Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.904
Filter
1.
Adv Exp Med Biol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977639

ABSTRACT

Parasitoids have an exceptional lifestyle where juvenile development is spent on or in a single host insect, but the adults are free-living. Unlike parasites, parasitoids kill the host. How parasitoids use such a limiting resource, particularly lipids, can affect chances to survive and reproduce. In part 1, we describe the parasitoid lifestyle, including typical developmental strategies. Lipid metabolism in parasitoids has been of interest to researchers since the 1960s and continues to fascinate ecologists, evolutionists, physiologists, and entomologists alike. One reason of this interest is that the majority of parasitoids do not accumulate triacylglycerols as adults. Early research revealed that some parasitoid larvae mimic the fatty acid composition of the host, which may result from a lack of de novo triacylglycerol synthesis. More recent work has focused on the evolution of lack of adult triacylglycerol accumulation and consequences for life history traits. In part 2 of this chapter, we discuss research efforts on lipid metabolism in parasitoids from the 1960s onwards. Parasitoids are also master manipulators of host physiology, including lipid metabolism, having evolved a range of mechanisms to affect the release, synthesis, transport, and take-up of lipids from the host. We lay out the effects of parasitism on host physiology in part 3 of this chapter.

2.
Appl Environ Microbiol ; : e0012124, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980046

ABSTRACT

Naja atra, the Chinese cobra, is a major cause of snake envenomation in Asia, causing hundreds of thousands of clinical incidents annually. The current treatment, horse serum-derived antivenom, has unpredictable side effects and presents manufacturing challenges. This study focused on developing new-generation snake venom antidotes by using microbial phage display technology to derive nanobodies from an alpaca immunized with attenuated N. atra venom. Following confirmation of the immune response in the alpaca, we amplified VHH genes from isolated peripheral blood mononuclear cells and constructed a phage display VHH library of 1.0 × 107 transformants. After four rounds of biopanning, the enriched phages exhibited increased binding activity to N. atra venom. Four nanobody clones with high binding affinities were selected: aNAH1, aNAH6, aNAH7, and aNAH9. Specificity testing against venom from various snake species, including two Southeast Asian cobra species, revealed nanobodies specific to the genus Naja. An in vivo mouse venom neutralization assay demonstrated that all nanobodies prolonged mouse survival and aNAH6 protected 66.6% of the mice from the lethal dosage. These findings highlight the potential of phage display-derived nanobodies as valuable antidotes for N. atra venom, laying the groundwork for future applications in snakebite treatment.IMPORTANCEChinese cobra venom bites present a formidable medical challenge, and current serum treatments face unresolved issues. Our research applied microbial phage display technology to obtain a new, effective, and cost-efficient treatment approach. Despite interest among scientists in utilizing this technology to screen alpaca antibodies against toxins, the available literature is limited. This study makes a significant contribution by introducing neutralizing antibodies that are specifically tailored to Chinese cobra venom. We provide a comprehensive and unbiased account of the antibody construction process, accompanied by thorough testing of various nanobodies and an assessment of cross-reactivity with diverse snake venoms. These nanobodies represent a promising avenue for targeted antivenom development that bridges microbiology and biotechnology to address critical health needs.

3.
J Proteome Res ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980134

ABSTRACT

Snake venom variations are a crucial factor to understand the consequences of snakebite envenoming worldwide, and therefore it is important to know about toxin composition alterations between taxa. Palearctic vipers of the genera Vipera, Montivipera, Macrovipera, and Daboia have high medical impacts across the Old World. One hotspot for their occurrence and diversity is Türkiye, located on the border between continents, but many of their venoms remain still understudied. Here, we present the venom compositions of seven Turkish viper taxa. By complementary mass spectrometry-based bottom-up and top-down workflows, the venom profiles were investigated on proteomics and peptidomics level. This study includes the first venom descriptions of Vipera berus barani, Vipera darevskii, Montivipera bulgardaghica albizona, and Montivipera xanthina, as well as the first snake venomics profiles of Turkish Macrovipera lebetinus obtusa, and Daboia palaestinae, including an in-depth reanalysis of M. bulgardaghica bulgardaghica venom. Additionally, we identified the modular consensus sequence pEXW(PZ)1-2P(EI)/(KV)PPLE for bradykinin-potentiating peptides in viper venoms. For better insights into variations and potential impacts of medical significance, the venoms were compared against other Palearctic viper proteomes, including the first genus-wide Montivipera venom comparison. This will help the risk assessment of snakebite envenoming by these vipers and aid in predicting the venoms' pathophysiology and clinical treatments.

4.
Article in English | MEDLINE | ID: mdl-38972507

ABSTRACT

Insect stings can cause large local reactions (LLRs) that are IgE-mediated and associated with considerable morbidity. A risk for systemic reactions including anaphylaxis to subsequent stings has been reported and is often noted by patients and health care providers. Guidelines do not recommend venom immunotherapy (VIT) for LLR based on the relatively low risk of anaphylaxis, but this is debated in this review. On the Pro side: the risk of anaphylaxis may be higher than reported in the limited literature, especially in patients who had only 1 LLR; new species with more potent stings are spreading into new areas; the quality of life can be markedly impaired by LLR; VIT is generally safe and highly effective. On the Con side: LLR are benign; stings occur infrequently; VIT has significant cost; systemic reactions occur more often to VIT than to stings in patients with LLR; FDA approval and published guidelines do not recommend VIT for LLR. In practice, shared decision-making is appropriate to incorporate knowledge of the natural history and known high-risk factors in the context of the patient's personal values and preferences.

5.
Int Immunopharmacol ; 138: 112578, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959539

ABSTRACT

Metabolic reprogramming is frequently accompanied by hepatocellular carcinoma (HCC) progression. Disrupted metabolites act as potential biomarkers and drug therapeutic targets for HCC. Peptide extract of scorpion venom (PESV) induces cytotoxic anti-proliferative effects and apoptosis in tumors. However, the action mechanisms of PESV remain unknown. This study aimed to explore the serum metabolic profiles of tumor-bearing mouse model. We generated an orthotopic HCC xenograft mouse model by implanting H22 cells into the left hepatic lobe of male C57BL/6 mice. After surgery, the mice were assigned to two groups randomly: PESV (PESV-treated 40 mg/kg daily, i.g.; n = 6) and control (treated with the solvent equally for 14 d, n = 6) groups. Based on an untargeted metabolomics approach using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry, differential metabolites were screened via univariate and multivariate data analyses. A total of 48 differential metabolites in negative ion mode and 63 in positive ion mode were identified in the serum samples. Furthermore, metabolic pathway analysis revealed that aminoacyl-tRNA biosynthesis, amino acid pathway, glutathione metabolism, protein transports, protein digestion and absorption, and cAMP signaling pathways play vital roles in PESV-induced inhibition of tumors. These findings highlight the distinct changes in the metabolic profiles of HCC-bearing mice after PESV treatment, suggesting the potential of the identified metabolic molecules as therapeutic targets for HCC.

6.
Toxicon ; : 107845, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960288

ABSTRACT

Echis ocellatus is one of the commonest snakes responsible for envenomation in Nigeria. Antivenom is the only effective treatment, but the country suffers from a limited supply of effective antivenom. This study therefore aimed to explore the feasibility of effective, mono-specific antibodies production through immunization in rabbits using the venom of Echis ocellatus from Nigeria. The World Health Organization guide on antivenom production was employed in the immunization and the resultant antibodies were purified using protein A agarose column chromatography. Antibody titer reached a high plateau by 2-month immunization, and SDS PAGE of the sera suggests the presence of intact immunoglobulins accompanied with the heavy (50 kDa) and light (25 kDa) chains. The venom has an intravenous LD50 of 0.35 mg/kg in mice, and the venom lethality at a challenge dose of 2 LD50 was effectively neutralized by the antibodies with a potency value of 0.83 mg venom per g antibodies. The antibodies also neutralized the procoagulant activity of the venom with an effective dose (ED) of 13±0.66 ul, supporting its use for hemotoxic envenomation. The study establishes the feasibility of developing effective, mono-specific antibodies against the Nigerian Carpet viper.

7.
Adv Protein Chem Struct Biol ; 141: 539-562, 2024.
Article in English | MEDLINE | ID: mdl-38960485

ABSTRACT

Several species during evolution suffered random mutations in response to various environmental factors, which resulted in the formation of venom in phylogenetically distant species. The composition of the venom of most species is poorly known. Snake venom is well characterized while most species have poorly known composition. In contrast, snake venoms are well characterized which proteins and peptides are the main active and most abundant constituents. 42 protein families have been identified, including metalloproteins known as metalloproteinases. These macromolecules are enzymes with zinc in their active site derived from the disintegrin A and metalloproteinase (ADAM) cellular family and are categorized into three classes (PI, PII and PIII) according to their domain organization. The snake venom metalloproteinases (SVMP) are cytotoxic, neurotoxic, myotoxic and/or hematotoxic with a crucial role in the defense and restraint of prey. In this scenario envenoming represents a danger to human health and has been considered a neglected disease worldwide, particularly in tropical and subtropical countries. Nevertheless, recently advances in "omics" technologies have demonstrated interesting biological activities of SVMPs such as antimicrobial, anticancer, against cardiovascular diseases and nervous system disorders. Metalloproteins have the therapeutic potential to be converted into drugs as other components of the venom have undergone this process (e.g., captopril, tirefiban and eptifibatide). So, this chapter is focused on the metalloproteins found in the secretions of venomous species, highlight some aspects such as structure, biological activity, pharmacological therapeutic potential and on.


Subject(s)
Metalloproteins , Snake Venoms , Animals , Humans , Snake Venoms/metabolism , Snake Venoms/chemistry , Snake Venoms/enzymology , Metalloproteins/metabolism , Metalloproteins/chemistry , Metalloproteins/antagonists & inhibitors
8.
Article in English | MEDLINE | ID: mdl-38991997

ABSTRACT

Venom represents a key adaptation of many venomous predators, allowing them to immobilise prey quickly through chemical rather than physical warfare. Evolutionary arms races between prey and a predator are believed to be the main factor influencing the potency and composition of predatory venoms. Predators with narrowly restricted diets are expected to evolve specifically potent venom towards their focal prey, with lower efficacy on alternative prey. Here, we evaluate hypotheses on the evolution of prey-specific venom, focusing on the effect of restricted diet, prey defences, and prey resistance. Prey specificity as a potential evolutionary dead end is also discussed. We then provide an overview of the current knowledge on venom prey specificity, with emphasis on snakes, cone snails, and spiders. As the current evidence for venom prey specificity is still quite limited, we also overview the best approaches and methods for its investigation and provide a brief summary of potential model groups. Finally, possible applications of prey-specific toxins are discussed.

9.
Genome Biol Evol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018436

ABSTRACT

Sea anemones are venomous animals that rely on their venom for prey capture, defence against predators and intraspecific competition. Currently, comprehensive molecular and evolutionary analyses of the toxin repertoire for sea anemones are limited by a lack of proteomic data for most species. In this study, proteo-transcriptomic analyses were used to expand our knowledge of the proteinaceous components of sea anemone venom by determining the secreted venom proteome of Calliactis polypus. Electro-mechanical stimulation was used to obtain the secreted venom of C. polypus. We identified a low complexity proteome that was dominated by toxins with similarity to known neurotoxins, as well as six novel toxin candidates. The novel putative toxin candidates were found to be taxonomically restricted to species from the superfamily Metridioidea. Furthermore, the secreted venom of C. polypus had only three putative toxins in common with the venom of acontia from the same species, and little similarity with the secreted venom of closely-related species. Overall, this demonstrates that regionalised and lineage-specific variability in toxin abundance is common among sea anemone species. Moreover, the limited complexity of the toxin repertoire found in C. polypus supports the idea that peptide neurotoxins make up the dominant toxin arsenal found in the venom of sea anemones.

10.
Zoological Lett ; 10(1): 12, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010181

ABSTRACT

Venom production has evolved independently many times in the animal kingdom, although it is rare among mammals. Venomous shrews produce venom in their submandibular salivary glands and use it for food acquisition. Only a few toxins have been identified in shrew venoms thus far, and their modes of action require investigation. The biological and molecular processes relating to venom production and gland functioning also remain unknown. To address this gap, we investigated protein content in extracts from venom glands of two shrew species, Neomys fodiens and Sorex araneus, and interpreted their biological functions. Applying a proteomic approach coupled with Gene Ontology enrichment analysis, we identified 313 and 187 putative proteins in venom glands of N. fodiens and S. araneus, respectively. A search of the UniProt database revealed that most of the proteins found in both shrew species were involved in metabolic processes and stress response, while GO enrichment analysis revealed more stress-related proteins in the glands of S. araneus. Molecules that regulate molecule synthesis, cell cycles, and cell divisions are necessary to enable venom regeneration and ensure its effectiveness in predation and food hoarding. The presence of proteins involved in stress response may be the result of shrews' high metabolic rate and the costs of venom replenishment. Some proteins are likely to promote toxin spreading during envenomation and, due to their proteolytic action, reinforce venom toxicity. Finally, finding numerous proteins involved in immune response suggests a potential role of shrew venom gland secretions in protection against pathogens. These findings open up new perspectives for studying biological functions of molecules from shrew venom glands and extend our knowledge on the functioning of eulipotyphlan venom systems. Because the majority of existing and putative venomous mammals use oral venom systems to inject venom into target species, the methods presented here provide a promising avenue for confirming or discovering new taxa of venomous mammals.

11.
Arch Toxicol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009783

ABSTRACT

In Brazil, around 80% of snakebites are caused by snakes of the genus Bothrops. A three-dimensional culture model was standardized and used to perform treatments with Bothrops erythromelas venom (BeV) and its antivenom (AV). The MRC-5 and L929 cell lines were cultured at increasing cell densities. Morphometric parameters were evaluated through images obtained from an inverted microscope: solidity, circularity, and Feret diameter. L929 microtissues (MT) showed better morphometric data, and thus they were used for further analysis. MT viability was assessed using the acridine orange and ethidium bromide staining method, which showed viable cells in the MT on days 5, 7, and 10 of cultivation. Histochemical and histological analyses were performed, including hematoxylin/eosin staining, which showed a good structure of the spheroids. Alcian blue staining revealed the presence of acid proteoglycans. Immunohistochemical analysis with ki-67 showed different patterns of cell proliferation. The MT were also subjected to pharmacological tests using the BeV, in the presence or absence of its AV. The results showed that the venom was not cytotoxic, but it caused morphological changes. The MT showed cell detachment, losing their structure. The antivenom was able to partially prevent the venom activities.

12.
Arch Toxicol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951190

ABSTRACT

Snake venoms are complex mixtures majorly composed of proteins with well-studied biological effects. However, the exploration of non-protein components, especially lipids, remains limited despite their potential for discovering bioactive molecules. This study compares three liquid-liquid lipid extraction methods for both chemical and biological analyses of Bothrops moojeni snake venom. The methods evaluated include the Bligh and Dyer method (methanol, chloroform, water), considered standard; the Acunha method, a modification of the Bligh and Dyer protocol; and the Matyash method (MTBE/methanol/water), featuring an organic phase less dense than the aqueous phase. Lipidomic analysis using liquid chromatography with high-resolution mass spectrometry (LC-HRMS) system revealed comparable values of lipid constituents' peak intensity across different extraction methods. Our results show that all methods effectively extracted a similar quantity of lipid species, yielding approximately 17-18 subclasses per method. However, the Matyash and Acunha methods exhibited notably higher proportions of biologically active lipids compared to the Bligh and Dyer method, particularly in extracting lipid species crucial for cellular structure and function, such as sphingomyelins and phosphatidylinositol-phosphate. In conclusion, when selecting a lipid extraction method, it is essential to consider the study's objectives. For a biological approach, it is crucial to evaluate not only the total quantity of extracted lipids but also their quality and biological activity. The Matyash and Acunha methods show promise in this regard, potentially offering a superior option for extracting biologically active lipids compared to the Bligh and Dyer method.

13.
Toxicon ; 247: 107838, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971473

ABSTRACT

Phospholipase A2 (PLA2) is an enzyme present in appreciable quantity in snake venoms which catalyze the hydrolysis of glycerophospholipids at sn-2 position and promote the release of lysophospholipids and fatty acids. 5-methylcoumarin-4-ß-glucoside (5MC4BG) and lupeol were previously isolated from the leaves of V. glaberrima. The aim of this research was to evaluate effect of these compounds as potential inhibitors of snake venom toxins of Naja nigricollis using an in vitro and in silico studies. Antisnake venom studies was conducted using acidimetry while the molecular docking analysis against PLA2 enzyme from N. nigricollis was performed using Auto Dock Vina and ADME-Tox analysis was evaluated using swissADME and ProTox-II online servers. The two compounds (5MC4BG and Lupeol) were able to inhibit the hydrolytic actions of PLA2 enzyme with percentage inhibition ranging from 23.99 to 72.36 % and 21.97-24.82 % at 0.0625-1.00 mg/mL respectively while the standard ASV had 82.63 % at 1.00 mg/mL after 10 min incubation at 37 °C. Similar effects were observed after 30 min incubation, although there was significant increase in percentage inhibition of 5MC4BG and lupeol ranging from 66.51 to 83.73 % and 54.87-59.60 % at similar concentrations. Furthermore, the compounds were able to bind to the active site of PLA2 enzyme with high affinity (-7.7 to -6.3 kcal/mol); the standard ligand, Varespladib had a docking score of -6.9 kcal/mol and they exhibited favorable drug-likeness and pharmacokinetic properties and according to toxicity predictions, the two compounds are toxic. In conclusion, the leaf of V. glaberrima contains phytoconstituents with antisnake activity and thus, validates the hypothesis that, the phytoconstituents of V. glaberrima leaves has antisnake venom activity against N. nigricollis venom and thus, should be studied further for the development as antisnake venom agents.

14.
Toxicon ; 247: 107842, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960287

ABSTRACT

Poecilotheria spiders are considered theraphosids of underestimated clinical importance, with bites from these species inducing symptoms such as severe pain and intense muscle cramps. However, there is no specific treatment for the envenomation caused by these species, which, while native to India and Sri Lanka, are widely distributed worldwide. The present study reports the case of a 31-year-old man bitten by a Poecilotheria regalis specimen. The patient's clinical presentation was similar to Latrodectus envenomation, and patient was treated with an L. mactans antivenom. Most of patient's symptoms improved (fasciculations, pain, erythema, and local swelling), except muscle cramps. A toxicological study conducted on mice did not show that L. mactans antivenom has a neutralizing effect on the toxicity of P. regalis. The present report discusses the envenoming process of Poecilotheria species and the possible neutralizing effect exerted by L. mactans antivenom.

15.
Article in English | MEDLINE | ID: mdl-39042155

ABSTRACT

The pharmacological treatment of epilepsy is often complex due to the lack of efficacy in many patients and profound side effects from current drugs, including sedation, motor impairment, and teratogenesis. In the quest for new antiepileptic drugs, animal venoms offer a valuable source of neuroactive molecules targeting ion channels and neurotransmitter receptors. This study investigates the antiepileptic potential of compounds isolated from the venom of the Parawixia bistriata spider. One compound, designated Parawixin-11, demonstrated significant anticonvulsant effects when injected into the cerebral ventricle in a dose-response manner. It effectively countered seizures induced by bicuculline (ED50 0.16 µg/animal), pentylenetetrazole (ED50 0.08 µg/animal), strychnine (ED50 0.05 µg/animal), pilocarpine (ED50 0.10 µg/animal), and NMDA (ED50 0.008 µg/animal). We also assessed whether intracerebroventricular administration of Parawixin-11 caused motor or cognitive impairments in rats using the open field, rotarod, and Morris water maze tests. No differences in exploration or movement were observed with doses of 0.3, 0.2, or 0.1 µg of Parawixin-11. Although there was an increased latency to find the platform during the acquisition phase of the Morris water maze test, no differences in spatial memory retention were noted. Given Parawixin-11's potency against NMDA-induced seizures, we hypothesize that it may modulate the glutamatergic system, aligning with the mechanisms of several spider-derived polyamines.

16.
Article in English | MEDLINE | ID: mdl-39038538

ABSTRACT

Stinging ants represent a wide range of over 200 different species across the world, of which Solenopsis, Myrmecia, Pogonomyrmex, and Brachyponera genera, account for a substantial economic and healthcare burden. S. invicta (red imported fire ant; IFA) and M. pilosula (jack jumper ant; JJA) are 2 species of high clinical importance, known to cause anaphylaxis in humans, with numerous reported fatalities. Diagnostic testing should be performed in patients with a history of a systemic reaction with skin testing and/or in vitro specific-IgE testing. In vitro testing is commercially available for IFA through whole-body extract (WBE) specific-IgE and JJA venom specific-IgE, but not widely available for other stinging ant species. Commercial venom component testing for IFA and JJA is currently not available. Patients with a clinical history and positive specific-IgE testing, should undergo treatment with specific immunotherapy, which is currently available for IFA and JJA. Build-up may be performed using conventional, semi-rush, rush, or ultra-rush schedules with similar risk profiles for IFA. Optimal duration for WBE immunotherapy for IFA and specific JJA venom immunotherapy is not well-studied, but generally recommended for at least 3-5 years. Sting challenges are used in research settings, primarily to assess treatment efficacy of immunotherapy.

17.
Comp Biochem Physiol C Toxicol Pharmacol ; 283: 109977, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025425

ABSTRACT

In this study, we report the innovative application of whole-cell patch-clamp electrophysiology in assessing broad-spectrum neutralisation by three different antivenoms, of venoms from the medically significant scorpion genus Centruroides. Envenomations by as many as 21 species from the Centruroides genus result in up to 300,000 envenomations per year in Mexico, which poses significant and potentially life-threatening pathophysiology. We first evaluated the in vitro manifestation of envenomation against two human voltage-gated sodium (hNaV) channel subtypes: hNaV1.4 and hNaV1.5, which are primarily expressed in skeletal muscles and cardiomyocytes, respectively. The neutralisation of venom activity was then characterised for three different antivenoms using a direct competition model against the more potent target, hNaV1.4. While broad-spectrum neutralisation was identified, variation in neutralisation arose for Centruroides elegans, C. limpidus, C. noxius and C. suffusus venoms, despite the presence of a number of these venoms within the immunising mixture. This raises questions regarding the truly "broad" neutralisation capacity of the antivenoms. This study not only extends previous validation of the in vitro investigation of antivenom efficacy utilising the whole-cell patch-clamp technique but also underscores the potential of this animal-free model in exploring cross-reactivity, experimental scalability, and most importantly, informing clinical management practices regarding the administration of antivenom in Mexico.

18.
Toxicon ; 247: 107841, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950738

ABSTRACT

Snakebite envenomation has been a long-standing global issue that is difficult to treat, largely owing to the flawed nature of current immunoglobulin-based antivenom therapy and the complexity of snake venoms as sophisticated mixtures of bioactive proteins and peptides. Comprehensive characterisation of venom compositions is essential to better understanding snake venom toxicity and inform effective and rationally designed antivenoms. Additionally, a greater understanding of snake venom composition will likely unearth novel biologically active proteins and peptides that have promising therapeutic or biotechnological applications. While a bottom-up proteomic workflow has been the main approach for cataloguing snake venom compositions at the toxin family level, it is unable to capture snake venom heterogeneity in the form of protein isoforms and higher-order protein interactions that are important in driving venom toxicity but remain underexplored. This review aims to highlight the importance of understanding snake venom heterogeneity beyond the primary sequence, in the form of post-translational modifications that give rise to different proteoforms and the myriad of higher-order protein complexes in snake venoms. We focus on current top-down proteomic workflows to identify snake venom proteoforms and further discuss alternative or novel separation, instrumentation, and data processing strategies that may improve proteoform identification. The current higher-order structural characterisation techniques implemented for snake venom proteins are also discussed; we emphasise the need for complementary and higher resolution structural bioanalytical techniques such as mass spectrometry-based approaches, X-ray crystallography and cryogenic electron microscopy, to elucidate poorly characterised tertiary and quaternary protein structures. We envisage that the expansion of the snake venom characterisation "toolbox" with top-down proteomics and high-resolution protein structure determination techniques will be pivotal in advancing structural understanding of snake venoms towards the development of improved therapeutic and biotechnology applications.

19.
Article in English | MEDLINE | ID: mdl-38973302

ABSTRACT

Toxocariasis is a zoonotic parasitic infection with worldwide distribution and high impact on human health. It has a limited clinical resolution with the available drugs, making it challenging to treat. Quercetin, which possesses biological and pharmacological qualities including antiparasitic, antioxidant, and anticancer activities, is a possible substitute for the current medications. Marine invertebrates can produce a vast array of different molecules, many of which are biologically active substances with distinct characteristics. In this study, we assessed the in vitro nematocidal effect of both quercetin and venom of Cassiopea andromeda (jellyfish) against third larvae of Toxocara canis. In microplates with Roswell Park Memorial Institute-1640 medium, larvae were incubated with ethanolic extract of quercetin (0.01, 0.02, 0.05, 0.08, 0.1, 0.25, and 0.5 mM/mL) and water extract of C. andromeda venom (15, 20, 25, 30, 35, 40, and 60 µg/mL) to evaluate their larvicidal effect. A scanning electron microscopy has investigated the possible effect of lethal concentration (LC90) of both extracts on the body wall of cultivated larvae, in comparison with those cultivated in albendazole. Our study revealed the effects of both quercetin and C. andromeda venom exposure on the mortality rate and the ultrastructure of T. canis third larva in comparison with control and albendazole-treated groups.

SELECTION OF CITATIONS
SEARCH DETAIL