ABSTRACT

We describe a 66-year-old woman with Parkinson's disease, carrying a known pathogenic missense variant in the Valosin-containing-protein (VCP) gene. She responded excellently to L-dopa, had no cognitive or motoneuronal dysfunction. Laboratory analyses and MRI were unremarkable. Genetic testing revealed a heterozygous variant in VCP(NM_007126.5), chr9 (GRCh3 7):g.35060820C > T, c.1460G > A p.Arg487His (p.R487H).

19.
Semin Cell Dev Biol ; 159-160: 10-26, 2024.
Article in English | MEDLINE | ID: mdl-38278052

ABSTRACT

Stress granules and P-bodies are conserved cytoplasmic biomolecular condensates whose assembly and composition are well documented, but whose clearance mechanisms remain controversial or poorly described. Such understanding could provide new insight into how cells regulate biomolecular condensate formation and function, and identify therapeutic strategies in disease states where aberrant persistence of stress granules in particular is implicated. Here, I review and compare the contributions of chaperones, the cytoskeleton, post-translational modifications, RNA helicases, granulophagy and the proteasome to stress granule and P-body clearance. Additionally, I highlight the potentially vital role of RNA regulation, cellular energy, and changes in the interaction networks of stress granules and P-bodies as means of eliciting clearance. Finally, I discuss evidence for interplay of distinct clearance mechanisms, suggest future experimental directions, and suggest a simple working model of stress granule clearance.


Subject(s)
Processing Bodies , Stress Granules , Cytoplasmic Granules , RNA Helicases , Cytoplasm
SELECTION OF CITATIONS
SEARCH DETAIL