Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125874

ABSTRACT

Oncolytic viruses and morbilliviruses in particular, represent an interesting therapeutic approach for tumors with a poor prognosis and frequent resistance to conventional therapies. Canine histiocytic sarcomas (HS) exemplify such a neoplasm in need for new curative approaches. Previous investigations demonstrated a limited success of an acute intratumoral application of canine distemper virus (CDV) on xenotransplanted canine histiocytic sarcoma cells (DH82 cells), while persistently CDV-infected DH82 cell transplants exhibited a complete spontaneous regression. Therefore, the present study focuses on an intratumoral application of persistently CDV vaccine strain Onderstepoort-infected DH82 (DH82 Ond p.i.) cells into non-infected subcutaneous DH82 cell transplants in a murine model. DH82 cell transplants that received 10 applications, two days apart, showed a transient growth retardation as well as larger areas of intratumoral necrosis, lower mitotic rates, and a decreased intratumoral vascularization compared to controls. Viral mRNA was detected in all neoplasms following application of DH82 Ond p.i. cells until 66 days after the last injection. Furthermore, infectious virus was present until 62 days after the last injection. Although complete regression was not achieved, the present application regimen provides promising results as a basis for further treatments, particularly with genetically modified viruses, to enhance the observed effects.


Subject(s)
Distemper Virus, Canine , Histiocytic Sarcoma , Oncolytic Virotherapy , Animals , Distemper Virus, Canine/pathogenicity , Distemper Virus, Canine/genetics , Dogs , Histiocytic Sarcoma/virology , Mice , Oncolytic Virotherapy/methods , Cell Line, Tumor , Distemper/virology , Oncolytic Viruses/genetics , Oncolytic Viruses/physiology
2.
J Infect Dis ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39132824

ABSTRACT

Reports have described SARS-CoV-2 rebound in COVID-19 patients treated with nirmatrelvir, a 3CL protease inhibitor. The cause remains a mystery, although drug resistance, re-infection, and lack of adequate immune responses have been excluded. We now present virologic findings that provide a clue to the cause of viral rebound, which occurs in ∼20% of the treated cases. Persistence of infectious SARS-CoV-2 was experimentally documented in vitro after treatment with nirmatrelvir or another 3CL protease inhibitor, but not with a polymerase inhibitor, remdesivir. This infectious form decayed slowly with a half-life of ∼1 day, suggesting that its persistence could outlive the treatment course to re-ignite SARS-CoV-2 infection as the drug is eliminated. Notably, extending nirmatrelvir treatment beyond 8 days abolished viral rebound in vitro. Our findings point in a particular direction for future investigation of virus persistence and offer a specific treatment recommendation that should be tested clinically.

3.
Ital J Food Saf ; 13(2): 12286, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38846049

ABSTRACT

Hepatitis E is a disease sustained by RNA viruses, which have four different genotypes, all of which are responsible for acute forms of hepatitis. Genotypes 1 and 2 infect only humans, causing epidemics mainly transmitted by contaminated water, while geno-types 3 and 4 are zoonotic, and the infection is linked to the consumption of raw or undercooked meat or meat products. Hepatitis E virus (HEV) genotypes 3 and 4 have been detected in domestic Suidae, considered the asymptomatic reservoir of HEV, and in wild animals such as wild boar and deer. Despite scientific studies that have highlighted the presence of HEV in cured meat products, such as pork liver sausages, the viral persistence in the different production steps of curing has not been evaluated. Therefore, this study aimed to evaluate the persistence of HEV genotype 3 during the different curing and storage times of experimentally contaminated pork liver sausages using biomolecular methods. The sausages tested positive at all curing and storage times. This study confirms the potential risk attributed to pork liver sausages in HEV transmission. However, to guarantee an efficient risk assessment, future studies will be performed to correlate the presence of HEV RNA with infectious viral particles.

4.
Heliyon ; 10(9): e30613, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38737240

ABSTRACT

Zika virus (ZIKV) infections during pregnancy can result in Congenital Zika Syndrome (CZS), a range of severe neurological outcomes in fetuses that primarily occur during early gestational stages possibly due to placental damage. Although some placentas can maintain ZIKV persistence for weeks or months after the initial infection and diagnosis, the impact of this viral persistence is still unknown. Here, we aimed to investigate the immunological repercussion of ZIKV persistence in term placentas. As such, term placentas from 64 pregnant women diagnosed with Zika in different gestational periods were analyzed by ZIKV RT-qPCR, examination of decidua and placental villous histopathology, and expression of inflammation-related genes and IFNL1-4. Subsequently, we explored primary cultures of term decidual Extravillous Trophoblasts (EVTs) and Term Chorionic Villi (TCV) explants, as in vitro models to access the immunological consequences of placental ZIKV infection. Placenta from CZS cases presented low IFNL1-4 expression, evidencing the critical protective role of theses cytokines in the clinical outcome. Term placentas cleared for ZIKV showed increased levels of IFNL1, 3, and 4, whether viral persistence was related with a proinflammatory profile. Conversely, upon ZIKV persistence placentas with decidual inflammation showed high IFNL1-4 levels. In vitro experiments showed that term EVTs are more permissive, and secreted higher levels of IFN-α2 and IFN-λ1 compared to TCV explants. The results suggest that, upon ZIKV persistence, the maternal-skewed decidua contributes to placental inflammatory and antiviral signature, through chronic deciduitis and IFNL upregulation. Although further studies are needed to elucidate the mechanisms underlying the decidual responses against ZIKV. Hence, this study presents unique insights and valuable in vitro models for evaluating the immunological landscape of placentas upon ZIKV persistence.

5.
J Virol ; 98(5): e0049324, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38578092

ABSTRACT

CD4+ T cells play a key role in γ-herpesvirus infection control. However, the mechanisms involved are unclear. Murine herpesvirus type 4 (MuHV-4) allows relevant immune pathways to be dissected experimentally in mice. In the lungs, it colonizes myeloid cells, which can express MHC class II (MHCII), and type 1 alveolar epithelial cells (AEC1), which lack it. Nevertheless, CD4+ T cells can control AEC1 infection, and this control depends on MHCII expression in myeloid cells. Interferon-gamma (IFNγ) is a major component of CD4+ T cell-dependent MuHV-4 control. Here, we show that the action of IFNγ is also indirect, as CD4+ T cell-mediated control of AEC1 infection depended on IFNγ receptor (IFNγR1) expression in CD11c+ cells. Indirect control also depended on natural killer (NK) cells. Together, the data suggest that the activation of MHCII+ CD11c+ antigen-presenting cells is key to the CD4+ T cell/NK cell protection axis. By contrast, CD8+ T cell control of AEC1 infection appeared to operate independently. IMPORTANCE: CD4+ T cells are critical for the control of gamma-herpesvirus infection; they act indirectly, by recruiting natural killer (NK) cells to attack infected target cells. Here, we report that the CD4+ T cell/NK cell axis of gamma-herpesvirus control requires interferon-γ engagement of CD11c+ dendritic cells. This mechanism of CD4+ T cell control releases the need for the direct engagement of CD4+ T cells with virus-infected cells and may be a common strategy for host control of immune-evasive pathogens.


Subject(s)
CD4-Positive T-Lymphocytes , Herpesviridae Infections , Interferon-gamma , Killer Cells, Natural , Receptors, Interferon , Rhadinovirus , Animals , CD4-Positive T-Lymphocytes/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Mice , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Killer Cells, Natural/immunology , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Rhadinovirus/immunology , Mice, Inbred C57BL , Interferon gamma Receptor , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Alveolar Epithelial Cells/immunology , Alveolar Epithelial Cells/virology , CD8-Positive T-Lymphocytes/immunology , CD11c Antigen/metabolism , CD11c Antigen/immunology , Lung/immunology , Lung/virology
6.
Microbiol Spectr ; 12(2): e0300823, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38226803

