Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 250
Filter
1.
Nat Prod Res ; : 1-7, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988304

ABSTRACT

The genus Verbascum L, belonging to the Scrophulariaceae family, is native to Europe, Africa and Asia. The use of plants of this genus in the popular medicine has been largely reported. In the present study the chemical composition of the essential oil from aerial parts of Verbascum creticum (L.) Cav., a rare plant, never previously investigated, known for its anti-inflammatory properties of the intestinal mucosa and in the treatment of acute and chronic catarrhs, growing in Algeria, Baleares, Calabria, Sardinia, Sicily, Spain and Tunisia, was evaluated by GC-MS. The main components of its essential oil (Vc) were 1-octen-3-ol (23.9%), cis-3-hexen-1-ol (9.4%), phenylethanal (4.6%), and 2-methyl-benzofurane (4.6%). The comparison with all the other studied essential oils of genus Verbascum is discussed. Furthermore, a review of the use of the Verbascum species in the popular medicine has been carried out.

2.
Food Chem X ; 23: 101564, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39007119

ABSTRACT

Osmanthus fragrans is an evergreen shrub with a pleasant fragrance and a wide range of applications in many fields. The condensed hydrolat obtained during the drying process of its fresh flowers was collected in a low-temperature vacuum environment and its sensory evaluation and volatile components were studied. The main aroma compounds in Osmanthus fragrans were dihydro-ß-ionone, nonanal, ß-cyclocitral, ß-ionone, benzaldehyde, α-ionone, and 6-methyl-5-hepten-2-one, whose contents were used as the main evaluation criteria, and the hydrolats obtained under different scenting and drying times were compared. This process can effectively collect the aroma components in Osmanthus fragrans and the optimal drying conditions were 50 °C for 5 h. The hydrolat was used to provide the scent of osmanthus black tea, which had a fresher and mellower taste, while the fragrance of osmanthus was abundant. These results show that osmanthus hydrolat can be used to provide the scent of floral black tea. Chemical compounds studied in this article: (-)-Catechin (PubChem CID: 1203); (-)-epigallocatechin gallate (PubChem CID: 65064); (-)-epicatechin gallate (PubChem CID: 367141); (-)-epigallocatechin (PubChem CID: 72277); (-)-epicatechin (PubChem CID: 72276); (-)-gallocatechin gallate (PubChem CID: 199472); (-)-catechin gallate (PubChem CID: 6419835); (-)-gallocatechin (PubChem CID: 9882981).

3.
Food Chem ; 458: 140293, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38970959

ABSTRACT

The present study aimed to determine microbial community, short-chain fatty acids (SCFAs), and volatilome of Bulang pickled tea during fermentation. Sequencing of 16S rRNA and ITS revealed that Bualng pickled tea was dominated by Lactobacillus plantarum, unclassified Enterobacteriaceae, unclassified Debaryomyces, Candida metapsilosis, Cladosporium sphaerospermum, and unclassified Aspergillus. The overall contents of SCFAs increased, with acetic acid showing the highest content. A total of 398 differential volatile metabolites were detected using differential metabolomics analysis. Out of these different volatile compounds, ten key volatile compounds including (Z)-4-heptenal, 1-(2-thienyl)-ethanone, 5-methyl-(E)-2-hepten-4-one, 2-ethoxy-3-methylpyrazine, p-cresol, 2-methoxy-phenol, ethy-4-methylvalerate, 3-ethyl-phenol, p-menthene-8-thiol, and 2-s-butyl-3-methoxypyrazinewere were screened based on odor activity value (OAV). The Spearman correlation analysis showed a high correlation of SCFAs and volatile compounds with microorganisms, especially L. plantarum and C. sphaerospermum. This study provided a theoretical basis for elucidating the flavor quality formation mechanism of Bulang pickled tea.


Subject(s)
Bacteria , Fermentation , Tea , Volatile Organic Compounds , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Tea/chemistry , Tea/microbiology , Tea/metabolism , Microbiota , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/analysis , Camellia sinensis/metabolism , Camellia sinensis/chemistry , Camellia sinensis/microbiology , Fungi/metabolism , Fungi/classification , Fungi/genetics , Odorants/analysis
4.
Plants (Basel) ; 13(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38931144

ABSTRACT

Sonchus oleraceus L. is a leafy vegetable that is usually consumed in the area of the Mediterranean and is a frequently used traditional herb to treat a variety of ailments. Previous studies deduced the potent antioxidant and cytotoxic functions of the different extracts and isolated compounds from S. oleraceus. The current study represents the first instance of chemical profiling and bioactivities of the extracted essential oil (EO) of S. oleraceus. The present investigation set out to identify the chemical components of this EO by means of Gas Chromatography with Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (G004-MS) techniques; assess the oil's antioxidant potencies through 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate (ABTS) assays; and evaluate the oil's cytotoxic impact against HepG2 cancer cell lines. The GC-MS chemical profiling revealed the identification of 23 components representing 97.43% of the total oil mass within abundant cyclic ketones (20.15%), nonterpenoidial hydrocarbons (28.77%), and sesquiterpenes (42.19%). The main components were n-nonadecane (28.77%), trans-caryophyllene (23.73%), trans-methyl dihydrojasmonate (19.55%), and cis-cadina-1,4-diene (9.44%). In a dose-dependent manner, this EO demonstrated antioxidant capacities on DPPH and ABTS, with IC50 values of 609.35 and 804.16 µg/mL, respectively, compared to ascorbic acid. Using doxorubicin as a reference therapy, the MTT assay findings revealed that this oil had remarkable inhibitory effects on the proliferation of HepG2 cancer cell lines, with an IC50 of 136.02 µg/mL. More studies were recommended for further investigation of new biological roles for this oil and its main components, along with the construction of action mechanisms based on chemical components.

5.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893586

ABSTRACT

Hemerocallis L. possesses abundant germplasm resources and holds significant value in terms of ornamental, edible, and medicinal aspects. However, the quality characteristics vary significantly depending on different varieties. Selection of a high-quality variety with a characteristic aroma can increase the economic value of Hemerocallis flowers. The analytic hierarchy process (AHP) is an effective decision-making method for comparing and evaluating multiple characteristic dimensions. By applying AHP, the aromatic character of 60 varieties of Hemerocallis flowers were analyzed and evaluated in the present study. Headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) was employed to identify volatile components in Hemerocallis flowers. Thirteen volatile components were found to contribute to the aroma of Hemerocallis flowers, which helps in assessing their potential applications in essential oil, aromatherapy, and medical treatment. These components include 2-phenylethanol, geraniol, linalool, nonanal, decanal, (E)-ß-ocimene, α-farnesene, indole, nerolidol, 3-furanmethanol, 3-carene, benzaldehyde and benzenemethanol. The varieties with better aromatic potential can be selected from a large amount of data using an AHP model. This study provides a comprehensive understanding of the characteristics of the aroma components in Hemerocallis flowers, offers guidance for breeding, and enhances the economic value of Hemerocallis flowers.


Subject(s)
Flowers , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Solid Phase Microextraction/methods , Flowers/chemistry , Odorants/analysis , Acyclic Monoterpenes/chemistry , Acyclic Monoterpenes/analysis , Oils, Volatile/chemistry , Oils, Volatile/analysis , Sesquiterpenes/analysis , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/analysis , Phenylethyl Alcohol/chemistry , Alkenes , Indoles
6.
Food Chem ; 455: 139808, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38897071

ABSTRACT

The study investigated the lipid oxidation of pumpkin seed kernels (PSK) under different storage conditions (room temperature, vacuum-room temperature, refrigeration, and vacuum-refrigeration) using HPLC-MS and GC-MS. Experimental results found the vacuum-refrigeration group showed the lowest PV (0.24 g/100 g), diene (8.68), hexanal (356.64 ± 16.06 ng/g), and nonanal (132.05 ± 8.38 ng/g) after a 9-month storage. A total of 586 lipids, including 6 classes and 27 subclasses, were detected, 46 of which showed significant differences. Refrigeration samples had the highest diacylglycerol content, while room temperature samples demonstrated the highest triacylglycerol and phosphatidylcholine content. Differential lipid metabolite analyses indicated that storage conditions mainly affected glycerolipid metabolism, glycerophospholipid metabolism, and sphingolipid metabolism pathways in PSK, while glycerolipid and glycerophospholipid metabolism were still dominant. It revealed that refrigeration was more effective than vacuum in inhibiting the oxidation of PSK. These findings could offer valuable references for the storage, transportation, preservation, and the development and utilization of PSK.


