Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Methods Mol Biol ; 2745: 91-102, 2024.
Article in English | MEDLINE | ID: mdl-38060181

ABSTRACT

Fluorescent lifetime imaging (FLIM) is a powerful tool for visualizing physiological parameters in vivo. We present here a 3-dye strategy for mapping bioelectric patterns in living Xenopus laevis embryos leveraging the quantitative power of fluorescent lifetime imaging. We discuss a general strategy for disentangling physiological artifacts from true bioelectric signals, a method for dye delivery via transcardial injection, and how to visualize and interpret the fluorescent lifetime of the dyes in vivo.


Subject(s)
Coloring Agents , Electrophysiological Phenomena , Animals , Membrane Potentials/physiology , Xenopus laevis/physiology , Fluorescent Dyes , Optical Imaging/methods
2.
Bioelectricity ; 3(1): 42-67, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-34476377

ABSTRACT

Developmental bioelectricity is the study of the endogenous role of bioelectrical signaling in all cell types. Resting potentials and other aspects of ionic cell physiology are known to be important regulatory parameters in embryogenesis, regeneration, and cancer. However, relevant quantitative measurement and genetic phenotyping data are distributed throughout wide-ranging literature, hampering experimental design and hypothesis generation. Here, we analyze published studies on bioelectrics and transcriptomic and genomic/phenotypic databases to provide a novel synthesis of what is known in three important aspects of bioelectrics research. First, we provide a comprehensive list of channelopathies-ion channel and pump gene mutations-in a range of important model systems with developmental patterning phenotypes, illustrating the breadth of channel types, tissues, and phyla (including man) in which bioelectric signaling is a critical endogenous aspect of embryogenesis. Second, we perform a novel bioinformatic analysis of transcriptomic data during regeneration in diverse taxa that reveals an electrogenic protein to be the one common factor specifically expressed in regeneration blastemas across Kingdoms. Finally, we analyze data on distinct Vmem signatures in normal and cancer cells, revealing a specific bioelectrical signature corresponding to some types of malignancies. These analyses shed light on fundamental questions in developmental bioelectricity and suggest new avenues for research in this exciting field.

3.
Article in English | MEDLINE | ID: mdl-32714900

ABSTRACT

Most living organisms possess varying degrees of regenerative capabilities but how these regenerative processes are controlled is still poorly understood. Naturally occurring bioelectric voltages (like Vmem) are thought to be playing instructive role in tissue regeneration, as well as embryonic development. The different distribution of ions on the either side of the cell membrane results in intra- and extra-cellular voltage differences, known as membrane potential or Vmem. The relationship between Vmem and cell physiology is conserved in a wide range of cell types and suggests that Vmem regulation is a fundamental control mechanism for regeneration related processes e.g., proliferation and differentiation. In the present study we measured Vmem in three different cell types (human osteogenic sarcoma cell line (OSC), rat bone marrow derived mesenchymal stem cells (BM-MSC), and rat dermal fibroblasts) and characterized the relationship between their Vmem and proliferation. In order to find out if Vmem controls proliferation, or visa-versa, we blocked and then unblocked Na+/K+-exchanging ATPase using ouabain and measured the proliferation. Our results demonstrate that Vmem can be pharmacologically manipulated to control proliferation in certain cell types like BM-MSC. Taken together, it is clear that control of bioelectrical properties in non-excitable cells could prove to be potentially a useful tool in regenerative medicine efforts.

4.
PeerJ ; 7: e6341, 2019.
Article in English | MEDLINE | ID: mdl-30775170

ABSTRACT

BACKGROUND: Electrochemical signals play an important role in cell communication and behavior. Electrically charged ions transported across cell membranes maintain an electrochemical imbalance that gives rise to bioelectric signaling, called membrane potential or Vmem. Vmem plays a key role in numerous inter- and intracellular functions that regulate cell behaviors like proliferation, differentiation and migration, all playing a critical role in embryonic development, healing, and regeneration. METHODS: With the goal of analyzing the changes in Vmem during cell proliferation and differentiation, here we used direct current electrical stimulation (EStim) to promote cell proliferation and differentiation and simultaneously tracked the corresponding changes in Vmem in adipose derived mesenchymal stem cells (AT-MSC). RESULTS: We found that EStim caused increased AT-MSC proliferation that corresponded to Vmem depolarization and increased osteogenic differentiation that corresponded to Vmem hyperpolarization. Taken together, this shows that Vmem changes associated with EStim induced cell proliferation and differentiation can be accurately tracked during these important cell functions. Using this tool to monitor Vmem changes associated with these important cell behaviors we hope to learn more about how these electrochemical cues regulate cell function with the ultimate goal of developing new EStim based treatments capable of controlling healing and regeneration.

5.
Front Physiol ; 8: 627, 2017.
Article in English | MEDLINE | ID: mdl-28928669

ABSTRACT

Natural endogenous voltage gradients not only predict and correlate with growth and development but also drive wound healing and regeneration processes. This review summarizes the existing literature for the nature, sources, and transmission of information-bearing bioelectric signals involved in controlling wound healing and regeneration in animals, humans, and plants. It emerges that some bioelectric characteristics occur ubiquitously in a range of animal and plant species. However, the limits of similarities are probed to give a realistic assessment of future areas to be explored. Major gaps remain in our knowledge of the mechanistic basis for these processes, on which regenerative therapies ultimately depend. In relation to this, it is concluded that the mapping of voltage patterns and the processes generating them is a promising future research focus, to probe three aspects: the role of wound/regeneration currents in relation to morphology; the role of endogenous flux changes in driving wound healing and regeneration; and the mapping of patterns in organisms of extreme longevity, in contrast with the aberrant voltage patterns underlying impaired healing, to inform interventions aimed at restoring them.

6.
Regeneration (Oxf) ; 3(1): 3-25, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27499876

ABSTRACT

Endogenous bioelectric signaling via changes in cellular resting potential (V mem) is a key regulator of patterning during regeneration and embryogenesis in numerous model systems. Depolarization of V mem has been functionally implicated in dedifferentiation, tumorigenesis, anatomical re-specification, and appendage regeneration. However, no unbiased analyses have been performed to understand genome-wide transcriptional responses to V mem change in vivo. Moreover, it is unknown which genes or gene networks represent conserved targets of bioelectrical signaling across different patterning contexts and species. Here, we use microarray analysis to comparatively analyze transcriptional responses to V mem depolarization. We compare the response of the transcriptome during embryogenesis (Xenopus development), regeneration (axolotl regeneration), and stem cell differentiation (human mesenchymal stem cells in culture) to identify common networks across model species that are associated with depolarization. Both subnetwork enrichment and PANTHER analyses identified a number of key genetic modules as targets of V mem change, and also revealed important (well-conserved) commonalities in bioelectric signal transduction, despite highly diverse experimental contexts and species. Depolarization regulates specific transcriptional networks across all three germ layers (ectoderm, mesoderm, and endoderm) such as cell differentiation and apoptosis, and this information will be used for developing mechanistic models of bioelectric regulation of patterning. Moreover, our analysis reveals that V mem change regulates transcripts related to important disease pathways such as cancer and neurodegeneration, which may represent novel targets for emerging electroceutical therapies.

7.
Oncotarget ; 7(15): 19575-88, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-26988909

ABSTRACT

It has long been known that the resting potential of tumor cells is depolarized relative to their normal counterparts. More recent work has provided evidence that resting potential is not just a readout of cell state: it regulates cell behavior as well. Thus, the ability to control resting potential in vivo would provide a powerful new tool for the study and treatment of tumors, a tool capable of revealing living-state physiological information impossible to obtain using molecular tools applied to isolated cell components. Here we describe the first use of optogenetics to manipulate ion-flux mediated regulation of membrane potential specifically to prevent and cause regression of oncogene-induced tumors. Injection of mutant-KRAS mRNA induces tumor-like structures with many documented similarities to tumors, in Xenopus tadpoles. We show that expression and activation of either ChR2D156A, a blue-light activated cation channel, or Arch, a green-light activated proton pump, both of which hyperpolarize cells, significantly lowers the incidence of KRAS tumor formation. Excitingly, we also demonstrate that activation of co-expressed light-activated ion translocators after tumor formation significantly increases the frequency with which the tumors regress in a process called normalization. These data demonstrate an optogenetic approach to dissect the biophysics of cancer. Moreover, they provide proof-of-principle for a novel class of interventions, directed at regulating cell state by targeting physiological regulators that can over-ride the presence of mutations.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/radiation effects , Light , Optogenetics/methods , Animals , Antineoplastic Agents/pharmacology , Archaeal Proteins/genetics , Cell Transformation, Neoplastic/drug effects , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/radiation effects , Humans , Membrane Potentials/drug effects , Membrane Potentials/genetics , Membrane Potentials/radiation effects , Mutation , Optogenetics/instrumentation , Proto-Oncogene Proteins p21(ras)/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rhodopsin/genetics , Xenopus laevis
8.
J Ethnopharmacol ; 150(1): 85-94, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-23978659

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Mongolian medicine (TMM) uses preparations from herbs as one form of medication for the treatment of a diversity of diseases including diabetes mellitus (DM). We evaluated the effect of extracts from the plant Leonurus sibiricus L. (LS), used in TMM to treat typical symptoms of type 2 DM, on insulin secretion, electrophysiological properties, intracellular calcium concentration and cell proliferation of INS-1E insulinoma cells under standard cell culture conditions (SCC; 11.1mM glucose). MATERIALS AND METHODS: Insulin secretion was measured by ELISA, electrical properties were assessed by whole cell patch clamping, intracellular calcium concentration (Cai) by Fluo-4 time lapse imaging, insulin receptor expression was verified by RT-PCR and cell proliferation assessed by CellTiter-Glo® cell viability assay. RESULTS: Insulin released from INS-1E cells into the culture medium over 24h was significantly increased in presence of 500 mg/L aqueous LS extract (LS OWE) as well as methanolic LS extract (LS MeOH/H2O) but not in the presence of the butanol-soluble extract (LS MeOH/BuOH). Acute application of LS OWE resulted in a depolarization of the cell membrane potential paralleled by an initial increase and subsequent decline and silencing of action potential frequency, by KATP channel inhibition, persisting depolarization and an increase in Cai. The electrophysiological effects were comparable to those of 100 µM tolbutamide, which, however failed to elevate insulin secretion under SCC. Furthermore all LS extracts stimulated INS-1E cell proliferation. CONCLUSIONS: The finding that extracts from Leonurus sibiricus L. enhance insulin secretion and/or foster cell proliferation may provide possible explanations for the underlying therapeutic principles in the empirical use of LS-containing formulations in DM and DM-related disorders as applied in TMM.


Subject(s)
Hypoglycemic Agents/pharmacology , Insulin/metabolism , Leonurus , Plant Extracts/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Insulin Secretion , Insulinoma , Medicine, Mongolian Traditional , Pancreatic Neoplasms , Rats
SELECTION OF CITATIONS
SEARCH DETAIL