ABSTRACT

Viruses may persist on solid surfaces for long periods, which may contribute to indirect transmission. Thus, it is imperative to develop functionalized surfaces that will lower the infectious viral load in everyday life. Here, we have tested a plastic surface functionalized with tall oil rosin against the seasonal human coronavirus OC43 as well as severe acute respiratory syndrome coronavirus 2. All tested non-functionalized plastic surfaces showed virus persistence up to 48 h. In contrast, the functionalized plastic showed good antiviral action already within 15 min of contact and excellent efficacy after 30 min over 90% humidity. Excellent antiviral effects were also observed at lower humidities of 20% and 40%. Despite the hydrophilic nature of the functionalized plastic, viruses did not adhere strongly to it. According to helium ion microscopy, viruses appeared flatter on the rosin-functionalized surface, but after flushing away from the rosin-functionalized surface, they showed no apparent structural changes when imaged by transmission electron microscopy of cryogenic or negatively stained specimens or by atomic force microscopy. Flushed viruses were able to bind to their host cell surface and enter endosomes, suggesting that the fusion with the endosomal membrane was halted. The eluted rosin from the functionalized surface demonstrated its ability to inactivate viruses, indicating that the antiviral efficacy relied on the active leaching of the antiviral substances, which acted on the viruses coming into contact. The rosin-functionalized plastic thus serves as a promising candidate as an antiviral surface for enveloped viruses.IMPORTANCEDuring seasonal and viral outbreaks, the implementation of antiviral plastics can serve as a proactive strategy to limit the spread of viruses from contaminated surfaces, complementing existing hygiene practices. In this study, we show the efficacy of a rosin-functionalized plastic surface that kills the viral infectivity of human coronaviruses within 15 min of contact time, irrespective of the humidity levels. In contrast, non-functionalized plastic surfaces retain viral infectivity for an extended period of up to 48 h. The transient attachment on the surface or the leached active components do not cause major structural changes in the virus or prevent receptor binding; instead, they effectively block viral infection at the endosomal stage.


Subject(s)
Viruses , Humans , SARS-CoV-2 , Hydrophobic and Hydrophilic Interactions , Antiviral Agents
7.
Chimia (Aarau) ; 77(4): 196-200, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-38047795

ABSTRACT

To mitigate the spread of a viral disease, it is crucial to understand the factors that influence airborne virus transmission. However, the micro-environment to which the virus is exposed in expiratory aerosol particles is highly complex. The relative humidity, the aerosol particle size and composition, and the air composition affect virus infectivity by modulating the salt and organic concentrations within the particle, as well as the phase state. A parameter that has been overlooked is the aerosol pH. Several viruses are sensitive to acidic pH; for example, the inactivation of influenza A virus becomes very fast at pH 5.5 and below, a threshold that is quickly reached in an expiratory aerosol particle exhaled in a typical indoor environment. Therefore, aerosol acidity plays a significant role in controlling the persistence of airborne, acid-sensitive viruses such as influenza virus, and aerosol pH control could be applied to limit the risk of airborne virus transmission.


Subject(s)
Influenza A virus , Aerosols , Particle Size , Sodium Chloride , Hydrogen-Ion Concentration
8.
Microbiol Spectr ; : e0134723, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737615

ABSTRACT

In the present study, we show that SARS-CoV-2 can infect palatine tonsils, adenoids, and secretions in children without symptoms of COVID-19, with no history of recent upper airway infection. We studied 48 children undergoing tonsillectomy due to snoring/OSA or recurrent tonsillitis between October 2020 and September 2021. Nasal cytobrushes, nasal washes, and tonsillar tissue fragments obtained at surgery were tested by RT-qPCR, immunohistochemistry (IHC), flow cytometry, and neutralization assay. We detected the presence of SARS-CoV-2 in at least one specimen tested in 27% of patients. IHC revealed the presence of the viral nucleoprotein in epithelial surface and in lymphoid cells in both extrafollicular and follicular regions, in adenoids and palatine tonsils. Also, IHC for the SARS-CoV-2 non-structural protein NSP-16 indicated the presence of viral replication in 53.8% of the SARS-CoV-2-infected tissues. Flow cytometry showed that CD20+ B lymphocytes were the most infected phenotypes, followed by CD4+ lymphocytes and CD123 dendritic cells, CD8+ T lymphocytes, and CD14+ macrophages. Additionally, IF indicated that infected tonsillar tissues had increased expression of ACE2 and TMPRSS2. NGS sequencing demonstrated the presence of different SARS-CoV-2 variants in tonsils from different tissues. SARS-CoV-2 antigen detection was not restricted to tonsils but was also detected in nasal cells from the olfactory region. Palatine tonsils and adenoids are sites of prolonged RNA presence by SARS-CoV-2 in children, even without COVID-19 symptoms. IMPORTANCE This study shows that SRS-CoV-2 of different lineages can infect tonsils and adenoids in one quarter of children undergoing tonsillectomy. These findings bring advancement to the area of SARS-CoV-2 pathogenesis, by showing that tonsils may be sites of prolonged infection, even without evidence of recent COVID-19 symptoms. SARS-CoV-2 infection of B and T lymphocytes, macrophages, and dendritic cells may interfere with the mounting of immune responses in these secondary lymphoid organs. Moreover, the shedding of SARS-CoV-2 RNA in respiratory secretions from silently infected children raises concern about possible diagnostic confusion in the presence of symptoms of acute respiratory infections caused by other etiologies.

9.
Annu Rev Virol ; 10(1): 347-370, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37308086

ABSTRACT

Respiratory viruses, such as influenza viruses, cause significant morbidity and mortality worldwide through seasonal epidemics and sporadic pandemics. Influenza viruses transmit through multiple modes including contact (either direct or through a contaminated surface) and inhalation of expelled aerosols. Successful human to human transmission requires an infected donor who expels virus into the environment, a susceptible recipient, and persistence of the expelled virus within the environment. The relative efficiency of each mode can be altered by viral features, environmental parameters, donor and recipient host characteristics, and viral persistence. Interventions to mitigate transmission of influenza viruses can target any of these factors. In this review, we discuss many aspects of influenza virus transmission, including the systems to study it, as well as the impact of natural barriers and various nonpharmaceutical and pharmaceutical interventions.


Subject(s)
Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Humans , Respiratory Aerosols and Droplets , Pandemics
10.
Insects ; 14(1)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36662012

ABSTRACT

The occlusion bodies (OBs) of lepidopteran nucleopolyhedroviruses can persist in soil for extended periods before being transported back on to the foliage for transmission to the host insect. A sensitive insect bioassay technique was used to detect OBs of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) in 186 soil samples collected from maize fields in the southern Mexican states of Chiapas, Tabasco, Campeche, Yucatán, and Quintana Roo, as well Belize and Guatemala. Overall, 35 (18.8%) samples proved positive for SfMNPV OBs. The frequency of OB-positive samples varied significantly among Mexican states and countries (p < 0.05). Between 1.7 and 4.4% of S. frugiperda larvae that consumed OB-positive samples died from polyhedrosis disease. Restriction endonuclease analysis using PstI and HindIII confirmed that the soil-derived isolates were strains of SfMNPV and that genetic diversity was evident among the isolates. The prevalence of OB-positive soil samples did not differ with altitude or extension (area) of the maize field, but it was significantly higher in fields with the presence of living maize plants compared to those containing dead plants or crop residues (p < 0.05). Georeferenced soil samples were used to identify soil types on digitized soil maps. Lithosol and Luvisol soils had a higher than average prevalence of OB-positive samples (42−45% positive) (p = 0.006), as did Andosol, Gleysol, and Vertisol soils (33−60% OB-positive), although the sample sizes were small (<5 samples) for the latter three soils. In contrast, Cambisol soils had a lower than average prevalence of OB-positive samples (5% positive). Bioassays on Acrisol, Fluvisol, Phaeozem, and Rendzina soils resulted in intermediate levels of OB-positive samples. We conclude that certain soil types may favor OB persistence and virus-mediated biological pest control. The soil is also likely to provide a valuable source of genetic diversity for the design of virus-based insecticides against this pest.

11.
bioRxiv ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38187654

ABSTRACT

Reports have described SARS-CoV-2 rebound in COVID-19 patients treated with nirmatrelvir, a 3CL protease inhibitor. The cause remains a mystery, although drug resistance, re-infection, and lack of adequate immune responses have been excluded. We now present virologic findings that provide a clue to the cause of viral rebound, which occurs in ~20% of the treated cases. The persistence of an intermediary form of infectious SARS-CoV-2 was experimentally documented in vitro after treatment with nirmatrelvir or another 3CL protease inhibitor, but not with a polymerase inhibitor, remdesivir. This infectious intermediate decayed slowly with a half-life of ~1 day, suggesting that its persistence could outlive the treatment course to re-ignited SARS-CoV-2 infection as the drug is eliminated. Additional studies are needed to define the nature of this viral intermediate, but our findings point to a particular direction for future investigation and offer a specific treatment recommendation that should be tested clinically.

12.
Mar Pollut Bull ; 185(Pt B): 114342, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36395711

ABSTRACT

To assess the exposure of beachgoers to viruses, a study on seawater, sand, and beach-stranded material was carried out, searching for human viruses, fecal indicator organisms, and total fungi. Moreover, for the first time, the genome persistence and infectivity of two model viruses was studied in laboratory-spiked sand and seawater samples during a one-week experiment. Viral genome was detected in 13.6 % of the environmental samples, but it was not infectious (Human Adenovirus - HAdV, and enterovirus). Norovirus and SARS-CoV-2 were not detected. The most contaminated samples were from sand and close to riverine discharges. In lab-scale experiments, the infectivity of HAdV5 decreased by ~1.5-Log10 in a week, the one of Human Coronavirus-229E disappeared in <3 h in sand. The genome of both viruses persisted throughout the experiment. Our results confirm viral contamination of the beach and suggest HAdV as an index pathogen for beach monitoring and quantitative risk assessment.


Subject(s)
COVID-19 , Norovirus , Humans , Sand , SARS-CoV-2 , Seawater
13.
Front Immunol ; 13: 909341, 2022.
Article in English | MEDLINE | ID: mdl-35784373

ABSTRACT

Zika virus (ZIKV) is an emerging teratogenic arbovirus that persists in semen and is sexually transmitted. We previously demonstrated that ZIKV infects the human testis and persists in testicular germ cells (TGCs) for several months after patients' recovery. To decipher the mechanisms underlying prolonged ZIKV replication in TGCs, we compared the innate immune response of human testis explants and isolated TGCs to ZIKV and to Poly(I:C), a viral RNA analog. Our results demonstrate the weak innate responses of human testis to both ZIKV and Poly(I:C) as compared with other tissues or species. TGCs failed to up-regulate antiviral effectors and type I IFN upon ZIKV or Poly(I:C) stimulation, which might be due to a tight control of PRR signaling, as evidenced by the absence of activation of the downstream effector IRF3 and elevated expression of repressors. Importantly, exogenous IFNß boosted the innate immunity of TGCs and inhibited ZIKV replication in the testis ex vivo, raising hopes for the prevention of ZIKV infection and persistence in this organ.


Subject(s)
Zika Virus Infection , Zika Virus , Antiviral Agents/pharmacology , Germ Cells/metabolism , Humans , Male , Poly I-C/metabolism , Poly I-C/pharmacology , Testis/metabolism
14.
Viruses ; 14(2)2022 02 08.
Article in English | MEDLINE | ID: mdl-35215938

ABSTRACT

Rift Valley fever (RVF) is a zoonotic disease caused by RVF Phlebovirus (RVFV). The RVFV MP-12 vaccine strain is known to exhibit residual virulence in the case of a deficient interferon type 1 response. The hypothesis of this study is that virus replication and severity of lesions induced by the MP-12 strain in immunocompromised mice depend on the specific function of the disturbed pathway. Therefore, 10 strains of mice with deficient innate immunity (B6-IFNARtmAgt, C.129S7(B6)-Ifngtm1Ts/J, B6-TLR3tm1Flv, B6-TLR7tm1Aki, NOD/ShiLtJ), helper T-cell- (CD4tm1Mak), cytotoxic T-cell- (CD8atm1Mak), B-cell- (Igh-Jtm1DhuN?+N2), combined T- and B-cell- (NU/J) and combined T-, B-, natural killer (NK) cell- and macrophage-mediated immunity (NOD.Cg-PrkdcscidIl2rgtm1WjI/SzJ (NSG) mice) were subcutaneously infected with RVFV MP-12. B6-IFNARtmAgt mice were the only strain to develop fatal disease due to RVFV-induced severe hepatocellular necrosis and apoptosis. Notably, no clinical disease and only mild multifocal hepatocellular necrosis and apoptosis were observed in NSG mice, while immunohistochemistry detected the RVFV antigen in the liver and the brain. No or low virus expression and no lesions were observed in the other mouse strains. Conclusively, the interferon type 1 response is essential for early control of RVFV replication and disease, whereas functional NK cells, macrophages and lymphocytes are essential for virus clearance.


Subject(s)
Adaptive Immunity , Immunity, Innate , Rift Valley Fever/immunology , Rift Valley fever virus/physiology , Animals , Apoptosis , Female , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Liver/immunology , Liver/virology , Macrophages/immunology , Macrophages/virology , Male , Mice , Mice, Inbred NOD , Rift Valley Fever/genetics , Rift Valley Fever/physiopathology , Rift Valley Fever/virology , Rift Valley fever virus/genetics , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/virology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/virology
15.
AIMS Microbiol ; 7(2): 138-162, 2021.
Article in English | MEDLINE | ID: mdl-34250372

ABSTRACT

The emergence of cooperative quasi-species consortia (QS-C) thinking from the more accepted quasispecies equations of Manfred Eigen, provides a conceptual foundation from which concerted action of RNA agents can now be understood. As group membership becomes a basic criteria for the emergence of living systems, we also start to understand why the history and context of social RNA networks become crucial for survival and function. History and context of social RNA networks also lead to the emergence of a natural genetic code. Indeed, this QS-C thinking can also provide us with a transition point between the chemical world of RNA replicators and the living world of RNA agents that actively differentiate self from non-self and generate group identity with membership roles. Importantly the social force of a consortia to solve complex, multilevel problems also depend on using opposing and minority functions. The consortial action of social networks of RNA stem-loops subsequently lead to the evolution of cellular organisms representing a tree of life.

16.
Transbound Emerg Dis ; 68(5): 2812-2825, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34255414

ABSTRACT

African swine fever (ASF) is a serious global concern from an ecological and economic point of view. While it is well established that its main transmission routes comprise contact between infected and susceptible animals and transmission through contaminated carcasses, the specific mechanism leading to its long-term persistence is still not clear. Among others, a proposed mechanism involves the potential role of convalescent individuals, which would be able to shed the virus after the end of the acute infection. Using a spatially explicit, stochastic, individual-based model, we tested: (1) if ASF can persist when transmission occurs only through infected wild boars and infected carcasses; (2) if the animals that survive ASF can play a relevant role in increasing ASF persistence chances; (3) how hunting pressure can affect the ASF probability to persist. The scenario in which only direct and carcass-mediated transmission were contemplated had 52% probability of virus persistence 10 years after the initial outbreak. The inclusion of survivor-mediated transmission corresponded to slightly higher persistence probabilities (57%). ASF prevalence during the endemic phase was generally low, ranging 0.1-0.2%. The proportion of seropositive individuals gradually decreased with time and ranged 4.5-6.6%. Our results indicate that direct and carcass-mediated infection routes are sufficient to explain and justify the long-term persistence of ASF at low wild boar density and the ongoing geographic expansion of the disease front in the European continent. During the initial years of an ASF outbreak, hunting should be carefully evaluated as a management tool, in terms of potential benefits and negative side-effects, and combined with an intensive effort for the detection and removal of wild boar carcasses. During the endemic phase, further increasing hunting effort should not be considered as an effective strategy. Additional effort should be dedicated to finding and removing as many wild boar carcasses as possible.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , African Swine Fever/epidemiology , Animals , Disease Outbreaks/veterinary , Probability , Sus scrofa , Swine
17.
mBio ; 12(1)2021 02 02.
Article in English | MEDLINE | ID: mdl-33531399

ABSTRACT

Human bocavirus 1 (HBoV1), a nonenveloped single-stranded DNA parvovirus, causes mild to life-threatening respiratory tract infections, acute otitis media, and encephalitis in young children. HBoV1 often persists in nasopharyngeal secretions for months, hampering diagnosis. It has also been shown to persist in pediatric palatine and adenoid tonsils, which suggests that lymphoid organs are reservoirs for virus spread; however, the tissue site and host cells remain unknown. Our aim was to determine, in healthy nonviremic children with preexisting HBoV1 immunity, the adenotonsillar persistence site(s), host cell types, and virus activity. We discovered that HBoV1 DNA persists in lymphoid germinal centers (GCs), but not in the corresponding tonsillar epithelium, and that the cell types harboring the virus are mainly naive, activated, and memory B cells and monocytes. Both viral DNA strands and both sides of the genome were detected, as well as infrequent mRNA. Moreover, we showed, in B-cell and monocyte cultures and ex vivo tonsillar B cells, that the cellular uptake of HBoV1 occurs via the Fc receptor (FcγRII) through antibody-dependent enhancement (ADE). This resulted in viral mRNA transcription, known to occur exclusively from double-stranded DNA in the nucleus, however, with no detectable productive replication. Confocal imaging with fluorescent virus-like particles moreover disclosed endocytosis. To which extent the active HBoV1 GC persistence has a role in chronic inflammation or B-cell maturation disturbances, and whether the virus can be reactivated, will be interesting topics for forthcoming studies.IMPORTANCE Human bocavirus 1 (HBoV1), a common pediatric respiratory pathogen, can persist in airway secretions for months hampering diagnosis. It also persists in tonsils, providing potential reservoirs for airway shedding, with the exact location, host cell types, and virus activity unknown. Our study provides new insights into tonsillar HBoV1 persistence. We observed HBoV1 persistence exclusively in germinal centers where immune maturation occurs, and the main host cells were B cells and monocytes. In cultured cell lines and primary tonsillar B cells, we showed the virus uptake to be significantly enhanced by HBoV1-specific antibodies, mediated by the cellular IgG receptor, leading to viral mRNA synthesis, but without detectable productive replication. Possible implications of such active viral persistence could be tonsillar inflammation, disturbances in immune maturation, reactivation, or cell death with release of virus DNA, explaining the long-lasting HBoV1 airway shedding.


Subject(s)
Antibody-Dependent Enhancement , Germinal Center/virology , Human bocavirus/immunology , Palatine Tonsil/virology , Parvoviridae Infections/virology , Adolescent , Adult , Aged , B-Lymphocytes/virology , Child , Child, Preschool , DNA, Viral/analysis , Endosomes/virology , Humans , Infant , Infant, Newborn , Middle Aged , Monocytes/virology , Parvoviridae Infections/immunology , Young Adult
18.
J Neurovirol ; 27(2): 197-216, 2021 04.
Article in English | MEDLINE | ID: mdl-33547593

ABSTRACT

The pandemic caused by SARS-CoV-2 has caused widespread infection and significant mortality across the globe. Combined virology perspective of SARS-CoV-2 with a deep-rooted understanding of pathophysiological and immunological processes underlying the clinical manifestations of COVID-19 is of prime importance. The characteristic symptom of COVID-19 is respiratory distress with diffused alveolar damage, but emerging evidence suggests COVID-19 might also have neurologic consequences. Dysregulated homeostasis in the lungs has proven to be fatal, but one cannot ignore that the inability to breathe might be due to defects in the respiratory control center of the brainstem. While the mechanism of pulmonary distress has been documented in the literature, awareness of neurological features and their pathophysiology is still in the nascent state. This review makes references to the neuro-immune axis and neuro-invasive potential of SARS-CoV and SARS-CoV2, as well as the prototypic H-CoV strains in human brains. Simultaneously, considerable discussion on relevant experimental evidence of mild to severe neurological manifestations of fellow neurotropic murine-ß-CoVs (m-CoVs) in the mouse model will help understand the underpinning mechanisms of Neuro-COVID. In this review, we have highlighted the neuroimmunopathological processes in murine CoVs. While MHV infection in mice and SARS-CoV-2 infection in humans share numerous parallels, there are critical differences in viral recognition and viral entry. These similarities are highlighted in this review, while differences have also been emphasized. Though CoV-2 Spike does not favorably interact with murine ACE2 receptor, modification of murine SARS-CoV2 binding domain or development of transgenic ACE-2 knock-in mice might help in mediating consequential infection and understanding human CoV2 pathogenesis in murine models. While a global animal model that can replicate all aspects of the human disease remains elusive, prior insights and further experiments with fellow m-ß-CoV-induced cause-effect experimental models and current human COVID-19 patients data may help to mitigate the SARS-CoV-2-induced multifactorial multi-organ failure.


Subject(s)
COVID-19/pathology , Disease Models, Animal , Murine hepatitis virus/pathogenicity , Neuroimmunomodulation/physiology , Animals , COVID-19/immunology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Humans , Mice , Murine hepatitis virus/immunology , SARS-CoV-2
19.
Viruses ; 12(12)2020 12 14.
Article in English | MEDLINE | ID: mdl-33327649

ABSTRACT

A crucial, but unresolved question concerning mosquito-borne virus transmission is how these viruses can remain endemic in regions where the transmission is halted for long periods of time, due to mosquito inactivity in, e.g., winter. In northern Europe, Sindbis virus (SINV) (genus alphavirus, Togaviridae) is transmitted among birds by Culex mosquitoes during the summer, with occasional symptomatic infections occurring in humans. In winter 2018-19, we sampled hibernating Culex spp females in a SINV endemic region in Sweden and assessed them individually for SINV infection status, blood-feeding status, and species. The results showed that 35 out of the 767 collected mosquitoes were infected by SINV, i.e., an infection rate of 4.6%. The vast majority of the collected mosquitoes had not previously blood-fed (98.4%) and were of the species Cx. pipiens (99.5%). This is the first study of SINV overwintering, and it concludes that SINV can be commonly found in the hibernating Cx. pipiens population in an endemic region in Sweden, and that these mosquitoes become infected through other means besides blood-feeding. Further studies on mosquito ecology and viral interactions are needed to elucidate the mechanisms of the persistence of these viruses over winter.


Subject(s)
Alphavirus Infections/epidemiology , Alphavirus Infections/virology , Culex/virology , Mosquito Vectors/virology , Sindbis Virus/physiology , Alphavirus Infections/transmission , Animals , Public Health Surveillance , RNA, Viral , Seasons , Sweden/epidemiology
20.
J Transl Med ; 18(1): 362, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32967693

ABSTRACT

BACKGROUND: Since the first outbreak of SARS-CoV-2, the clinical characteristics of the Coronavirus Disease 2019 (COVID-19) have been progressively changed. Data reporting a viral intra-host and inter-host evolution favouring the appearance of mild SARS-CoV-2 strains are since being accumulating. To better understand the evolution of SARS-CoV-2 pathogenicity and its adaptation to the host, it is therefore crucial to investigate the genetic and phenotypic characteristics of SARS-CoV-2 strains circulating lately in the epidemic. METHODS: Nasopharyngeal swabs have been analyzed for viral load in the early (March 2020) and late (May 2020) phases of epidemic in Brescia, Italy. Isolation of SARS-CoV-2 from 2 high viral load specimens identified on March 9 (AP66) and on May 8 (GZ69) was performed on Vero E6 cells. Amount of virus released was assessed by quantitative PCR. Genotypic characterization of AP66 and GZ69 was performed by next generation sequencing followed by an in-depth in silico analysis of nucleotide mutations. RESULTS: The SARS-CoV-2 GZ69 strain, isolated in May from an asymptomatic healthcare worker, showed an unprecedented capability of replication in Vero E6 cells in the absence of any evident cytopathic effect. Vero E6 subculturing, up to passage 4, showed that SARS-CoV-2 GZ69 infection was as productive as the one sustained by the cytopathic strain AP66. Whole genome sequencing of the persistently replicating SARS-CoV-2 GZ69 has shown that this strain differs from the early AP66 variant in 9 nucleotide positions (C2939T; C3828T; G21784T; T21846C; T24631C; G28881A; G28882A; G28883C; G29810T) which lead to 6 non-synonymous substitutions spanning on ORF1ab (P892S; S1188L), S (K74N; I95T) and N (R203K, G204R) proteins. CONCLUSIONS: Identification of the peculiar SARS-CoV-2 GZ69 strain in the late Italian epidemic highlights the need to better characterize viral variants circulating among asymptomatic or paucisymptomatic individuals. The current approach could unravel the ways for future studies aimed at analyzing the selection process which favours viral mutations in the human host.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Genetic Variation , Pneumonia, Viral/virology , Amino Acid Substitution , Animals , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/epidemiology , Cytopathogenic Effect, Viral/genetics , Cytopathogenic Effect, Viral/physiology , Genome, Viral , Humans , Italy/epidemiology , Mutation , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , Polymorphism, Single Nucleotide , SARS-CoV-2 , Translational Research, Biomedical , Vero Cells , Viral Proteins/genetics , Viral Proteins/physiology , Virus Cultivation/methods , Virus Replication/genetics , Virus Replication/physiology , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL