Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
J Gen Virol ; 105(3)2024 03.
Article in English | MEDLINE | ID: mdl-38471041

ABSTRACT

Many viruses downregulate their cognate receptors, facilitating virus replication and pathogenesis via processes that are not yet fully understood. In the case of herpes simplex virus 1 (HSV1), the receptor binding protein glycoprotein D (gD) has been implicated in downregulation of its receptor nectin1, but current understanding of the process is limited. Some studies suggest that gD on the incoming virion is sufficient to achieve nectin1 downregulation, but the virus-encoded E3 ubiquitin ligase ICP0 has also been implicated. Here we have used the physiologically relevant nTERT human keratinocyte cell type - which we have previously shown to express readily detectable levels of endogenous nectin1 - to conduct a detailed investigation of nectin1 expression during HSV1 infection. In these cells, nectin1, but not nectin2 or the transferrin receptor, disappeared from the cell surface in a process that required virus protein synthesis rather than incoming virus, but did not involve virus-induced host shutoff. Furthermore, gD was not only required but was sufficient for nectin1 depletion, indicating that no other virus proteins are essential. NK cells were shown to be activated in the presence of keratinocytes, a process that was greatly inhibited in cells infected with wild-type virus. However, degranulation of NK cells was also inhibited in ΔgD-infected cells, indicating that blocking of NK cell activation was independent of gD downregulation of nectin1. By contrast, a superinfection time-course revealed that the ability of HSV1 infection to block subsequent infection of a GFP-expressing HSV1 was dependent on gD and occurred in line with the timing of nectin1 downregulation. Thus, the role of gD-dependent nectin1 impairment during HSV infection is important for virus infection, but not immune evasion, which is achieved by other mechanisms.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Superinfection , Humans , Cell Adhesion Molecules/metabolism , Cell Line , Down-Regulation , Herpesvirus 1, Human/physiology , Keratinocytes , Receptors, Virus/metabolism , Viral Envelope Proteins/genetics
2.
Cell Mol Life Sci ; 81(1): 71, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300320

ABSTRACT

Hexosylceramides (HexCer) are implicated in the infection process of various pathogens. However, the molecular and cellular functions of HexCer in infectious cycles are poorly understood. Investigating the enveloped virus Uukuniemi (UUKV), a bunyavirus of the Phenuiviridae family, we performed a lipidomic analysis with mass spectrometry and determined the lipidome of both infected cells and derived virions. We found that UUKV alters the processing of HexCer to glycosphingolipids (GSL) in infected cells. The infection resulted in the overexpression of glucosylceramide (GlcCer) synthase (UGCG) and the specific accumulation of GlcCer and its subsequent incorporation into viral progeny. UUKV and several pathogenic bunyaviruses relied on GlcCer in the viral envelope for binding to various host cell types. Overall, our results indicate that GlcCer is a structural determinant of virions crucial for bunyavirus infectivity. This study also highlights the importance of glycolipids on virions in facilitating interactions with host cell receptors and infectious entry of enveloped viruses.


Subject(s)
Orthobunyavirus , Glucosylceramides , Virus Attachment , Lipidomics , Mass Spectrometry
3.
Virology ; 592: 109988, 2024 04.
Article in English | MEDLINE | ID: mdl-38244322

ABSTRACT

Infection by SARS-CoV-2 is dependent on binding of the viral spike protein to angiotensin converting enzyme 2 (ACE2), a membrane glycoprotein expressed on epithelial cells in the human upper respiratory tract. Recombinant ACE2 protein has potential application for anti-viral therapy. Here we co-transfected mouse fibroblasts (A9 cells) with a cloned fragment of human genomic DNA containing the intact ACE2 gene and an unlinked neomycin phosphotransferase gene, and then selected stable neomycin-resistant transfectants. Transfectant clones expressed ACE2 protein at levels that were generally proportional to the number of ACE2 gene copies integrated in the cell genome, ranging up to approximately 50 times the level of ACE2 present of Vero-E6 cells. Cells overexpressing ACE2 were hypersensitive to infection by spike-pseudotyped vesicular stomatitis virus (VSV-S), and adsorption of VSV-S to these cells occurred at an accelerated rate compared to Vero-E6 cells. The transfectant cell clones described here therefore have favorable attributes as feedstocks for large-scale production of recombinant human ACE2 protein.


