Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 14885, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38937525

ABSTRACT

Past and present habitability of Mars have been intensely studied in the context of the search for signals of life. Despite the harsh conditions observed today on the planet, some ancient Mars environments could have harbored specific characteristics able to mitigate several challenges for the development of microbial life. In such environments, Fe2+ minerals like siderite (already identified on Mars), and vivianite (proposed, but not confirmed) could sustain a chemolithoautotrophic community. In this study, we investigate the ability of the acidophilic iron-oxidizing chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans to use these minerals as its sole energy source. A. ferrooxidans was grown in media containing siderite or vivianite under different conditions and compared to abiotic controls. Our experiments demonstrated that this microorganism was able to grow, obtaining its energy from the oxidation of Fe2+ that came from the solubilization of these minerals under low pH. Additionally, in sealed flasks without CO2, A. ferrooxidans was able to fix carbon directly from the carbonate ion released from siderite for biomass production, indicating that it could be able to colonize subsurface environments with little or no contact with an atmosphere. These previously unexplored abilities broaden our knowledge on the variety of minerals able to sustain life. In the context of astrobiology, this expands the list of geomicrobiological processes that should be taken into account when considering the habitability of environments beyond Earth, and opens for investigation the possible biological traces left on these substrates as biosignatures.


Subject(s)
Acidithiobacillus , Mars , Acidithiobacillus/metabolism , Acidithiobacillus/growth & development , Oxidation-Reduction , Iron/metabolism , Hydrogen-Ion Concentration , Ferrous Compounds/metabolism , Minerals/metabolism , Exobiology , Extraterrestrial Environment , Carbonates , Ferric Compounds
2.
Sci Total Environ ; 946: 173560, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823710

ABSTRACT

Class A biosolids from water resource recovery facilities (WRRFs) are increasingly used as sustainable alternatives to synthetic fertilizers. However, the high phosphorus to nitrogen ratio in biosolids leads to a potential accumulation of phosphorus after repeated land applications. Extracting vivianite, an FeP mineral, prior to the final dewatering step in the biosolids treatment can reduce the P content in the resulting class A biosolids and achieve a P:N ratio closer to the 1:2 of synthetic fertilizers. Using ICP-MS, IC, UV-Vis colorimetric methods, Mössbauer spectroscopy, and SEM-EDX, a full-scale characterization of vivianite at the Blue Plains Advanced Wastewater Treatment Plant (AWTTP) was surveyed throughout the biosolids treatment train. Results showed that the vivianite-bound phosphorus in primary sludge thickening, before pre-dewatering, after thermal hydrolysis, and after anaerobic digestion corresponded to 8 %, 52 %, 40 %, and 49 % of the total phosphorus in the treatment influent. Similarly, the vivianite-bound iron concentration also corresponded to 8 %, 52 %, 40 %, and 49 % of the total iron present (from FeCl3 dosing), because the molar ratio between total iron and total incoming phosphorus was 1.5:1, which is the same stoichiometry of vivianite. Based on current P:N levels in the Class A biosolids at Blue Plains, a vivianite recovery target of 40 % to ideally 70 % is required in locations with high vivianite content to reach a P:N ratio in the resulting class A biosolid that matches synthetic fertilizers of 1:1.3 to 1:2, respectively. A financial analysis on recycling iron from the recovered vivianite had estimated that 14-25 % of Blue Plain's annual FeCl3 demand can potentially be met. Additionally, model simulations with Visual Minteq were used to evaluate the pre-treatment options that maximize vivianite recovery at different solids treatment train locations.

3.
J Environ Manage ; 360: 121110, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733846

ABSTRACT

Electro-fermentation (EF) has been extensively studied for recovering hydrogen and phosphorus from waste activated sludge (WAS), while was limited for the further application due to the low hydrogen yield and phosphorus recovery efficiency. This study proposed an efficient strategy for hydrogen and vivianite recovery from the simulated sludge fermentation liquid by sacrificial iron anode in EF. The optimum hydrogen productivity and the utilization efficiency of short chain fatty acids (SCFAs) reached 45.2 mmol/g COD and 77.6% at 5 d in pH 8. Phosphate removal efficiency achieved at 90.8% at 2 d and the high crystallinity and weight percentage of vivianite (84.8%) was obtained. The functional microbes, i.e., anaerobic fermentative bacteria, electrochemical active bacteria, homo-acetogens and iron-reducing bacteria were highly enriched and the inherent interaction between the microbial consortia and environmental variables was thoroughly explored. This work may provide a theoretical basis for energy/resource recovery from WAS in the further implementation.


Subject(s)
Electrodes , Fermentation , Hydrogen , Iron , Phosphates , Sewage , Hydrogen/metabolism , Iron/chemistry , Iron/metabolism , Phosphates/chemistry , Phosphates/metabolism , Waste Disposal, Fluid/methods , Phosphorus/chemistry , Phosphorus/metabolism
4.
Int J Biol Macromol ; 259(Pt 1): 128624, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061519

ABSTRACT

Damaging the outer layer of the body (the skin) has been a common issue for decades. Fabrication of nanofibrous membranes via the electrospinning technique for the sake of making the wound healing process more facile has caught a lot of interest. For this purpose, a polymeric scaffold of polylactic acid (PLA) was doped with nanoparticles with different concentrations of turmeric/hydroxyapatite/vivianite/graphene oxide. The obtained membrane was tested by XRD, SEM, FTIR, and XPS. The surface topography of the scaffold has experienced changes upon adding different concentrations of the nanoparticles. The contact angle was measured by water droplets. It accentuated change in CA starting from 43.9o for pure condition of PLA to 67.7o for PLA/turmeric/vivianite. The thermogravimetric analysis (TGA) test stated that the PLA scaffold features are thermally stable in relatively high-temperature conditions initiating from room temperature to about 300 °C, meeting the maximum loss in mass of about 5 %. The cell viability was carried out in prepared vitro for the sample which contains PLA/turmeric/vivianite/GO, it was elucidated that the IC50 was around 3060 µg/ml.


Subject(s)
Ferrous Compounds , Nanofibers , Nanoparticles , Phosphates , Tissue Scaffolds , Durapatite , Curcuma , Polyesters , Bandages
5.
Environ Res ; 242: 117667, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37980994

ABSTRACT

Vivianite (Fe3(PO4)2·8H2O), a sink for phosphorus, is a key mineralization product formed during the microbial reduction of phosphate-containing Fe(III) minerals in natural systems, and also in wastewater treatment where Fe(III)-minerals are used to remove phosphate. As biovivianite is a potentially useful Fe and P fertiliser, there is much interest in harnessing microbial biovivianite synthesis for circular economy applications. In this study, we investigated the factors that influence the formation of microbially-synthesized vivianite (biovivianite) under laboratory batch systems including the presence and absence of phosphate and electron shuttle, the buffer system, pH, and the type of Fe(III)-reducing bacteria (comparing Geobacter sulfurreducens and Shewanella putrefaciens). The rate of Fe(II) production, and its interactions with the residual Fe(III) and other oxyanions (e.g., phosphate and carbonate) were the main factors that controlled the rate and extent of biovivianite formation. Higher concentrations of phosphate (e.g., P/Fe = 1) in the presence of an electron shuttle, at an initial pH between 6 and 7, were needed for optimal biovivianite formation. Green rust, a key intermediate in biovivianite production, could be detected as an endpoint alongside vivianite and metavivianite (Fe2+Fe3+2(PO4)2.(OH)2.6H2O), in treatments with G. sulfurreducens and S. putrefaciens. However, XRD indicated that vivianite abundance was higher in experiments containing G. sulfurreducens, where it dominated. This study, therefore, shows that vivianite formation can be controlled to optimize yield during microbial processing of phosphate-loaded Fe(III) materials generated from water treatment processes.


Subject(s)
Ferric Compounds , Ferrous Compounds , Shewanella putrefaciens , Oxidation-Reduction , Phosphates , Minerals
6.
Sci Total Environ ; 912: 169520, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38141995

ABSTRACT

Phosphorus recovery is a vital element for the circular economy. Wastewater, especially sewage sludge, shows great potential for recovering phosphate in the form of vivianite. This work focuses on studying the iron, phosphorus, and sulfur interactions at full-scale wastewater treatment plants (Viikinmäki, Finland and Seine Aval, France) with the goal of identifying unit processes with a potential for vivianite formation. Concentrations of iron(III) and iron(II), phosphorus, and sulfur were used to evaluate the reduction of iron and the formation potential of vivianite. Mössbauer spectroscopy and X-ray diffraction (XRD) analysis were used to confirm the presence of vivianite in various locations on sludge lines. The results show that the vivianite formation potential increases as the molar Fe:P ratio increases, the anaerobic sludge retention time increases, and the sulfate concentration decreases. The digester is a prominent location for vivianite recovery, but not the only one. This work gives valuable insights into the dynamic interrelations of iron, phosphorus, and sulfur in full-scale conditions. These results will support the understanding of vivianite formation and pave the way for an alternative solution for vivianite recovery for example in plants that do not have an anaerobic digester.


Subject(s)
Ferric Compounds , Sewage , Sewage/chemistry , Waste Disposal, Fluid/methods , Phosphates/chemistry , Ferrous Compounds/chemistry , Iron/chemistry , Phosphorus/chemistry , Sulfur
7.
Chemosphere ; 345: 140500, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37866501

ABSTRACT

Chemically mediated recovery of phosphorous (P) as vivianite from the sludges generated by chemical phosphorus removal (CPR) is a potential means of enhancing sustainability of wastewater treatment. This study marks an initial attempt to explore direct P release and recovery from lab synthetic Fe-P sludge via reductive dissolution using ascorbic acid (AA) under acidic conditions. The effects of AA/Fe molar ratio, age of Fe-P sludge and pH were examined to find the optimum conditions for Fe-P reductive solubilization and vivianite precipitation. The performance of the reductive, chelating, and acidic effects of AA toward Fe-P sludge were evaluated by comparison with hydroxylamine (reducing agent), oxalic acid (chelating agent), and inorganic acids (pH effect) including HNO3, HCl, and H2SO4. Full solubilization of Fe-P sludge and reduction of Fe3+ were observed at pH values 3 and 4 for two Fe/AA molar ratios of 1:2 and 1:4. Sludge age (up to 11 days) did not affect the reductive solubilization of Fe-P with AA addition. The reductive dissolution of Fe-P sludge with hydroxylamine was negligible, while both P (95 ± 2%) and Fe3+ (90 ± 1%) were solubilized through non-reductive dissolution by oxalic acid treatment at an Fe/oxalic acid molar ratio 1:2 and a pH 3. With sludge treatment with inorganic acids at pH 3, P and Fe release was very low (<10%) compared to AA and oxalic acid treatment. After full solubilization of Fe-P sludge by AA treatment at pH 3 it was possible to recover the phosphorus and iron as vivianite by simple pH adjustment to pH 7; P and Fe recoveries of 88 ± 2% and 90 ± 1% respectively were achieved in this manner. XRD analysis, Fe/P molar ratio measurements, and magnetic attraction confirmed vivianite formation. PHREEQC modeling showed a reasonable agreement with the measured release of P and Fe from Fe-P sludge and vivianite formation.


Subject(s)
Phosphorus , Wastewater , Sewage , Waste Disposal, Fluid , Phosphates , Ascorbic Acid , Oxalic Acid , Hydroxylamines
8.
J Environ Manage ; 348: 119223, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37827085

ABSTRACT

The recovery of phosphorus (P) through vivianite crystallization offers a promising approach for resource utilization in wastewater treatment plants. However, this process encounters challenges in terms of small product size and low purity. The study aimed to assess the feasibility of using quartz sand as a seed material to enhance P recovery and vivianite crystal characteristics from anaerobic fermentation supernatant. Various factors, including seed dosage, seed size, Fe/P ratio, and pH, were systematically tested in batch experiments to assess their influence. Results demonstrated that the effect of seed enhancement on vivianite crystallization was more pronounced under higher seed dosages, smaller seed sizes, and lower pH or Fe/P ratio. The addition of seeds increased P recovery by 4.43% in the actual anaerobic fermentation supernatant and also augmented the average particle size of the recovered product from 19.57 to 39.28 µm. Moreover, introducing quartz sand as a seed material effectively reduced co-precipitation, leading to a notable 12.5% increase in the purity of the recovered vivianite compared to the non-seeded process. The formation of an ion adsorption layer on the surface of quartz sand facilitated crystal attachment and growth, significantly accelerating the vivianite crystallization rate and enhancing P recovery. The economic analysis focused on chemical costs further affirmed the economic viability of using quartz sand as a seed material for P recovery through vivianite crystallization, which provides valuable insights for future research and engineering applications.


Subject(s)
Phosphorus , Quartz , Fermentation , Sand , Anaerobiosis , Crystallization , Sewage , Waste Disposal, Fluid , Phosphates/chemistry , Ferrous Compounds/chemistry
9.
Water Res ; 245: 120621, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37717332

ABSTRACT

Vivianite recovery from wastewater driven by Geobacter is one of the promising approaches to address the challenges of phosphorus (P) resource shortage and eutrophication. However, the interfere of heavy metals which are prevalent in many actual wastewater with this process is rarely reported. In this study, we investigated the impact of heavy metals (i.e., Cu and Zn ions) on microbial activity, Fe reduction, P recovery efficiency, and their fate during Geobacter-induced vivianite recovery process. The experimental results showed that low and medium concentrations of Cu and Zn prolonged the Fe reduction and P recovery time but had little effect on the final P recovery efficiency. However, high concentrations of Cu and Zn ultimately inhibit vivianite formation. In addition, the different concentrations of Cu and Zn showed different effects on the morphology of the recovered vivianite. The migration of Cu and Zn was analysed by stepwise extraction of heavy metals in the vivianite. Medium concentrations of Cu and Zn were more likely to co-precipitate with vivianite, while adsorption was the primary mechanism at low concentrations. Furthermore, there were differences in the fate of Cu and Zn, and a competition mechanism was observed. Finally, we found that increasing the Fe/P ratio can significantly reduce the residues of heavy metals in vivianite. It also increased the adsorbed Cu and Zn proportion and reduced co-precipitation. These results provide insights into improving the efficiency of vivianite recovery and managing the environmental risks of heavy metal in the recovered product.

10.
Environ Sci Pollut Res Int ; 30(37): 86699-86740, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37438499

ABSTRACT

Nutrient-rich waste streams from domestic and industrial sources and the increasing application of synthetic fertilizers have resulted in a huge-scale influx of reactive nitrogen and phosphorus in the environment. The higher concentrations of these pollutants induce eutrophication and foster degradation of aquatic biodiversity. Besides, phosphorus being non-renewable resource is under the risk of rapid depletion. Hence, recovery and reuse of the phosphorus and nitrogen are necessary. Over the years, nutrient recovery, low-carbon energy, and sustainable bioremediation of wastewater have received significant interest. The conventional wastewater treatment technologies have higher energy demand and nutrient removal entails a major cost in the treatment process. For these issues, bio-electrochemical system (BES) has been considered as sustainable and environment friendly wastewater treatment technologies that utilize the energy contained in the wastewater so as to recovery nutrients and purify wastewater. Therefore, this article comprehensively focuses and critically analyzes the potential sources of nutrients, working mechanism of BES, and different nutrient recovery strategies to unlock the upscaling opportunities. Also, economic analysis was done to understand the technical feasibility and potential market value of recovered nutrients. Hence, this review article will be useful in establishing waste management policies and framework along with development of advanced configurations with major emphasis on nutrient recovery rather than removal from the waste stream.


Subject(s)
Phosphorus , Wastewater , Phosphorus/analysis , Nitrogen/analysis , Nutrients/analysis , Waste Disposal, Fluid/methods
11.
Sci Total Environ ; 897: 165416, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37433337

ABSTRACT

Recovery of phosphorus (P) via vivianite crystallization is an effective strategy to recycle resources from the anaerobic fermentation supernatant. However, the presence of different components in the anaerobic fermentation supernatant (e.g., polysaccharides and proteins) might alter conditions for optimal growth of vivianite crystals, resulting in distinct vivianite characteristics. In the present study, the effect of different components on vivianite crystallization was explored. Then, the reaction parameters (pH, Fe/P, and stirring speed) for P recovery from synthetic anaerobic fermentation supernatant as vivianite were optimized using response surface methodology, and the relationship between crystal properties and supersaturation was elucidated using a thermodynamic equilibrium model. The optimized values for pH, Fe/P, and stirring speed were found to be 7.8, 1.74, and 500 rpm respectively, resulting in 90.54 % P recovery efficiency. Moreover, the variation of reaction parameters did not change the crystalline structure of the recovered vivianite but influenced its morphology, size, and purity. Thermodynamic analysis suggested the saturation index (SI) of vivianite increased with increasing pH and Fe/P ratio, leading to a facilitative effect on vivianite crystallization. However, when the SI was >11, homogenous nucleation occurred so that the nucleation rate was much higher than the crystal growth rate, causing a smaller crystal size. The findings presented herein will be highly valued for the future large-scale application of the vivianite crystallization process for wastewater treatment.


Subject(s)
Phosphorus , Waste Disposal, Fluid , Fermentation , Crystallization , Anaerobiosis , Sewage , Phosphates , Ferrous Compounds
12.
J Environ Manage ; 341: 117997, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37141722

ABSTRACT

Contaminant removal from (waste)waters by magnetite is a promising technology. In the present experimental study, a magnetite recycled from the steel industry waste (zero-valent iron powder) was used to investigate the sorption of As, Sb and U in phosphate-free and -rich suspensions, i.e. as a remediation for the acidic phosphogypsum leachates derived from the phosphate fertilizer industry. The results showed up to 98% U removal under controlled pH conditions, while phosphate did not hinder this immobilisation. In contrast, the results confirmed the limited uptake of As and Sb oxyanions by magnetite in presence of phosphate as the competing anion, displaying only 7-11% removal, compared to 83-87% in the phosphate-free sorption experiments. To limit this wastewater problem, raw ZVI anaerobic oxidation was examined as mechanism to increase the pH and as a source of Fe2+ in a first step, and in a second step to remove phosphate via vivianite precipitation, therefore prior to the reaction with magnetite. UV-Vis, XRD and SEM-EDS showed that vivianite precipitation is feasible at pH > 4.5, mainly depending on the phosphate concentration. The higher the [PO43-], the lower is the pH at which vivianite precipitates and the higher the % removal of phosphate from solution. It is anticipated that an optimum 3-steps design with separate reactors controlling the conditions of ZVI oxidation, followed by vivianite precipitation and finally, reaction with magnetite, can achieve high contaminant uptake in field applications.


Subject(s)
Ferrosoferric Oxide , Water Pollutants, Chemical , Iron , Ferrous Compounds , Wastewater
13.
Sci Total Environ ; 884: 163850, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37137372

ABSTRACT

Carbon materials have been confirmed to promote phosphorus recovery as vivianite through enhancing dissimilatory iron reduction (DIR), which alleviates phosphorus crisis. Carbon black (CB) exhibits contradictory dual roles of cytotoxicity inducer and electron transfer bridge towards extracellular electron transfer (EET). Herein, the effect of CB on vivianite biosynthesis was investigated with dissimilatory iron reduction bacteria (DIRB) or sewage. With Geobacter sulfurreducens PCA as inoculum, the vivianite recovery efficiency increased accompanied with CB concentrations and enhanced by 39 % with 2000 mg·L-1 CB. G. sulfurreducens PCA activated the adaptation mechanism of secreting extracellular polymeric substance (EPS) to resist cytotoxicity of CB. While in sewage, the highest iron reduction efficiency of 64 % was obtained with 500 mg·L-1 CB, which was appropriate for functional bacterial selectivity like Proteobacteria and bio-transformation from Fe(III)-P to vivianite. The balance of CB's dual roles was regulated by inducing the adaptation of DIRB to gradient CB concentrations. This study provide an innovative perspective of carbon materials with dual roles for vivianite formation enhancement.


Subject(s)
Phosphorus , Soot , Sewage , Ferric Compounds , Extracellular Polymeric Substance Matrix , Waste Disposal, Fluid , Phosphates , Ferrous Compounds , Bacteria , Iron
14.
Environ Res ; 228: 115848, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37024026

ABSTRACT

With the shortage of phosphorus resources, the concept of phosphorus recovery from wastewater is generally proposed. Recently, phosphorus recovery from wastewater in the form of vivianite has been widely reported, which could be used as a slow-release fertilizer as well as the production of lithium iron phosphate for Li-ion batteries. In this study, chemical precipitation thermodynamic modeling was applied to evaluate the effect of solution factors on vivianite crystallization with actual phosphorus containing industrial wastewater. The modeling results showed that the solution pH influences the concentration of diverse ions, and the initial Fe2+ concentration affects the formation area of vivianite. The saturation index (SI) of vivianite increased with the initial Fe2+ concentration and Fe:P molar ratio. pH 7.0, initial Fe2+ concentration 500 mg/L and Fe:P molar ratio 1.50 were the optimal conditions for phosphorus recovery. Mineral Liberation Analyzer (MLA) accurately determined the purity of vivianite was 24.13%, indicating the feasibility of recovering vivianite from industrial wastewater. In addition, the cost analysis showed that the cost of recovering phosphorus by the vivianite process was 0.925 USD/kg P, which can produce high-value vivianite products and realize "turn waste into treasure".


Subject(s)
Phosphorus , Wastewater , Phosphates/chemistry , Ferrous Compounds , Waste Disposal, Fluid , Sewage
15.
Sci Total Environ ; 882: 163541, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37076005

ABSTRACT

Vivianite as a significant secondary mineral of dissimilatory iron reduction (DIR) exhibits marvelous potential to solve eutrophication as well as phosphorus shortage. Geobattery represents by natural organic matters (NOM) with rich functional groups influences bioreduction of natural iron mineral. Activated carbon (AC) which contains abundant functional groups is expected to serve as geobattery, but there remains insufficient understanding on its geobattery mechanism and how it benefits the vivianite formation. In this study, the charging and discharging cycle of "geobattery" AC enhanced extracellular electron transfer (EET) and vivianite recovery was demonstrated. Feeding with ferric citrate, AC addition increased vivianite formation efficiency by 141 %. The enhancement was attributed to the electron shuttle capacity of storage battery AC, which was contributed by the redox cycle between CO and O-H. Feeding with iron oxides, huge gap of redox potential between AC and Fe(III) minerals broke through the reduction energy barrier. Therefore the iron reduction efficiency of four Fe(III) minerals was accelerated to the same high level around 80 %, and the vivianite formation efficiency were increased by 104 %-256 % in pure culture batches. Except acting as storage battery, AC as a dry cell contributed 80 % to the whole enhancement towards iron reduction, in which O-H groups were the dominant driver. Due to the rechargeable nature and considerable electron exchange capacity, AC served as geobattery playing the role of both storage battery and dry cell on electron storaging and transferring to influence biogeochemical Fe cycle and vivianite recovery.

16.
Article in English | MEDLINE | ID: mdl-36901259

ABSTRACT

Vivianite plays an important role in alleviating the phosphorus crisis and phosphorus pollution. The dissimilatory iron reduction has been found to trigger the biosynthesis of vivianite in soil environments, but the mechanism behind this remains largely unexplored. Herein, by regulating the crystal surfaces of iron oxides, we explored the influence of different crystal surface structures on the synthesis of vivianite driven by microbial dissimilatory iron reduction. The results showed that different crystal faces significantly affect the reduction and dissolution of iron oxides by microorganisms and the subsequent formation of vivianite. In general, goethite is more easily reduced by Geobacter sulfurreducens than hematite. Compared with Hem_{100} and Goe_L{110}, Hem_{001} and Goe_H{110} have higher initial reduction rates (approximately 2.25 and 1.5 times, respectively) and final Fe(II) content (approximately 1.56 and 1.20 times, respectively). In addition, in the presence of sufficient PO43-, Fe(II) combined to produce phosphorus crystal products. The final phosphorus recoveries of Hem_{001} and Goe_H{110} systems were about 5.2 and 13.6%, which were 1.3 and 1.6 times of those of Hem_{100} and Goe_L{110}, respectively. Material characterization analyses indicated that these phosphorous crystal products are vivianite and that different iron oxide crystal surfaces significantly affected the size of the vivianite crystals. This study demonstrates that different crystal faces can affect the biological reduction dissolution of iron oxides and the secondary biological mineralization process driven by dissimilatory iron reduction.


Subject(s)
Ferric Compounds , Ferrous Compounds , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Phosphates/chemistry , Phosphorus , Iron/chemistry , Oxides , Oxidation-Reduction
17.
Water Res ; 233: 119729, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36801576

ABSTRACT

The performance and intrinsic mechanism of vivianite, a natural mineral containing structural Fe(II), for peroxymonosulfate (PMS) activation and pollutant degradation under dark conditions were comprehensively explored in this study. It was found that vivianite was able to efficiently activate PMS to degrade various pharmaceutical pollutants under dark conditions, in which the corresponding reaction rate constant of ciprofloxacin (CIP) degradation was 47- and 32-fold higher than that of magnetite and siderite, respectively. SO4·-, ·OH, Fe(IV) and electron-transfer processes were found in the vivianite-PMS system, while SO4·- was the main contributor to CIP degradation. Moreover, mechanistic explorations revealed that the Fe site on the surface of vivianite could bind PMS in the form of a bridge position, and thus vivianite could rapidly activate absorbed PMS due to its strong electron-donating ability. Additionally, it was illustrated that the used vivianite could be efficiently regenerated by either chemical or biological reduction. This study may provide an alternative application of vivianite in addition to phosphorus recovery from wastewater.


Subject(s)
Ferrous Compounds , Peroxides , Peroxides/chemistry , Phosphates , Ciprofloxacin
18.
Water Res ; 233: 119769, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36841170

ABSTRACT

A sustainable strategy for P recovery from sewage sludge via alkali-activated pyrolysis, water leaching and crystallization was proposed, and a high value-added product of vivianite was recovered. Effects of the type and dose of alkali activator on P transformation during sludge pyrolysis were investigated. 50 wt% dose of KHCO3 was determined as the alkali-activated pyrolysis condition. The content of water-soluble P (referred to as Water-P) in biochar derived from raw sludge (referred to as RS) and ferric sludge (Fenton's reagent conditioned sludge, referred to as FS) by KHCO3-activated pyrolysis at different temperatures was compared. The Fe element in the Fenton's reagent enhanced the content of Fe-bound P in the dewatered sludge, which was readily transformed into potassium phosphate during KHCO3-activated pyrolysis, thus increasing the Water-P content in the biochar derived from FS. The proportions of Water-P to total P in the biochar samples obtained by KHCO3-activated pyrolysis of RS and FS at 600 °C were 72.5% and 96.2%, respectively, which were notably higher than those in the biochar samples obtained by direct pyrolysis of RS and FS (3.5% and 0.5%), respectively. The water leaching solution of biochar obtained by KHCO3-activated pyrolysis of FS at 600 °C was purified to remove impurity elements, and vivianite with high purity was finally recovered by crystallization. A total P recovery efficiency of 88.08% was achieved throughout the process from sewage sludge to the final vivianite product. This study proposes a promising and sustainable approach for realizing the recovery of high value-added product vivianite from sewage sludge.


Subject(s)
Phosphorus , Sewage , Phosphorus/chemistry , Sewage/chemistry , Alkalies , Crystallization , Water , Pyrolysis , Charcoal/chemistry
19.
Bioresour Technol ; 371: 128608, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36640822

ABSTRACT

The waste activated sludge (WAS) of wastewater treatment system is often rich in phosphorus (P), which is a basic element of human life and could use up in the near future. This study proposed an integrated approach to efficiently recover P as vivianite from WAS and simultaneously enhance the sludge dewaterability. The raw WAS was first acidified using FeCl3, which was then fed to anaerobic fermenter for Fe3+ reduction. After fermentation, a technology named acid-elutriation was introduced to convert Fe and P from solid phase to liquid phase and concomitantly enhance the liquor-solid separation. Finally, vivianite was obtained via sludge eluate neutralization. The enhanced sludge dewaterability not only increases the recovery efficiency of Fe and P but also decreases the cost of sludge disposal.


Subject(s)
Sewage , Waste Disposal, Fluid , Humans , Phosphates , Ferrous Compounds , Phosphorus
20.
Environ Sci Technol ; 57(5): 2105-2117, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36688915

ABSTRACT

Vivianite (Fe3(PO4)2·8H2O) crystallization has attracted increasing attention as a promising approach for removing and recovering P from wastewaters. However, FeII is susceptible to oxygen with its oxidation inevitably influencing the crystallization of vivianite. In this study, the profile of vivianite crystallization in the presence of dissolved oxygen (DO) was investigated at pHs 5-7 in a continuous stirred-tank reactor. It is found that the influence of DO on vivianite crystallization was highly pH-related. At pH 5, the low rate of FeII oxidation at all of the investigated DO of 0-5 mg/L and the low degree of vivianite supersaturation resulted in slow crystallization with the product being highly crystalline vivianite, but the P removal efficiency was only 30-40%. The removal of P from the solution was substantially more effective (to >90%) in the DO-removed reactors at pH 6 and 7, whereas the efficiencies of P removal and especially recovery decreased by 10-20% when FeII oxidation became more severe at DO concentrations >2.5 mg/L (except at pH 6 with 2.5 mg/L DO). The elevated degree of vivianite supersaturation and enhanced rate and extent of FeII oxidation at the higher pHs led to decreases in the size and homogeneity of the products. At the same pH, amorphous ferric oxyhydroxide (AFO)─the product of FeII oxidation and FeIII hydrolysis─interferes with vivianite crystallization with the induction of aggregation of crystal fines by AFO, leading to increases in the size of the obtained solids.


Subject(s)
Ferric Compounds , Phosphorus , Ferric Compounds/chemistry , Phosphorus/chemistry , Crystallization , Waste Disposal, Fluid/methods , Sewage , Phosphates/chemistry , Ferrous Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...