Subject(s)
Cucurbita , Food Storage , Lipidomics , Oxidation-Reduction , Seeds , Cucurbita/chemistry , Cucurbita/metabolism , Seeds/chemistry , Seeds/metabolism , Lipids/chemistry , Lipids/analysis , Gas Chromatography-Mass Spectrometry , Lipid Metabolism , Chromatography, High Pressure Liquid
7.
Foods ; 13(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928807

ABSTRACT

Chamomile has become one of the world's most popular herbal teas due to its unique properties. Chamomile is widely used in dietary supplements, cosmetics, and herbal products. This study aimed to investigate the volatile aromatic components in chamomile. Two analytical techniques, gas chromatography-mass spectrometry (GC-MS) and an ultra-fast gas chromatography electronic nose, were employed to examine samples from Xinjiang (XJ), Shandong (SD), and Hebei (HB) in China, and imported samples from Germany (GER). The results revealed that all chamomile samples contained specific sesquiterpene compounds, including α-bisabolol, bisabolol oxide, bisabolone oxide, and chamazulene. Additionally, forty potential aroma components were identified by the electronic nose. The primary odor components of chamomile were characterized by fruity and spicy notes. The primary differences in the components of chamomile oil were identified as (E)-ß-farnesene, chamazulene, α-bisabolol oxide B, spathulenol and α-bisabolone oxide A. Significant differences in aroma compounds included geosmin, butanoic acid, 2-butene, norfuraneol, γ-terpinene. This study demonstrates that GC-MS and the ultra-fast gas chromatography electronic nose can preliminarily distinguish chamomile from different areas, providing a method and guidance for the selection of origin and sensory evaluation of chamomile. The current study is limited by the sample size and it provides preliminary conclusions. Future studies with a larger sample size are warranted to further improve these findings.

8.
Nat Prod Res ; : 1-6, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38759214

ABSTRACT

The genus Thapsia L., belonging to the Scandiceae tribe of the Apiaceae family, is mainly distributed in the Mediterranean area, North Africa, and the Iberian Peninsula. The use of plants of this genus in popular medicine dates back to the age of ancient Greeks. In the present study the chemical composition of the essential oil from aerial parts of Thapsia garganica subsp. messanensis (Guss.) Brullo & al., an endemic plant of Sicily, never previously investigated, was evaluated by GC-MS. The main components of its essential oil (Tgm) were 1,4-dimethylazulene (17.0%), chamazulene (10.1%), 3-methyl nonane (7.0%), and butyl heptanoate (4.6%). The comparison with all the other studied essential oils of the genus Thapsia is discussed.

9.
Foods ; 13(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38790798

ABSTRACT

It is known that ginger oleoresin contains various active components and possesses bioactivities. In this study, ginger oleoresin from Chinese ginger (Zingiber officinale var. roscoe) was extracted using a CO2 supercritical fluid extraction method with a 0.52% yield (g/g), based on dry weights. Zingiberene with a content of 51.6 mg/g was the main volatile in the ginger oleoresin. In total, 17 phenolic compounds were identified, and their contents were calculated as 587.54 mg/g. Among them, a new gingertriol was detected in the Z. officinale. Antioxidant activity tests showed that the ginger oleoresin and six gingerols exhibited strong scavenging free radical activities, and the zingerone exhibited the strongest antioxidant activity, with IC50 values of 11.3 µg/mL for the 2, 2'-diphenyl-1-picrylhydrazyl radical and 19.0 µg/mL for the 2, 2'-amino-di (2-ethyl-benzothiazoline sulphonic acid-6) ammonium salt radical cation, comparable to vitamin C. Ginger oleoresin inhibits HGC-27 human gastric cancer cell proliferation at a rate of 4.05~41.69% and induces cell apoptosis at a rate of 10.4~20.9%. The Western blot result demonstrated that the AKT signaling pathway has the potential mechanism of ginger oleoresin acting on HGC-27 cells. The anticancer potential of the gingerol standards on HGC-27 cells followed the order of 8-gingerol > 6-gingerol > 10-gingerol > zingerone. The different antioxidant and anticancer potentials of the ginger phenolic compounds could be attributed to the presence of hydroxyl groups in the unbranched 1-alkyl chain and the length of carbon side chain. Consequently, ginger oleoresin shows substantial antioxidant and anticancer therapeutic potential and can be used for novel food-drug development.

10.
J Sci Food Agric ; 104(10): 6330-6341, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38563388

ABSTRACT

BACKGROUND: Biogenic amines (BA) are hazardous components in Huangjiu (HJ). To ensure the quality of Dangshen Huangjiu (DSHJ), an orthogonal experiment L9 (33) was proposed to optimize the process by the main brewing factors (pre-fermentation temperature, pre- and post-fermentation time) that may affect BA and functional factors in DSHJ. DSHJ was produced with low BA content and high functional factors. Gas chromatography-ion mobility spectrometry combined with a multivariate statistical method (GC-IMS-MSM) was used to analyze the volatile components in the brewing process of DSHJ. RESULTS: The optimum brewing process parameters of DSHJ were as follows: pre-fermentation temperature, 28 °C; pre-fermentation time, 9 days; post-fermentation time, 18 days. The average content of BA in DSHJ was 33.12 mg L-1, and the sensory score, total phenol content and DPPH free radical scavenging rate of DSHJ were significantly higher than those of HJ. A total of 14 esters, 7 acids, 7 alcohols, 1 ketone, 5 aldehydes and 1 pyrazine in DSHJ and HJ were identified by GC-IMS. There were no significant differences (P > 0.05) in DSHJ and HJ in the soaking rice and saccharification stage. 11 components, such as ethyl acetate, and 12 components, such as acetic acid, were the different components of HJ and DSHJ in pre-fermentation and post-fermentation stages, respectively. In the post-fermentation stage, the contents of 8 components in DSHJ such as ethyl acetate were higher than in HJ. CONCLUSION: The preparation process parameters of DSHJ optimized by orthogonal experiments can ensure that DSHJ has the advantages of low BA content, high total phenol content and good antioxidant activity. Sensory score and GC-IMS-MSM analysis found that DSHJ prepared using the optimal process had the characteristics of good taste and rich aroma. © 2024 Society of Chemical Industry.


Subject(s)
Biogenic Amines , Fermentation , Biogenic Amines/analysis , Biogenic Amines/chemistry , Taste , Humans , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry , Angelica sinensis/chemistry , Fruit/chemistry , Phenols/chemistry , Phenols/analysis , Odorants/analysis
11.
Foods ; 13(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38672922

ABSTRACT

SO2 plays an important role in wine fermentation, and its effects on wine aroma are complex and diverse. In order to investigate the effects of different SO2 additions on the fermentation process, quality, and flavor of 'Beibinghong' ice wine, we fermented 'Beibinghong' picked in 2019. We examined the fermentation rate, basic physicochemical properties, and volatile aroma compound concentrations of 'Beibinghong' ice wine under different SO2 additions and constructed a fingerprint of volatile compounds in ice wine. The results showed that 44 typical volatile compounds in 'Beibinghong' ice wine were identified and quantified. The OAV and VIP values were calculated using the threshold values of each volatile compound, and t the effect of SO2 on the volatile compounds of 'Beibinghong' ice wine might be related to five aroma compounds: ethyl butyrate, ethyl propionate, ethyl 3-methyl butyrate-M, ethyl 3-methyl butyrate-D, and 3-methyl butyraldehyde. Tasting of 'Beibinghong' ice wine at different SO2 additions revealed that the overall flavor of 'Beibinghong' ice wine was the highest at an SO2 addition level of 30 mg/L. An SO2 addition level of 30 mg/L was the optimal addition level. The results of this study are of great significance for understanding the effect of SO2 on the fermentation of 'Beibinghong' ice wine.

12.
Molecules ; 29(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38675601

ABSTRACT

To date, there has been limited research on the interactive effects of yeast and lactic acid bacteria (LAB) on the sensory qualities of navel orange wine. In this study, using Jintang navel orange juice as the raw material, multi-microbial fermentation was conducted with Saccharomyces cerevisiae SC-125 and Angel yeast SY, as well as Lactiplantibacillus plantarum BC114. Single yeast and co-fermentation with Lactiplantibacillus plantarum were used as the control groups. The research aimed to investigate the physicochemical parameters of navel orange wine during fermentation. Additionally, headspace solid-phase microextraction gas chromatography-mass spectrometry (HP-SPME-GC-MS) was employed to determine and analyze the types and levels of flavor compounds in the navel orange wines produced through the different fermentation methods. The co-fermentation using the three strains significantly enhanced both the quantity and variety of volatile compounds in the navel orange wine, concomitant with heightened total phenol and flavonoid levels. Furthermore, a notable improvement was observed in the free radical scavenging activity. A sensory evaluation was carried out to analyze the differences among the various navel orange wines, shedding light on the impact of different wine yeasts and co-fermentation with LAB on the quality of navel orange wines.


Subject(s)
Citrus sinensis , Fermentation , Saccharomyces cerevisiae , Volatile Organic Compounds , Wine , Wine/analysis , Saccharomyces cerevisiae/metabolism , Citrus sinensis/chemistry , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry , Flavoring Agents/analysis , Flavoring Agents/chemistry
13.
Molecules ; 29(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38474653

ABSTRACT

Matteuccia struthiopteris is one of the most globally consumed edible ferns and widely used in folk medicine. Reports mainly focus on young fronds and the rhizome which are common edible medicinal parts. However, there are few detailed reports on other parts. Therefore, the volatile components of different parts based on HS-SPME-GC-MS were identified, and total flavonoid contents, antioxidant activities and acetylcholinesterase inhibitory activities were compared in order to reveal the difference of volatile components and potential medicinal value of different parts. The results showed that total flavonoid contents, antioxidant activities and volatile components of different parts were obviously different. The crozier exhibited the strongest antioxidant activities, but only underground parts exhibited a dose-dependent inhibition potential against AChE. Common volatile compounds were furfural and 2-furancarboxaldehyde, 5-methyl-. In addition, it was found that some volatile components from adventitious root, trophophyll, sporophyll and petiole were important ingredients in food, cosmetics, industrial manufacturing and pharmaceutical applications.


Subject(s)
Acetylcholinesterase , Antioxidants , Gas Chromatography-Mass Spectrometry/methods , Flavonoids , Solid Phase Microextraction/methods
14.
J Food Sci Technol ; 61(4): 651-674, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38410265

ABSTRACT

To investigate suitable processing methods for improve the flavor while maintaining quality, hellgrammites were subjected to fifteen different processing methods. The samples were tested by sensory evaluation and were analyzed using HS-SPME-GC-MS. The sensory evaluation revealed that five methods for head and chest removal, three wine-fried methods, and three vinegar-roasting methods significantly reduced the levels of hexanal (3129.05 ± 45.77 µg/kg) and heptanal (436.72 ± 7.42 µg/kg), compounds responsible for fishy and earthy flavors, compared to raw samples. The latter two methods exhibited increased aroma flavor. PCA and OPLS-DA analyses suggested that acids, alcohols, and esters played a crucial role in flavor modification. Notably, vinegar-roasting methods demonstrated the highest acid content and had a substantial impact on volatile compounds. Additionally, boiling methods effectively reduced the levels of hazardous compounds, such as toluene and 1,3-Dimethyl-benzene. However, other methods did not exhibit similar efficacy in reducing hazardous compounds. The accumulation of hazardous compounds showed a decreasing trend in the whole insect, head removal, and head and chest removal groups. Moreover, the relative odor activity value consistently identified aldehyde compounds, including hexanal and heptanal, as the main contributors to aroma. Overall, boiling and head and chest removal procedures were suggested as precautionary measures during the initial processing of hellgrammites-based food products. The vinegar-roasting and wine-fried methods could be employed to impart desired flavors, aligning with consumers' preferences. These findings lay the foundation for standardizing processing techniques and ensuring the quality control of products derived from hellgrammites.

15.
Food Res Int ; 176: 113823, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163686

ABSTRACT

The efficacy of plasma-activated water (PAW) as a chemical-free and environmentally friendly preservative has been documented for a variety of foods, but the onset of lipid oxidation induced by plasma-reactive species has been less extensively studied. In this work, global indices (peroxide value, UV specific absorbance) and direct analytical determinations of volatile and non-volatile oxidation products were performed on sardine lipids extracted from fish fillets immersed in PAW (treatments) and distilled water (controls) for 10-30 min. Evidence of PAW-induced lipid oxidation was provided by higher UV specific absorbances and higher levels of C5-C9 secondary volatile oxidation products in the treated samples. However, the degree of fatty acid oxidation was not sufficient to cause a significant reduction in nutritionally valuable eicosapentaenoic acid and docosahexaenoic acid. Twelve cholesterol oxidation products (COPs) were identified in the sardine lipids, but no significant differences in total COPs content were found between PAW processed and control samples.


Subject(s)
Fatty Acids , Water , Animals , Seafood/analysis , Fishes , Cholesterol
16.
Food Chem X ; 21: 101099, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38235347

ABSTRACT

Variations in the quality of brewing water profoundly impact tea flavor. This study systematically investigated the effects of four common water sources, including pure water (PW), mountain spring water (MSW), mineral water (MW) and natural water (NW) on the flavor of Tieguanyin tea infusion. Brewing with MW resulted in a flat taste and turbid aroma, mainly due to the low leaching of tea flavor components and complex interactions with mineral ions (mainly Ca2+, Mg2+). Tea infusions brewed with NW exhibited the highest relative contents of total volatile compounds, while those brewed with PW had the lowest. NW and MSW, with moderate mineralization, were conducive to improving the aroma quality of tea infusion and were more suitable for brewing both aroma types of Tieguanyin. These findings offer valuable insights into the effect of brewing water on the sensory and physicochemical properties of oolong teas.

17.
Food Chem ; 438: 137932, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-37979271

ABSTRACT

"Empty cup aroma" is an important characteristic and quality evaluation standard of Jiangxiang-type Baijiu (JXB). In this study, an in situ detection method for the empty cup aroma of JXB was established, and the authenticity and origin information of JXB were identified with an untargeted flavoromics strategy. The complex composition of JXB leads to slow ethanol volatilization, which is a potential method for identifying artificial JXB. The results of the sensory analysis showed that acidic, sauce, burnt and qu in the empty cup of JXB were the strongest at the 45 min stage. A total of 155 compounds were detected in the empty cups of 15 JXB from different regions during 45 min of standing, and 34 compounds were identified as key aroma compounds in the empty cups of JXB. Eleven potential markers were screened (VIP > 1), which can be used to distinguish JXB produced in Guizhou/Sichuan and other regions.


Subject(s)
Odorants , Volatile Organic Compounds , Odorants/analysis , Gas Chromatography-Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Ethanol/analysis , Volatilization
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1011459

ABSTRACT

ObjectiveTo discriminate the age of Arisaema Cum Bile, the combination of headspace solid-phase microextraction (HS-SPME) with gas chromatography-mass spectrometry (GC-MS) was applied to explore the differences of volatile components of unfermented, 1-year fermented, 2-year fermented, and 3-year fermented Arisaema Cum Bile. MethodSamples with different fermentation durations were collected and HS-SPME-GC-MS technology was employed to detect the volatile components of each sample. The relative contents of detected volatile components were processed and analyzed by chemometrics methods such as principal component analysis (PCA), hierarchical cluster analysis (HCA), and partial least squares discriminant analysis (PLS-DA). ResultThe results showed that 145 volatile components were identified. Among these volatile components, the relative contents of heterocyclic, alcohols, aldehydes and aromatics were high. PCA, HCA, and PLS-DA can effectively separate Arisaema Cum Bile with four different ages. Based on variable importance in projection (VIP) value > 1, 73 markers of differential volatile components were identified. The content of 2,6,11-trimethyldodecane and m-xylene in unfermented samples was the highest, and the content difference between them and those in fermented samples was significant (P<0.05). 2,3-butanediol was detected only in 1-year samples, octane was detected only in 2-year samples, and ethyl heptanoate was detected only in 3-year samples. These components can be used as odor markers for Arisaema Cum Bile with different fermentation years. ConclusionThe identification method of volatile components of Arisaema Cum Bile was established by HS-SPME-GC-MS technology, which can realize the rapid identification of unfermented, 1-year fermented, 2-year fermented, and 3-year fermented samples, and provide a scientific basis for the standardization of processing technology and quality standards of Arisaema Cum Bile.

19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1003420

ABSTRACT

ObjectiveTo screen the differential markers by analyzing volatile components in Dalbergia odorifera and its counterfeits, in order to provide reference for authentication of D. odorifera. MethodThe volatile components in D. odorifera and its counterfeits were detected by headspace gas chromatography-mass spectrometry(HS-GC-MS), and the GC conditions were heated by procedure(the initial temperature of the column was 50 ℃, the retention time was 1 min, and then the temperature was raised to 300 ℃ at 10 ℃ for 10 min), the carrier gas was helium, and the flow rate was 1.0 mL·min-1, the split ratio was 10∶1, and the injection volume was 1 mL. The MS conditions used electron bombardment ionization(EI) with the scanning range of m/z 35-550. The compound species were identified by database matching, the relative content of each component was calculated by the peak area normalization method, and principal component analysis(PCA), orthogonal partial least squares-discrimination analysis(OPLS-DA) and cluster analysis were performed on the detection results by SIMCA 14.1 software, and the differential components of D. odorifera and its counterfeits were screened out according to the variable importance in the projection(VIP) value>2 and P<0.05. ResultA total of 26, 17, 8, 22, 24 and 7 volatile components were identified from D. odorifera, D. bariensis, D. latifolia, D. benthamii, D. pinnata and D. cochinchinensis, respectively. Among them, there were 11 unique volatile components of D. odorifera, 6 unique volatile components of D. bariensis, 3 unique volatile components of D. latifolia, 6 unique volatile components of D. benthamii, 8 unique volatile components of D. pinnata, 4 unique volatile components of D. cochinchinensis. The PCA results showed that, except for D. latifolia and D. cochinchinensis, which could not be clearly distinguished, D. odorifera and other counterfeits could be distributed in a certain area, respectively. The OPLS-DA results showed that D. odorifera and its five counterfeits were clustered into one group each, indicating significant differences in volatile components between D. odorifera and its counterfeits. Finally, a total of 31 differential markers of volatile components between D. odoriferae and its counterfeits were screened. ConclusionHS-GC-MS combined with SIMCA 14.1 software can systematically elucidate the volatile differential components between D. odorifera and its counterfeits, which is suitable for rapid identification of them.

20.
Food Chem X ; 20: 100898, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144730

ABSTRACT

This study aimed to explore effects of indica rice addition, rice soaking time and rice soup addition on total sugar and alcohol content of semi-dry Hakka rice wine (HRW) and compare its difference in physicochemical properties and volatiles with traditional sweet rice wine (TSRW) via HPLC, GC-MS and E-tongue. The optimal fermentation conditions of semi-dry HRW were 50 % indica rice addition, 12 h rice soaking time and 85 % rice soup addition. The total sugar (16.13 mg/mL) of semi-dry HRW was significantly lower than that of TSRW (135.79 mg/mL), especially the trehalose, glucose, sucrose and maltose. Its alcohol content was significantly higher than that of TSRW. There were significant differences in volatile components between semi-dry HRW and TSRW, especially esters, alcohols and ketones, but no significant differences in organic acids and amino acids. Results obtained could provide reference data for improving the fermentation process and quality of semi-dry HRW.

SELECTION OF CITATIONS
SEARCH DETAIL