Subject(s)
Angiotensin-Converting Enzyme 2 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Chlorocebus aethiops , Fibroblasts/metabolism , Membrane Glycoproteins/genetics , Protein Binding , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
4.
Cell Rep ; 42(12): 113463, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37995180

ABSTRACT

Brain metastasis cancer-associated fibroblasts (bmCAFs) are emerging as crucial players in the development of breast cancer brain metastasis (BCBM), but our understanding of the underlying molecular mechanisms is limited. In this study, we aim to elucidate the pathological contributions of fucosylation (the post-translational modification of proteins by the dietary sugar L-fucose) to tumor-stromal interactions that drive the development of BCBM. Here, we report that patient-derived bmCAFs secrete high levels of polio virus receptor (PVR), which enhance the invasive capacity of BC cells. Mechanistically, we find that HIF1α transcriptionally upregulates fucosyltransferase 11, which fucosylates PVR, triggering its secretion from bmCAFs. Global phosphoproteomic analysis of BC cells followed by functional verification identifies cell-cell junction and actin cytoskeletal signaling as modulated by bmCAF-secreted, -fucosylated PVR. Our findings delineate a hypoxia- and fucosylation-regulated mechanism by which bmCAFs contribute to the invasiveness of BCBM in the brain.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Cancer-Associated Fibroblasts , Female , Humans , Brain Neoplasms/pathology , Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/pathology , Fibroblasts/pathology , Receptors, Virus
5.
Viruses ; 15(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37896807

ABSTRACT

Influenza B virus (IBV) is one of the two major types of influenza viruses that circulate each year. Unlike influenza A viruses, IBV does not harbor pandemic potential due to its lack of historical circulation in non-human hosts. Many studies and reviews have highlighted important factors for host determination of influenza A viruses. However, much less is known about the factors driving IBV replication in humans. We hypothesize that similar factors influence the host restriction of IBV. Here, we compile and review the current understanding of host factors crucial for the various stages of the IBV viral replication cycle. While we discovered the research in this area of IBV is limited, we review known host factors that may indicate possible host restriction of IBV to humans. These factors include the IBV hemagglutinin (HA) protein, host nuclear factors, and viral immune evasion proteins. Our review frames the current understanding of IBV adaptations to replication in humans. However, this review is limited by the amount of research previously completed on IBV host determinants and would benefit from additional future research in this area.


Subject(s)
Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Humans , Influenza B virus , Viral Proteins/genetics , Virus Replication
6.
Microorganisms ; 11(8)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37630636

ABSTRACT

The porcine epidemic diarrhea virus (PEDV) is a highly contagious and virulent enteric coronavirus that causes severe enteric disease in pigs worldwide. PEDV infection causes profound diarrhea, vomiting, and dehydration in pigs of all ages, resulting in high mortality rates, particularly among neonatal piglets. The spike glycoprotein (S) of PEDV plays a crucial role in binding to the host cell receptor and facilitating fusion between the viral and host membranes. Pseudotyped viral particles featuring the PEDV S protein are valuable tools for investigating virus entry, identifying neutralizing antibodies, and developing small molecules to impede virus replication. In this study, we used a codon-optimized PEDV S protein to generate recombinant pseudotyped vesicular stomatitis virus (VSV) particles (rVSV-ΔG-EGFP-S). The full-length S protein was efficiently incorporated into VSV particles. The S protein pseudotyped VSV exhibited infectivity towards permissive cell lines of PEDV. Moreover, we identified a new permissive cell line, JHH7, which showed robust support for PEDV replication. In contrast to the SARS-CoV-2 spike protein, the removal of amino acids from the cytoplasmic tail resulted in reduced efficiency of viral pseudotyping. Furthermore, we demonstrated that 25-hydroxycholesterol inhibited rVSV-ΔG-EGFP-S entry, while human APN facilitated rVSV-ΔG-EGFP-S entry through the use of ANPEP knockout Huh7 cells. Finally, by transducing swine intestinal organoids with the rVSV-ΔG-EGFP-S virus, we observed efficient infection of the swine intestinal organoids by the PEDV spike-pseudotyped VSV. Our work offers valuable tools for studying the cellular entry of PEDV and developing interventions to curb its transmission.

7.
Viruses ; 15(7)2023 06 23.
Article in English | MEDLINE | ID: mdl-37515111

ABSTRACT

CD46, or membrane cofactor protein, is a type-one transmembrane protein from the complement regulatory protein family. Alongside its role in complement activation, CD46 is involved in many other processes, from T-cell activation to reproduction. It is also referred to as a pathogen magnet, because it is used as a receptor by multiple bacteria and viruses. Bovine CD46 (bovCD46) in particular is involved in bovine viral diarrhoea virus entry, an economically important disease in cattle industries. This study presents the X-ray crystallographic structure of the extracellular region of bovCD46, revealing a four-short-consensus-repeat (SCR) structure similar to that in human CD46. SCR1-3 are arranged linearly, while SCR 4 has a reduced interface angle, resulting in a hockey stick-like appearance. The structure also reveals the bovine viral diarrhoea virus interaction site in SCR1, which is likely to confer pestivirus specificity for their target host, CD46. Insights gained from the structural information on pestivirus receptors, such as CD46, could offer valuable guidance for future control strategies.


Subject(s)
Diarrhea Viruses, Bovine Viral , Animals , Cattle , Humans , Complement Activation , Diarrhea , Membrane Cofactor Protein
8.
Acta Crystallogr D Struct Biol ; 79(Pt 2): 140-153, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36762860

ABSTRACT

Adeno-associated virus (AAV) is the vector of choice for several approved gene-therapy treatments and is the basis for many ongoing clinical trials. Various strains of AAV exist (referred to as serotypes), each with their own transfection characteristics. Here, a high-resolution cryo-electron microscopy structure (2.2 Å) of AAV serotype 4 (AAV4) is presented. The receptor responsible for transduction of the AAV4 clade of AAV viruses (including AAV11, AAV12 and AAVrh32.33) is unknown. Other AAVs interact with the same cell receptor, adeno-associated virus receptor (AAVR), in one of two different ways. AAV5-like viruses interact exclusively with the polycystic kidney disease-like 1 (PKD1) domain of AAVR, while most other AAVs interact primarily with the PKD2 domain. A comparison of the present AAV4 structure with prior corresponding structures of AAV5, AAV2 and AAV1 in complex with AAVR provides a foundation for understanding why the AAV4-like clade is unable to interact with either PKD1 or PKD2 of AAVR. The conformation of the AAV4 capsid in variable regions I, III, IV and V on the viral surface appears to be sufficiently different from AAV2 to ablate binding with PKD2. Differences between AAV4 and AAV5 in variable region VII appear to be sufficient to exclude binding with PKD1.


Subject(s)
Capsid Proteins , Dependovirus , Dependovirus/chemistry , Dependovirus/physiology , Cryoelectron Microscopy , Capsid Proteins/chemistry , Capsid/chemistry , Capsid/metabolism
9.
J Virol ; 96(24): e0148422, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36453885

ABSTRACT

Adeno-associated virus (AAV) is a small ssDNA satellite virus of high interest (in recombinant form) as a safe and effective gene therapy vector. AAV's human cell entry receptor (AAVR) contains polycystic kidney disease (PKD) domains bound by AAV. Seeking understanding of the spectrum of interactions, goat AAVGo.1 is investigated, because its host is the species most distant from human with reciprocal cross-species cell susceptibility. The structure of AAVGo.1, solved by cryo-EM to 2.9 Å resolution, is most similar to AAV5. Through ELISA (enzyme-linked immunosorbent assay) studies, it is shown that AAVGo.1 binds to human AAVR more strongly than do AAV2 or AAV5, and that it joins AAV5 in a class that binds exclusively to PKD domain 1 (PKD1), in contrast to other AAVs that interact primarily with PKD2. The AAVGo.1 cryo-EM structure of a complex with a PKD12 fragment of AAVR at 2.4 Å resolution shows PKD1 bound with minimal change in virus structure. There are only minor conformational adaptations in AAVR, but there is a near-rigid rotation of PKD1 with maximal displacement of the receptor domain by ~1 Å compared to PKD1 bound to AAV5. AAVGo.1 joins AAV5 as the second member of an emerging class of AAVs whose mode of receptor-binding is completely different from other AAVs, typified by AAV2. IMPORTANCE Adeno-associated virus (AAV) is a small ssDNA satellite parvovirus. As a recombinant vector with a protein shell encapsidating a transgene, recombinant AAV (rAAV) is a leading delivery vehicle for gene therapy, with two FDA-approved treatments and 150 clinical trials for 30 diseases. The human entry receptor AAVR has five PKD domains. To date, all serotypes, except AAV5, have interacted primarily with the second PKD domain, PKD2. Goat is the AAV host most distant from human with cross-species cell infectivity. AAVGo.1 is similar in structure to AAV5, the two forming a class with a distinct mode of receptor-binding. Within the two classes, binding interactions are mostly conserved, giving an indication of the latitude available in modulating delivery vectors.


Subject(s)
Dependovirus , Genetic Vectors , Animals , Humans , Dependovirus/metabolism , Dependovirus/ultrastructure , Genetic Vectors/chemistry , Genetic Vectors/genetics , Goats , Protein Binding , Genetic Therapy/methods
10.
Viruses ; 14(12)2022 11 24.
Article in English | MEDLINE | ID: mdl-36560629

ABSTRACT

Echoviruses, for which there are currently no approved vaccines or drugs, are responsible for a range of human diseases, for example echovirus 11 (E11) is a major cause of serious neonatal morbidity and mortality. Decay-accelerating factor (DAF, also known as CD55) is an attachment receptor for E11. Here, we report the structure of the complex of E11 and the full-length ectodomain of DAF (short consensus repeats, SCRs, 1-4) at 3.1 Å determined by cryo-electron microscopy (cryo-EM). SCRs 3 and 4 of DAF interact with E11 at the southern rim of the canyon via the VP2 EF and VP3 BC loops. We also observe an unexpected interaction between the N-linked glycan (residue 95 of DAF) and the VP2 BC loop of E11. DAF is a receptor for at least 20 enteroviruses and we classify its binding patterns from reported DAF/virus complexes into two distinct positions and orientations, named as E6 and E11 poses. Whilst 60 DAF molecules can attach to the virion in the E6 pose, no more than 30 can attach to E11 due to steric restrictions. Analysis of the distinct modes of interaction and structure and sequence-based phylogenies suggests that the two modes evolved independently, with the E6 mode likely found earlier.


Subject(s)
Enterovirus Infections , Enterovirus , Infant, Newborn , Humans , Cryoelectron Microscopy , CD55 Antigens , Enterovirus/metabolism , Enterovirus B, Human/metabolism
11.
J Biol Chem ; 298(12): 102699, 2022 12.
Article in English | MEDLINE | ID: mdl-36379254

ABSTRACT

Unlike most flaviviruses transmitted by arthropods, Tembusu virus (TMUV) is still active during winter and causes outbreaks in some areas, indicating vector-independent spread of the virus. Gastrointestinal transmission might be one of the possible routes of vector-free transmission, which also means that the virus has to interact with more intestinal bacteria. Here, we found evidence that TMUV indeed can transmit through the digestive tract. Interestingly, using an established TMUV disease model by oral gavage combined with an antibiotic treatment, we revealed that a decrease in intestinal bacteria significantly reduced local TMUV proliferation in the intestine, revealing that the bacterial microbiome is important in TMUV infection. We found that lipopolysaccharide (LPS) present in the outer membrane of Gram-negative bacteria enhanced TMUV proliferation by promoting its attachment. Toll-like receptor 4 (TLR4), a cell surface receptor, can transmit signal from LPS. We confirmed colocalization of TLR4 with TMUV envelope (E) protein as well as their interaction in infected cells. Coherently, TMUV infection of susceptible cells was inhibited by an anti-TLR4 antibody, purified soluble TLR4 protein, and knockdown of TLR4 expression. LPS-enhanced TMUV proliferation could also be blocked by a TLR4 inhibitor. Meanwhile, pretreatment of duck primary cells with TMUV significantly impaired LPS-induced interleukin 6 production. Collectively, our study provides first insights into vector-free transmission mechanisms of flaviviruses.


Subject(s)
Flavivirus Infections , Gastrointestinal Microbiome , Poultry Diseases , Toll-Like Receptor 4 , Flavivirus Infections/microbiology , Flavivirus Infections/transmission , Flavivirus Infections/virology , Lipopolysaccharides/metabolism , Toll-Like Receptor 4/metabolism , Ducks , Animals , Poultry Diseases/microbiology , Poultry Diseases/transmission , Poultry Diseases/virology , Virus Replication , Gene Knockdown Techniques , Bacterial Proteins/metabolism
12.
Viruses ; 14(5)2022 05 05.
Article in English | MEDLINE | ID: mdl-35632709

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that recently re-emerged in many parts of the world causing large-scale outbreaks. CHIKV infection presents as a febrile illness known as chikungunya fever (CHIKF). Infection is self-limited and characterized mainly by severe joint pain and myalgia that can last for weeks or months; however, severe disease presentation can also occur in a minor proportion of infections. Among the atypical CHIKV manifestations that have been described, severe arthralgia and neurological complications, such as encephalitis, meningitis, and Guillain-Barré Syndrome, are now reported in many outbreaks. Moreover, death cases were also reported, placing CHIKV as a relevant public health disease. Virus evolution, globalization, and climate change may have contributed to CHIKV spread. In addition to this, the lack of preventive vaccines and approved antiviral treatments is turning CHIKV into a major global health threat. In this review, we discuss the current knowledge about CHIKV pathogenesis, with a focus on atypical disease manifestations, such as persistent arthralgia and neurologic disease presentation. We also bring an up-to-date review of the current CHIKV vaccine development. Altogether, these topics highlight some of the most recent advances in our understanding of CHIKV pathogenesis and also provide important insights into the current development and clinical trials of CHIKV potential vaccine candidates.


Subject(s)
Chikungunya Fever , Chikungunya virus , Arthralgia/virology , Chikungunya Fever/epidemiology , Chikungunya Fever/pathology , Chikungunya Fever/prevention & control , Chikungunya virus/genetics , Chikungunya virus/immunology , Humans , Vaccine Development , Viral Vaccines
13.
Biomedicines ; 10(1)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35052874

ABSTRACT

Hepatitis B virus (HBV) infections are among the major public health concerns worldwide with more than 250 million of chronically ill individuals. Many of them are additionally infected with the Hepatitis D virus, a satellite virus to HBV. Chronic infection frequently leads to serious liver diseases including cirrhosis and hepatocellular carcinoma, the most common type of liver cancer. Although current antiviral therapies can control HBV replication and slow down disease progress, there is an unmet medical need to identify therapies to cure this chronic infectious disease. Lately, a noteworthy progress in fighting against HBV has been made by identification of the high-affinity hepatic host receptor for HBV and HDV, namely Na+/taurocholate cotransporting polypeptide (NTCP, gene symbol SLC10A1). Next to its primary function as hepatic uptake transporter for bile acids, NTCP is essential for the cellular entry of HBV and HDV into hepatocytes. Due to this high-ranking discovery, NTCP has become a valuable target for drug development strategies for HBV/HDV-infected patients. In this review, we will focus on a newly predicted three-dimensional NTCP model that was generated using computational approaches and discuss its value in understanding the NTCP's membrane topology, substrate and virus binding taking place in plasma membranes. We will review existing data on structural, functional, and biological consequences of amino acid residue changes and mutations that lead to loss of NTCP's transport and virus receptor functions. Finally, we will discuss new directions for future investigations aiming at development of new NTCP-based HBV entry blockers that inhibit HBV tropism in human hepatocytes.

14.
Environ Sci Technol ; 56(3): 1854-1863, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35049283

ABSTRACT

Virus receptors are highly involved in mediating the entrance of infectious viruses into host cells. Here, we found that typical chemical exposure caused the upregulation of virus receptor mRNA levels. Chemicals with the same structural characteristics can affect the transcription of angiotensin-converting enzyme 2 (ACE2), a dominant receptor of SARS-CoV-2. Some chemicals can also regulate the transcription of ACE2 by similar regulatory mechanisms, such as multilayer biological responses and the crucial role of TATA-box binding protein associated factor 6. The abovementioned finding suggested that chemical mixtures may have a joint effect on the ACE2 mRNA level in the real scenario, where humans are exposed to numerous chemicals simultaneously in daily life. Chemically regulated virus receptor transcription was in a tissue-dependent manner, with the highest sensitivity in pulmonary epithelial cells. Therefore, in addition to genetic factors, exogenous chemical exposure can be an emerging nongenetic factor that stimulates the transcription of virus receptor abundance and may elevate the protein expression. These alterations could ultimately give rise to the susceptibility to virus infection and disease severity. This finding highlights new requirements for sufficient epidemiological data about exposomes on pathogen receptors in the host.


Subject(s)
COVID-19 , Receptors, Virus , Angiotensin-Converting Enzyme 2 , Environmental Pollutants , Humans , RNA, Messenger , SARS-CoV-2
15.
Nano Lett ; 22(1): 50-57, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34962130

ABSTRACT

SARS-CoV-2 variants are of particular interest because they can potentially increase the transmissibility and virulence of COVID-19 or reduce the effectiveness of available vaccines. However, screening SARS-CoV-2 variants is a challenge because biosensors target viral components that can mutate. One promising strategy is to screen variants via angiotensin-converting enzyme 2 (ACE2), a virus receptor shared by all known SARS-CoV-2 variants. Here we designed a highly sensitive and portable COVID-19 screening biosensor based on the virus receptor. We chose a dual-gate field-effect transistor to overcome the low sensitivity of virus-receptor-based biosensors. To optimize the biosensor, we introduced a synthetic virus that mimics the important features of SARS-CoV-2 (size, bilayer structure, and composition). The developed biosensor successfully detected SARS-CoV-2 in 20 min and showed sensitivity comparable to that of molecular diagnostic tests (∼165 copies/mL). Our results indicate that a virus-receptor-based biosensor can be an effective strategy for screening infectious diseases to prevent pandemics.


Subject(s)
Biosensing Techniques , COVID-19 , SARS-CoV-2/isolation & purification , Humans , Receptors, Virus , Spike Glycoprotein, Coronavirus
16.
Infect Med (Beijing) ; 1(1): 59-62, 2022 Mar.
Article in English | MEDLINE | ID: mdl-38074977

ABSTRACT

Motivation: Virus receptors are presented on the cell surfaces of a host and are key for viral infection of host cells. However, no unified resource for the study of viral receptors is currently available. Results: To address this problem, we built EVIHVR, a platform for analyzing the expression and variation, and for the identification of human virus receptors. EVIHVR provides three functions: (1) Receptor expression function for browsing and analyzing the expression of human virus receptors in various human tissues/cells; (2) Receptor gene polymorphism function for analyzing the genetic polymorphism of human virus receptors in different human populations and human tissues; and (3) Predict receptor function for identifying potential virus receptors based on differential expression analysis. EVIHVR can become a useful tool for the analysis and identification of human virus receptors. Availability and implementation: EVIHVR is publicly available at http://www.computationalbiology.cn/EVIHVR/#/.

17.
Viruses ; 13(9)2021 09 18.
Article in English | MEDLINE | ID: mdl-34578445

ABSTRACT

The classical laboratory mouse strains are genetic mosaics of three Mus musculus subspecies that occupy distinct regions of Eurasia. These strains and subspecies carry infectious and endogenous mouse leukemia viruses (MLVs) that can be pathogenic and mutagenic. MLVs evolved in concert with restrictive host factors with some under positive selection, including the XPR1 receptor for xenotropic/polytropic MLVs (X/P-MLVs) and the post-entry restriction factor Fv1. Since positive selection marks host-pathogen genetic conflicts, we examined MLVs for counter-adaptations at sites that interact with XPR1, Fv1, and the CAT1 receptor for ecotropic MLVs (E-MLVs). Results describe different co-adaptive evolutionary paths within the ranges occupied by these virus-infected subspecies. The interface of CAT1, and the otherwise variable E-MLV envelopes, is highly conserved; antiviral protection is afforded by the Fv4 restriction factor. XPR1 and X/P-MLVs variants show coordinate geographic distributions, with receptor critical sites in envelope, under positive selection but with little variation in envelope and XPR1 in mice carrying P-ERVs. The major Fv1 target in the viral capsid is under positive selection, and the distribution of Fv1 alleles is subspecies-correlated. These data document adaptive, spatial and temporal, co-evolutionary trajectories at the critical interfaces of MLVs and the host factors that restrict their replication.


Subject(s)
Calcium Channels/genetics , Endogenous Retroviruses/genetics , Evolution, Molecular , Leukemia Virus, Murine/genetics , Proteins/genetics , TRPV Cation Channels/genetics , Viral Envelope Proteins/metabolism , Adaptation, Physiological , Animals , Calcium Channels/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Endogenous Retroviruses/physiology , Host-Pathogen Interactions , Leukemia Virus, Murine/physiology , Mice , Proteins/metabolism , Selection, Genetic , TRPV Cation Channels/metabolism , Xenotropic and Polytropic Retrovirus Receptor/genetics , Xenotropic and Polytropic Retrovirus Receptor/metabolism
18.
Viruses ; 13(6)2021 06 17.
Article in English | MEDLINE | ID: mdl-34204224

ABSTRACT

Pestivirus envelope protein E2 is crucial to virus infection and accomplishes virus-receptor interaction during entry. However, mapping of E2 residues mediating these interactions has remained unexplored. In this study, to investigate the structure-function relationship for a ß-hairpin motif exposed to the solvent in the crystal structure of bovine viral diarrhea virus (BVDV) E2, we designed two amino acidic substitutions that result in a change of electrostatic potential. First, using wild type and mutant E2 expressed as soluble recombinant proteins, we found that the mutant protein had reduced binding to susceptible cells compared to wild type and diminished ability to inhibit BVDV infection, suggesting a lower affinity for BVDV receptors. We then analyzed the effect of ß-hairpin mutations in the context of recombinant viral particles. Mutant viruses recovered from cell culture supernatant after transfection of recombinant RNA had almost completely inhibited ability to re-infect susceptible cells, indicating an impact of mutations on BVDV infectivity. Finally, sequential passaging of the mutant virus resulted in the selection of a viral population in which ß-hairpin mutations reverted to the wild type sequence to restore infectivity. Taken together, our results show that this conserved region of the E2 protein is critical for the interaction with host cell receptors.


Subject(s)
Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/metabolism , Receptors, Virus/metabolism , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Virus Internalization , Amino Acid Substitution , Animals , Cattle , Cell Line , Diarrhea Viruses, Bovine Viral/chemistry , Inverted Repeat Sequences/physiology , Protein Binding , Viral Envelope Proteins/genetics
19.
J Med Virol ; 93(12): 6671-6685, 2021 12.
Article in English | MEDLINE | ID: mdl-34324210

ABSTRACT

Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a wide spectrum of syndromes involving multiple organ systems and is primarily mediated by viral spike (S) glycoprotein through the receptor-binding domain (RBD) and numerous cellular proteins including ACE2, transmembrane serine protease 2 (TMPRSS2), kidney injury molecule-1 (Kim-1), and neuropilin-1 (NRP-1). In this study, we examined the entry tropism of SARS-CoV-2 and SARS-CoV using S protein-based pseudoviruses to infect 22 cell lines and 3 types of primary cells isolated from respiratory, urinary, digestive, reproductive, and immune systems. At least one cell line or type of primary cell from each organ system was infected by both pseudoviruses. Infection by pseudoviruses is effectively blocked by S1, RBD, and ACE2 recombinant proteins, and more weakly by Kim-1 and NRP-1 recombinant proteins. Furthermore, cells with robust SARS-CoV-2 pseudovirus infection had strong expression of either ACE2 or Kim-1 and NRP-1 proteins. ACE2 glycosylation appeared to be critical for the infections of both viruses as there was a positive correlation between infectivity of either SARS-CoV-2 or SARS-CoV pseudovirus with the level of glycosylated ACE2 (gly-ACE2). These results reveal that SARS-CoV-2 cell entry could be mediated by either an ACE2-dependent or -independent mechanism, thus providing a likely molecular basis for its broad tropism for a wide variety of cell types.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Gastrointestinal Tract/virology , Genitalia/virology , Hepatitis A Virus Cellular Receptor 1/metabolism , Immune System/virology , Neuropilin-1/metabolism , Respiratory System/virology , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Virus Internalization , Blotting, Western , COVID-19/metabolism , COVID-19/virology , Cell Line , Cells, Cultured , Fluorescent Antibody Technique , Gastrointestinal Tract/cytology , Genitalia/cytology , Humans , Immune System/cytology , Respiratory System/cytology
20.
J Biol Chem ; 297(1): 100847, 2021 07.
Article in English | MEDLINE | ID: mdl-34058196

ABSTRACT

The zoonotic transmission of highly pathogenic coronaviruses into the human population is a pressing concern highlighted by the ongoing SARS-CoV-2 pandemic. Recent work has helped to illuminate much about the mechanisms of SARS-CoV-2 entry into the cell, which determines host- and tissue-specific tropism, pathogenicity, and zoonotic transmission. Here we discuss current findings on the factors governing SARS-CoV-2 entry. We first reviewed key features of the viral spike protein (S) mediating fusion of the viral envelope and host cell membrane through binding to the SARS-CoV-2 receptor, angiotensin-converting enzyme 2. We then examined the roles of host proteases including transmembrane protease serine 2 and cathepsins in processing S for virus entry and the impact of this processing on endosomal and plasma membrane virus entry routes. We further discussed recent work on several host cofactors that enhance SARS-CoV-2 entry including Neuropilin-1, CD147, phosphatidylserine receptors, heparan sulfate proteoglycans, sialic acids, and C-type lectins. Finally, we discussed two key host restriction factors, i.e., interferon-induced transmembrane proteins and lymphocyte antigen 6 complex locus E, which can disrupt SARS-CoV-2 entry. The features of SARS-CoV-2 are presented in the context of other human coronaviruses, highlighting unique aspects. In addition, we identify the gaps in understanding of SARS-CoV-2 entry that will need to be addressed by future studies.


Subject(s)
COVID-19/metabolism , SARS-CoV-2/physiology , Virus Internalization , Animals , Basigin/genetics , Basigin/metabolism , COVID-19/genetics , COVID-19/virology , Host-Pathogen Interactions , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Neuropilin-1/genetics , Neuropilin-1/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL