Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 662
Filter
1.
Cancers (Basel) ; 16(17)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39272961

ABSTRACT

We showed previously that the autocrine activation of the FGFR-mediated pathway in GIST lacking secondary KIT mutations was a result of the inhibition of KIT signaling. We show here that the FGF2/FGFR pathway regulates VEGF-A/VEGFR signaling in IM-resistant GIST cells. Indeed, recombinant FGF2 increased the production of VEGF-A by IM-naive and resistant GIST cells. VEGF-A production was also increased in KIT-inhibited GIST, whereas the neutralization of FGF2 by anti-FGF2 mAb attenuated VEGFR signaling. Of note, BGJ 398, pan FGFR inhibitor, effectively and time-dependently inhibited VEGFR signaling in IM-resistant GIST T-1R cells, thereby revealing the regulatory role of the FGFR pathway in VEGFR signaling for this particular GIST cell line. This also resulted in significant synergy between BGJ 398 and VEGFR inhibitors (i.e., sunitinib and regorafenib) by enhancing their pro-apoptotic and anti-proliferative activities. The high potency of the combined use of VEGFR and FGFR inhibitors in IM-resistant GISTs was revealed by the impressive synergy scores observed for regorafenib or sunitinib and BGJ 398. Moreover, FGFR1/2 and VEGFR1/2 were co-localized in IM-resistant GIST T-1R cells, and the direct interaction between the aforementioned RTKs was confirmed by co-immunoprecipitation. In contrast, IM-resistant GIST 430 cells expressed lower basal levels of FGF2 and VEGF-A. Despite the increased expression VEGFR1 and FGFR1/2 in GIST 430 cells, these RTKs were not co-localized and co-immunoprecipitated. Moreover, no synergy between FGFR and VEGFR inhibitors was observed for the IM-resistant GIST 430 cell line. Collectively, the dual targeting of FGFR and VEGFR pathways in IM-resistant GISTs is not limited to the synergistic anti-angiogenic treatment effects. The dual inhibition of FGFR and VEGFR pathways in IM-resistant GISTs potentiates the proapoptotic and anti-proliferative activities of the corresponding RTKi. Mechanistically, the FGF2-induced activation of the FGFR pathway turns on VEGFR signaling via the overproduction of VEGF-A, induces the interaction between FGFR1/2 and VEGFR1, and thereby renders cancer cells highly sensitive to the dual inhibition of the aforementioned RTKs. Thus, our data uncovers the novel mechanism of the cross-talk between the aforementioned RTKs in IM-resistant GISTs lacking secondary KIT mutations and suggests that the dual blockade of FGFR and VEGFR signaling might be an effective treatment strategy for patients with GIST-acquired IM resistance via KIT-independent mechanisms.

2.
Int J Mol Sci ; 25(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39273689

ABSTRACT

Malignant breast cancers pose a notable challenge when it comes to treatment options. Recently, research has implicated extracellular vesicles (EVs) secreted by cancer cells in the formation of a pre-metastatic niche. Small clumps of CD44-positive breast cancer cells are efficiently transferred through CD44-CD44 protein homophilic interaction. This study aims to examine the function of CD44-positive EVs in pre-metastatic niche formation in vitro and to suggest a more efficacious EV formulation. We used mouse mammary carcinoma cells, BJMC3879 Luc2 (Luc2 cells) as the source of CD44-positive EVs and mouse endothelial cells (UV2 cells) as the recipient cells in the niche. Luc2 cells exhibited an enhanced secretion of EVs expressing CD44 and endothelial growth factors (VEGF-A, -C) under 20% O2 (representative of the early stage of tumorigenesis) compared to its expression under 1% O2 (in solid tumor), indicating that pre-metastatic niche formation occurs in the early stage. Furthermore, UV2 endothelial cells expressing CD44 demonstrated a high level of engulfment of EVs that had been supplemented with hyaluronan, and the proliferation of UV2 cells occurred following the engulfment of EVs. These results suggest that anti-VEGF-A and -C encapsulated, CD44-expressing, and hyaluronan-coated EVs are more effective for tumor metastasis.


Subject(s)
Extracellular Vesicles , Hyaluronan Receptors , Animals , Hyaluronan Receptors/metabolism , Extracellular Vesicles/metabolism , Mice , Female , Cell Line, Tumor , Endothelial Cells/metabolism , Endothelial Cells/pathology , Neoplasm Metastasis , Vascular Endothelial Growth Factor A/metabolism , Cell Proliferation , Tumor Microenvironment , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , Hyaluronic Acid/metabolism
3.
Exp Eye Res ; 247: 110062, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39187056

ABSTRACT

Exposure to VEGF-A165a over several days leads to a persistent dysfunction of the very tight barrier formed by immortalized endothelial cells of the bovine retina (iBREC). Elevated permeability of the barrier is indicated by low cell index values determined by electric cell-substrate impedance measurements, by lower amounts of claudin-1, and by disruption of the homogenous and continuous staining of vascular endothelial cadherin at the plasma membrane. Because of findings that suggest modulation of VEGF-A's detrimental effects on the inner blood-retina barrier by the angiogenic growth factor angiopoietin-2, we investigated in more detail in vitro whether this growth factor indeed changes the stability of the barrier formed by retinal endothelial cells or modulates effects of VEGF-A. In view of the clinical relevance of anti-VEGF therapy, we also studied whether blocking VEGF-A-driven signaling is sufficient to prevent barrier dysfunction induced by a combination of both growth factors. Although angiopoietin-2 stimulated proliferation of iBREC, the formed barrier was not weakened at a concentration of 3 nM: Cell index values remained high and expression or subcellular localization of claudin-1 and vascular endothelial cadherin, respectively, were not affected. Angiopoietin-2 enhanced the changes induced by VEGF-A165a and this was more pronounced at lower concentrations of VEGF-A165a. Specific inhibition of the VEGF receptors with tivozanib as well as interfering with binding of VEGF-A to its receptors with bevacizumab prevented the detrimental effects of the growth factors; dual binding of angiopoietin-2 and VEGF-A by faricimab was marginally more efficient. Uptake of extracellular angiopoietin-2 by iBREC can be efficiently prevented by addition of faricimab which is also internalized by the cells. Exposure of the cells to faricimab over several days stabilized their barrier, confirming that inhibition of VEGF-A signaling is not harmful to this cell type. Taken together, our results confirm the dominant role of VEGF-A165a in processes resulting in increased permeability of retinal endothelial cells in which angiopoietin-2 might play a minor modulating role.


Subject(s)
Angiopoietin-2 , Blood-Retinal Barrier , Cadherins , Cell Proliferation , Vascular Endothelial Growth Factor A , Animals , Cattle , Angiogenesis Inhibitors/pharmacology , Angiopoietin-2/metabolism , Antigens, CD/metabolism , Cadherins/metabolism , Capillary Permeability/drug effects , Capillary Permeability/physiology , Cell Proliferation/drug effects , Cells, Cultured , Claudin-1/metabolism , Electric Impedance , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/cytology , Peptide Fragments , Retinal Vessels/cytology , Retinal Vessels/metabolism , Tight Junctions/metabolism , Vascular Endothelial Growth Factor A/metabolism
4.
Front Immunol ; 15: 1447190, 2024.
Article in English | MEDLINE | ID: mdl-39176096

ABSTRACT

F. nucleatum, involved in carcinogenesis of colon carcinomas, has been described as part of the commensal flora of the female upper reproductive tract. Although its contribution to destructive inflammatory processes is well described, its role as commensal uterine bacteria has not been thoroughly investigated. Since carcinogenesis shares similar mechanisms with early pregnancy development (including proliferation, invasion, blood supply and the induction of tolerance), these mechanisms induced by F. nucleatum could play a role in early pregnancy. Additionally, implantation and placentation require a well-balanced immune activation, which might be suitably managed by the presence of a limited amount of bacteria or bacterial residues. We assessed the effect of inactivated F. nucleatum on macrophage-trophoblast interactions. Monocytic cells (THP-1) were polarized into M1, M2a or M2c macrophages by IFN-γ, IL-4 or TGF-ß, respectively, and subsequently treated with inactivated fusobacteria (bacteria:macrophage ratio of 0.1 and 1). Direct effects on macrophages were assessed by viability assay, flow cytometry (antigen presentation molecules and cytokines), qPCR (cytokine expression), in-cell Western (HIF and P-NF-κB) and ELISA (VEGF secretion). The function of first trimester extravillous trophoblast cells (HTR-8/SVneo) in response to macrophage-conditioned medium was microscopically assessed by migration (scratch assay), invasion (sprouting assay) and tube formation. Underlying molecular changes were investigated by ELISA (VEGF secretion) and qPCR (matrix-degrading factors and regulators). Inflammation-primed macrophages (M1) as well as high bacterial amounts increased pro-inflammatory NF-κB expression and inflammatory responses. Subsequently, trophoblast functions were impaired. In contrast, low bacterial stimulation caused an increased HIF activation and subsequent VEGF-A secretion in M2c macrophages. Accordingly, there was an increase of trophoblast tube formation. Our results suggest that a low-mass endometrial/decidual microbiome can be tolerated and while it supports implantation and further pregnancy processes.


Subject(s)
Fusobacterium nucleatum , Macrophages , Trophoblasts , Humans , Trophoblasts/immunology , Trophoblasts/microbiology , Trophoblasts/metabolism , Fusobacterium nucleatum/immunology , Fusobacterium nucleatum/physiology , Macrophages/immunology , Macrophages/microbiology , Macrophages/metabolism , Female , Pregnancy , Cytokines/metabolism , THP-1 Cells , NF-kappa B/metabolism , Fusobacterium Infections/immunology , Fusobacterium Infections/microbiology , Vascular Endothelial Growth Factor A/metabolism
5.
Reprod Biomed Online ; 49(5): 104324, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-39197401

ABSTRACT

RESEARCH QUESTION: Can atorvastatin, with its antioxidant, anti-inflammatory and anti-apoptotic properties, improve ovarian function and follicular reserve in rats with cyclophosphamide-induced premature ovarian insufficiency (POI)? DESIGN: In this experimental study, 24 adult female Wistar rats were divided into four groups: control; POI; POI + atorvastatin; and atorvastatin. After treatment with atorvastatin, serum concentrations of total antioxidant capacity, glutathione, malondialdehyde, FSH, oestradiol, anti-Müllerian hormone, tumour necrosis factor-alpha and interleukin-6 were evaluated. Additionally, mRNA and protein expression of Bax, Bcl-2 and VEGF-A; number of follicles; and total volume of the ovary, and volumes of the cortex and medulla were examined. RESULTS: The results showed that serum concentrations of total antioxidant capacity (P < 0.001), glutathione, oestradiol and anti-Müllerian hormone (P < 0.05); mRNA and protein expression of Bcl-2 and VEGF-A (P < 0.05); number of primordial and primary follicles (P < 0.001), and preantral and antral follicles (P < 0.01); and total volume of the ovary, and volume of the cortex (P < 0.05) increased significantly in the POI + atorvastatin group compared with the POI group. Serum concentrations of malondialdehyde, FSH, tumour necrosis factor-alpha and interleukin-6; and mRNA and protein expression of Bax decreased significantly in the POI + atorvastatin group compared with the POI group (P < 0.05). CONCLUSIONS: Atorvastatin reduces the detrimental effects of cyclophosphamide in the POI model significantly by reducing oxidative stress and pro-inflammatory cytokines; regulating the expression of Bax, Bcl-2 and VEGF-A; and improving ovarian function and follicular reserve.

6.
Cancers (Basel) ; 16(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39199545

ABSTRACT

A characteristic feature of uterine pathologies is a specific change in cell metabolism, which predominantly manifests as a shift in the need for nutrients, thereby directing cells to engage in different angiogenic marker activities. Angiogenesis is one of the main signals supporting the survival and development of cells and tissues not only under physiological conditions. Therefore, it is necessary that we understand pathological hyperactivation in all uterine diseases, from endometriosis through ovarian endometrioid adenocarcinoma to malignant transformed cells of the uterine epithelium and body. This work presents the gene expression results of selected angiogenesis targets (VEGF-A, TGF-ß1, ANG1/2, and HIF-1α), cell migration, and cell-cell interaction determined in vitro. Our results suggest that angiogenesis varies in the tested pathological conditions (ectopic endometriosis-12Z; ovarian endometrioid adenocarcinoma-A2780; tumors-SK-UT-1 and RL-95-2) compared to physiological angiogenesis (HME1). The differential expression of angiogenic factors may contribute (or is a contributing factor) to the observed differences to acknowledge an inherent variability in angiogenesis among cell lines. Determining the genomic phenomena responsible for processes associated with inadequate angiogenesis in the pelvic region could help us to develop individual treatment strategies and explain resistance to treatment.

7.
Cell Biochem Biophys ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030333

ABSTRACT

Sinensetin is a product isolated from Orthosiphon aristatus, and its antitumor activities have been well established. This study focused on the role and mechanism of sinensetin in lung adenocarcinoma (LUAD). LUAD cells were treated with various concentrations of sinensetin. The proliferation, migration, invasion, and angiogenesis of LUAD cells were detected using colony formation, transwell, and tube formation assays, respectively. The protein levels of VEGF-A, VEGFR-2, and phosphorylated AKT (ser473) were measured by western blotting. The targeted relationship between VEGF-A and miR-374c-5p was verified by luciferase reporter assay. BALB/c nude mice inoculated with A549 cells were treated with sinensetin (40 mg/kg/day) by gavage for 21 days to investigate the effect of sinensetin on tumor growth and angiogenesis in vivo. We found that sinensetin reduced proliferation, migration, invasion, angiogenesis, and cancer stem characteristics of LUAD cells. Sinensetin also suppressed LUAD tumor growth and angiogenesis in vivo. Sinensetin downregulated VEGF-A expression in LUAD cells by enhancing miR-374c-5p expression. MiR-374c-5p inhibited the VEGF-A/VEGFR-2/AKT pathway in LUAD cells. The antitumor effect of sinensetin was reversed by overexpression of VEGF-A or inhibition of miR-374c-5p. Overall, sinensetin upregulates miR-374c-5p to inhibit the VEGF-A/VEGFR-2/AKT pathway, thereby exerting antitumor effect on LUAD.

8.
J Control Release ; 373: 319-335, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38986911

ABSTRACT

Diabetic foot ulcer (DFU), which is characterised by damage to minute blood vessels or capillaries around wounds, is one of the most serious and dreaded complications of diabetes. It is challenging to repair chronic non-healing DFU wounds. Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis and promotes wound healing in DFU. However, it is difficult to sustainably deliver VEGF to the wound site owing to its poor stability and easy degradation. To overcome this challenge, lipid nanoparticles (LNP) encapsulating circular RNA (circRNA) encoding VEGF-A have been developed to continuously generate and release VEGF-A and accelerate diabetic wound healing. First, VEGF-A circRNA was synthesized using group I intron autocatalysis strategy and confirmed by enzyme digestion, polymerase chain reaction, and sequencing assay. VEGF-A circRNA was encapsulated in ionizable lipid U-105-derived LNP (U-LNP) using microfluidic technology to fabricate U-LNP/VEGF-A circRNA. For comparison, a commercially ionizable lipid ALC-0315-derived LNP (A-LNP) encapsulating circRNA (A-LNP/circRNA) was used. Dynamic light scattering and transmission electron microscopy characterization indicated that U-LNP/circRNA had spherical structure with an average diameter of 108.5 nm, a polydispersity index of 0.22, and a zeta potential of -3.31 mV. The messenger RNA (mRNA) encapsulation efficiency (EE%) of U-LNP was 87.12%. In vitro transfection data confirmed better stability and long-term VEGF-A expression of circRNA compared with linear mRNA. Assessment of cytotoxicity and innate immunity further revealed that U-LNP/circRNA was biocompatible and induced a weak congenital immune response. Cell scratch and angiogenesis tests demonstrated the bioactivity of U-LNP/VEGF-A circRNA owing to its VEGF-A expression. In situ bioluminescence imaging of firefly luciferase (F-Luc) probe and ELISA demonstrated that circRNA had long-term and strong expression of VEGF-A in the first week, and a gradual decrease in the next week at the wound site and surrounding areas. Finally, a diabetic mouse model was used to validate the healing effect of U-LNP/VEGF-A circRNA formulation. The results showed that a single dose of U-LNP/VEGF-A circRNA administered by dripping resulted in almost complete wound recovery on day 12, which was significantly superior to that of U-LNP/VEGF-A linear mRNA, and it also outperformed recombinant human vascular endothelial growth factor (rhVEGF) injection and A-LNP/circRNA dripping. Histological analysis confirmed the healing efficiency and low toxicity of U-LNP/VEGF-A circRNA formulation. Together, VEGF-A circRNA delivered by U-105-derived LNP showed good performance in wound healing, which was ascribed to the long-term expression and continuous release of VEGF-A, and has potential applications for the treatment of diabetic foot ulcer wounds.


Subject(s)
Diabetic Foot , Nanoparticles , RNA, Circular , Vascular Endothelial Growth Factor A , Wound Healing , RNA, Circular/genetics , Vascular Endothelial Growth Factor A/genetics , Wound Healing/drug effects , Animals , Male , Diabetic Foot/genetics , Humans , Diabetes Mellitus, Experimental/metabolism , Mice , Lipids/chemistry , Human Umbilical Vein Endothelial Cells , Mice, Inbred C57BL , Neovascularization, Physiologic/drug effects , Liposomes
9.
J Perinat Med ; 52(7): 783-792, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39028860

ABSTRACT

OBJECTIVES: Fetal hypoxia due to placental dysfunction is the hallmark of fetal growth restriction (FGR). Preferential perfusion of the brain (brain-sparing effect), as a part of physiological placental cardiovascular compensatory mechanisms to hypoxia, in FGR was reported. Therefore, the correlation between vascular endothelial growth factor A (VEGF-A) protein expression in the FGR placentas and newborns' early neurological outcome was examined. METHODS: This study included 50 women with FGR complicated pregnancies and 30 uneventful pregnancies. Fetal hemodynamic parameters, neonatal acid-base status after delivery, placental pathohistology and VEGF-A expression were followed. Early neonatal morphological brain evaluation by ultrasound and functional evaluation of neurological status by Amiel - Tison Neurological Assessment at Term (ATNAT) were performed. RESULTS: VEGF-A protein expression level was significantly higher in the FGR placentas than normal term placentas (Fisher-Freeman-Halton's test, p≤0.001). No statistically significant correlation between placental VEGF-A expression and different prenatal and postnatal parameters was noticed. Whereas the alteration of an early neurological status assessed by ATNAT was found in 58 % of FGR newborns, morphological brain changes evaluated by UZV was noticed in 48 % of cases. No association between the level of placental VEGF-A expression and the early neurological deficits was found. CONCLUSIONS: As far as we know this is the first study of a possible connection between VEGF-A protein expression in the FGR placentas and neonates' early neurological outcomes. The lack of correlation between the FGR placental VEGF-A expression and neonates' neurological outcome could indicate that optimal early neurodevelopment may take place due to compensatory mechanism not related to placental VEGF-A expression.


Subject(s)
Fetal Growth Retardation , Placenta , Vascular Endothelial Growth Factor A , Humans , Female , Pregnancy , Infant, Newborn , Vascular Endothelial Growth Factor A/metabolism , Placenta/metabolism , Adult , Fetal Growth Retardation/metabolism , Case-Control Studies
10.
J Diabetes Metab Disord ; 23(1): 1189-1198, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932799

ABSTRACT

Purpose: To investigate the potential relation between methylation of miR-9-3 and stages of diabetic retinopathy (DR). Additionally, we explored whether miR-9-3 methylation impacts the serum levels of Vascular Endothelial Growth Factor (VEGF). Methods: A cross-sectional study was conducted with 170 participants with type 2 diabetes, including a control group (n = 64) and a diabetes retinopathy group (n = 106), which was further divided into NPDR (n = 58) and PDR (n = 48) subgroups. Epidemiological, clinical, anthropometric, biochemical ELISA assay were analysed. DNA extracted from leukocytes was used to profile miR-9-3 methylation using PCR-MSP. Results: MiR-9-3 hypermethylated profile was higher in the DR group (p < 0.001) and PDR subgroup compared to DM2 control group (p < 0.001). The hypermethylated profile in the PDR subgroup was also higher compared to NPDR subgroup (p < 0.001). There was no difference between DM2 control and NPDR group (p = 0.234). Logistic regression showed that miR-9-3 hypermethylation increases the odds of presenting DR (OR: 2.826; p = 0.002) and PDR (OR: 5.472; p < 0.001). In addition, hypermethylation of miR-9-3 in the DR and NPDR subgroup was associated with higher serum VEGF-A levels (p = 0.012 and p = 0.025, respectively). Conclusion: The methylation profile of the miR-9-3 promoter increases the risk of developing PDR. Higher levels of VEGF-A are associated with miR-9-3 hypermethylated profile in patients in the DR and NPDR stages. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-024-01411-9.

11.
Mucosal Immunol ; 17(4): 739-751, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838816

ABSTRACT

The complement system is an evolutionarily conserved arm of innate immunity, which forms one of the first lines of host response to pathogens and assists in the clearance of debris. A deficiency in key activators/amplifiers of the cascade results in recurrent infection, whereas a deficiency in regulating the cascade predisposes to accelerated organ failure, as observed in colitis and transplant rejection. Given that there are over 60 proteins in this system, it has become an attractive target for immunotherapeutics, many of which are United States Food and Drug Administration-approved or in multiple phase 2/3 clinical trials. Moreover, there have been key advances in the last few years in the understanding of how the complement system operates locally in tissues, independent of its activities in circulation. In this review, we will put into perspective the abovementioned discoveries to optimally modulate the spatiotemporal nature of complement activation and regulation at mucosal surfaces.


Subject(s)
Complement Activation , Complement System Proteins , Immunity, Mucosal , Humans , Animals , Complement System Proteins/immunology , Complement System Proteins/metabolism , Immunomodulation , Immunity, Innate
12.
In Vivo ; 38(4): 1875-1881, 2024.
Article in English | MEDLINE | ID: mdl-38936903

ABSTRACT

BACKGROUND/AIM: The purpose of the current study was to compare the vascular endothelial growth factor-A (VEGF-A) levels in the aqueous humor of patients with primary open angle glaucoma (POAG) and non-glaucomatous eyes and reveal any potential statistically significant correlations. PATIENTS AND METHODS: This was an observational cross-sectional study. Aqueous humor samples (50-100 µl) were collected under aseptic conditions, from the anterior chamber at the start of glaucoma or cataract surgery. The levels of VEGF-A were measured using a multiplex bead-based immunoassay. RESULTS: Aqueous humor samples were obtained from 76 participants: 39 with POAG and 36 with age-related cataracts as controls. VEGF-A levels were significantly elevated in the POAG group (166.37±110.04 pg/ml, p=0.011) compared to the control group (119.02±49.09 pg/ml). The receiver operating characteristic (ROC) analysis showed that VEGF-A had significant prognostic ability for POAG (AUC=0.67; p=0.006). An optimal cut-off for VEGF-A was found to be 148.5 pg/ml with a sensitivity of 54%, specificity of 81.1%, positive prognostic value (PPV) of 75% and negative prognostic value (NPV) of 62.5%. Logistic regression analysis showed that after adjusting for sex and age, patients with VEGF-A higher than 148.5 pg/ml had almost 10 times greater likelihood for POAG. CONCLUSION: VEGF-A is elevated in patients with POAG and can potentially have a prognostic ability for these patients.


Subject(s)
Aqueous Humor , Glaucoma, Open-Angle , ROC Curve , Vascular Endothelial Growth Factor A , Humans , Glaucoma, Open-Angle/metabolism , Aqueous Humor/metabolism , Vascular Endothelial Growth Factor A/metabolism , Female , Male , Aged , Middle Aged , Cross-Sectional Studies , Prognosis , Biomarkers
13.
Biomed Pharmacother ; 176: 116766, 2024 07.
Article in English | MEDLINE | ID: mdl-38788599

ABSTRACT

Activation of neuropilin-1 (NRP-1) by platelet derived growth factor (PDGF)-C sustains melanoma invasiveness. Therefore, in the search of novel agents capable of reducing melanoma spreading, PDGF-C/NRP-1 interaction was investigated as a potential druggable target. Since the PDGF-C region involved in NRP-1 binding is not yet known, based on the sequence and structural homology between PDGF-C and vascular endothelial growth factor-A (VEGF-A), we hypothesized that the NRP-1 b1 domain region involved in the interaction with VEGF-A might also be required for PDGF-C binding. Hence, this region was selected from the protein crystal structure and used as target in the molecular docking procedure. In the following virtual screening, compounds from a DrugBank database were used as query ligands to identify agents potentially capable of disrupting NRP-1/PDGF-C interaction. Among the top 45 candidates with the highest affinity, five drugs were selected based on the safety profile, lack of hormonal effects, and current availability in the market: the antipsychotic pimozide, antidiabetic gliclazide, antiallergic cromolyn sodium, anticancer tyrosine kinase inhibitor entrectinib, and antihistamine azelastine. Analysis of drug influence on PDGF-C in vitro binding to NRP-1 and PDGF-C induced migration of human melanoma cells expressing NRP-1, indicated gliclazide and entrectinib as the most specific agents that were active at clinically achievable and non-toxic concentrations. Both drugs also reverted PDGF-C ability to stimulate extracellular matrix invasion by melanoma cells resistant to BRAF inhibitors. The inhibitory effect on tumor cell motility involved a decrease of p130Cas phosphorylation, a signal transduction pathway activated by PDGF-C-mediated stimulation of NRP-1.


Subject(s)
Lymphokines , Melanoma , Molecular Docking Simulation , Neuropilin-1 , Platelet-Derived Growth Factor , Humans , Melanoma/drug therapy , Melanoma/pathology , Melanoma/metabolism , Lymphokines/metabolism , Platelet-Derived Growth Factor/metabolism , Neuropilin-1/metabolism , Cell Line, Tumor , Protein Binding , Cell Movement/drug effects , Neoplasm Metastasis , Antineoplastic Agents/pharmacology
14.
Future Sci OA ; 10(1): FSO915, 2024.
Article in English | MEDLINE | ID: mdl-38817367

ABSTRACT

Wilms' tumor is a rare type of tumor in adult. Herein, we reported a case of 37-year-old female with adult Wilms' tumor (AWT) admitted in our institution. After a multidisciplinary team discussion, she underwent receiving immunotherapy plus chemotherapy and VEGF-targeted therapy. The tumor got smaller obviously after eight cycles of treatment. Our present case suggested that immunotherapy and anti-angiogenesis combined with chemotherapy is promising new approach for treating AWT. Moreover, we review the literatures reporting AWT with the purpose to improve the understanding of AWT treatment.


A 37-year-old woman discovered a huge renal mass with multiple lymph node metastases. After ultrasound-guided needle biopsy of tumor tissue in the right kidney, she was found to be a rare adult Wilms' tumor. After a multidisciplinary team discussion, she underwent systemic therapy. Then, we gave her two cycles of treatment, as the tumor got smaller. Then, we continued to give her six cycles of treatment. Now, she is in good condition.

15.
Cardiovasc Toxicol ; 24(6): 527-538, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720122

ABSTRACT

Adolescents commonly co-abuse many drugs including anabolic androgenic steroids either they are athletes or non-athletes. Stanozolol is the major anabolic used in recent years and was reported grouped with cannabis. The current study aimed at evaluating the biochemical and histopathological changes related to the hypertrophic effects of stanozolol and/or cannabis whether in condition of exercise practice or sedentary conditions. Adult male Wistar albino rats received either stanozolol (5 mg/kg, s.c), cannabis (10 mg/kg, i.p.), and a combination of both once daily for two months. Swimming exercise protocol was applied as a training model. Relative heart weight, oxidative stress biomarkers, cardiac tissue fibrotic markers were evaluated. Left ventricular morphometric analysis and collagen quantification was done. The combined treatment exhibited serious detrimental effects on the heart tissues. It increased heart tissue fibrotic markers (Masson's trichrome stain (p < 0.001), cardiac COL3 (p < 0.0001), and VEGF-A (p < 0.05)), lowered heart glutathione levels (p < 0.05) and dramatically elevated oxidative stress (increased malondialdehyde (p < 0.0001) and 8-OHDG (p < 0.0001)). Training was not ameliorating for the observed effects. Misuse of cannabis and stanozolol resulted in more hypertrophic consequences of the heart than either drug alone, which were at least largely assigned to oxidative stress, heart tissue fibrotic indicators, histological alterations, and morphometric changes.


Subject(s)
Anabolic Agents , Cardiomegaly, Exercise-Induced , Fibrosis , Oxidative Stress , Rats, Wistar , Stanozolol , Animals , Stanozolol/toxicity , Male , Oxidative Stress/drug effects , Anabolic Agents/toxicity , Cardiomegaly, Exercise-Induced/drug effects , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/chemically induced , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/prevention & control , Ventricular Remodeling/drug effects , Myocardium/pathology , Myocardium/metabolism , Doping in Sports , Biomarkers/metabolism , Swimming , Physical Conditioning, Animal/physiology , Rats , Disease Models, Animal
16.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612858

ABSTRACT

Thymic stromal lymphopoietin (TSLP), mainly expressed by epithelial cells, plays a central role in asthma. In humans, TSLP exists in two variants: the long form TSLP (lfTSLP) and a shorter TSLP isoform (sfTSLP). Macrophages (HLMs) and mast cells (HLMCs) are in close proximity in the human lung and play key roles in asthma. We evaluated the early proteolytic effects of tryptase and chymase released by HLMCs on TSLP by mass spectrometry. We also investigated whether TSLP and its fragments generated by these enzymes induce angiogenic factor release from HLMs. Mass spectrometry (MS) allowed the identification of TSLP cleavage sites caused by tryptase and chymase. Recombinant human TSLP treated with recombinant tryptase showed the production of 1-97 and 98-132 fragments. Recombinant chymase treatment of TSLP generated two peptides, 1-36 and 37-132. lfTSLP induced the release of VEGF-A, the most potent angiogenic factor, from HLMs. By contrast, the four TSLP fragments generated by tryptase and chymase failed to activate HLMs. Long-term TSLP incubation with furin generated two peptides devoid of activating property on HLMs. These results unveil an intricate interplay between mast cell-derived proteases and TSLP. These findings have potential relevance in understanding novel aspects of asthma pathobiology.


Subject(s)
Asthma , Thymic Stromal Lymphopoietin , Humans , Tryptases , Chymases , Angiogenesis Inducing Agents , Serine Proteases , Cytokines
17.
J Cancer Res Clin Oncol ; 150(5): 221, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687357

ABSTRACT

Vascular endothelial growth factor A (VEGF-A), a highly conserved dimeric glycoprotein, is a key regulatory gene and a marker molecule of angiogenesis. The upregulation of VEGF-A facilitates the process of tumor vascularization, thereby fostering the initiation and progression of malignant neoplasms. Many genes can adjust the angiogenesis of tumors by changing the expression of VEGF-A. In addition, VEGF-A also exhibits immune regulatory properties, which directly or indirectly suppresses the antitumor activity of immune cells. The emergence of VEGF-A-targeted therapy alone or in rational combinations has revolutionized the treatment of various cancers. This review discusses how diverse mechanisms in various tumors regulate VEGF-A expression to promote tumor angiogenesis and the role of VEGF-A in tumor immune microenvironment. The application of drugs targeting VEGF-A in tumor therapy is also summarized including antibody molecule drugs and traditional Chinese medicine.


Subject(s)
Molecular Targeted Therapy , Neoplasms , Neovascularization, Pathologic , Tumor Microenvironment , Vascular Endothelial Growth Factor A , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Molecular Targeted Therapy/methods , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Animals , Gene Expression Regulation, Neoplastic , Angiogenesis Inhibitors/therapeutic use
18.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674083

ABSTRACT

The connective tissue mast cell (MC), a sentinel tissue-residing secretory immune cell, has been preserved in all vertebrate classes since approximately 500 million years. No physiological role of the MC has yet been established. Considering the power of natural selection of cells during evolution, it is likely that the MCs exert essential yet unidentified life-promoting actions. All vertebrates feature a circulatory system, and the MCs interact readily with the vasculature. It is notable that embryonic MC progenitors are generated from endothelial cells. The MC hosts many surface receptors, enabling its activation via a vast variety of potentially harmful exogenous and endogenous molecules and via reproductive hormones in the female sex organs. Activated MCs release a unique composition of preformed and newly synthesized bioactive molecules, like heparin, histamine, serotonin, proteolytic enzymes, cytokines, chemokines, and growth factors. MCs play important roles in immune responses, tissue remodeling, cell proliferation, angiogenesis, inflammation, wound healing, tissue homeostasis, health, and reproduction. As recently suggested, MCs enable perpetuation of the vertebrates because of key effects-spanning generations-in ovulation and pregnancy, as in life-preserving activities in inflammation and wound healing from birth till reproductive age, thus creating a permanent life-sustaining loop. Here, we present recent advances that further indicate that the MC is a specific life-supporting and progeny-safeguarding cell.


Subject(s)
Mast Cells , Reproduction , Mast Cells/metabolism , Humans , Animals , Connective Tissue/metabolism , Female
19.
Cells ; 13(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38607072

ABSTRACT

The field cancerization theory is an important paradigm in head and neck carcinoma as its oncological repercussions affect treatment outcomes in diverse ways. The aim of this study is to assess the possible interconnection between peritumor mucosa and the process of tumor neoangiogenesis. Sixty patients with advanced laryngeal carcinoma were enrolled in this study. The majority of patients express a canonical HIF-upregulated proangiogenic signature with almost complete predominancy of HIF-1α overexpression and normal expression levels of the HIF-2α isoform. Remarkably, more than 60% of the whole cohort also exhibited an HIF-upregulated proangiogenic signature in the peritumoral benign mucosa. Additionally, the latter subgroup had a distinctly shifted phenotype towards HIF-2α upregulation compared to the one in tumor tissue, i.e., a tendency towards an HIF switch is observed in contrast to the dominated by HIF-1α tumor phenotype. ETS-1 displays stable and identical significant overexpression in both the proangiogenic phenotypes present in tumor and peritumoral mucosa. In the current study, we report for the first time the existence of an abnormal proangiogenic expression profile present in the peritumoral mucosa in advanced laryngeal carcinoma when compared to paired distant laryngeal mucosa. Moreover, we describe a specific phenotype of this proangiogenic signature that is significantly different from the one present in tumor tissue as we delineate both phenotypes, quantitively and qualitatively. This finding is cancer heterogeneity, per se, which extends beyond the "classical" borders of the malignancy, and it is proof of a strong interconnection between field cancerization and one of the classical hallmarks of cancer-the process of tumor neoangiogenesis.


Subject(s)
Carcinoma , Laryngeal Neoplasms , Humans , Laryngeal Neoplasms/genetics , Neovascularization, Pathologic/genetics , Mucous Membrane , Basic Helix-Loop-Helix Transcription Factors/metabolism
20.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674074

ABSTRACT

Plexiform lesions are a hallmark of pulmonary arterial hypertension (PAH) in humans and are proposed to stem from dysfunctional angioblasts. Broiler chickens (Gallus gallus) are highly susceptible to PAH, with plexiform-like lesions observed in newly hatched individuals. Here, we reported the emergence of plexiform-like lesions in the embryonic lungs of broiler chickens. Lung samples were collected from broiler chickens at embryonic day 20 (E20), hatch, and one-day-old, with PAH-resistant layer chickens as controls. Plexiform lesions consisting of CD133+/vascular endothelial growth factor receptor type-2 (VEGFR-2)+ angioblasts were exclusively observed in broiler embryos and sporadically in layer embryos. Distinct gene profiles of angiogenic factors were observed between the two strains, with impaired VEGF-A/VEGFR-2 signaling correlating with lesion development and reduced arteriogenesis. Pharmaceutical inhibition of VEGFR-2 resulted in enhanced lesion development in layer embryos. Moreover, broiler embryonic lungs displayed increased activation of HIF-1α and nuclear factor erythroid 2-related factor 2 (Nrf2), indicating a hypoxic state. Remarkably, we found a negative correlation between lung Nrf2 activation and VEGF-A and VEGFR-2 expression. In vitro studies indicated that Nrf2 overactivation restricted VEGF signaling in endothelial progenitor cells. The findings from broiler embryos suggest an association between plexiform lesion development and impaired VEGF system due to aberrant activation of Nrf2.


Subject(s)
Chickens , Lung , Signal Transduction , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2 , Animals , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Chick Embryo , Lung/metabolism , Lung/embryology , Lung/pathology , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL