Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Handb Exp Pharmacol ; 279: 263-288, 2023.
Article in English | MEDLINE | ID: mdl-36592228

ABSTRACT

CaV3.3 is the third member of the low-voltage-activated calcium channel family and the last to be recognized as disease gene. Previously, CACNA1I, the gene encoding CaV3.3, had been described as schizophrenia risk gene. More recently, de novo missense mutations in CACNA1I were identified in patients with variable degrees of neurodevelopmental disease with and without epilepsy. Their functional characterization indicated gain-of-function effects resulting in increased calcium load and hyperexcitability of neurons expressing CaV3.3. The amino acids mutated in the CaV3.3 disease variants are located in the vicinity of the channel's activation gate and thus are classified as gate-modifying channelopathy mutations. A persistent calcium leak during rest and prolonged calcium spikes due to increased voltage sensitivity of activation and slowed kinetics of channel inactivation, respectively, may be causal for the neurodevelopmental defects. The prominent expression of CaV3.3 in thalamic reticular nucleus neurons and its essential role in generating the rhythmic thalamocortical network activity are consistent with a role of the mutated channels in the etiology of epileptic seizures and thus suggest T-type channel blockers as a viable treatment option.


Subject(s)
Calcium Channels, T-Type , Channelopathies , Humans , Channelopathies/genetics , Calcium/metabolism , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/chemistry , Calcium Channels, T-Type/metabolism , Mutation
2.
ACS Chem Neurosci ; 13(13): 2035-2047, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35671441

ABSTRACT

T-type calcium channels activate in response to subthreshold membrane depolarizations and represent an important source of Ca2+ influx near the resting membrane potential. These channels regulate neuronal excitability and have been linked to pain. For this reason, T-type calcium channels are suitable molecular targets for the development of new non-opioid analgesics. Our previous work identified an analogue of benzimidazolonepiperidine, 5bk, that preferentially inhibited CaV3.2 channels and reversed mechanical allodynia. In this study, we synthesized and screened a small library of 47 compounds derived from 5bk. We found several compounds that inhibited the Ca2+ influx in DRG neurons of all sizes. After separating the enantiomers of each active compound, we found two compounds, 3-25-R and 3-14-3-S, that potently inhibited the Ca2+ influx. Whole-cell patch clamp recordings from small- to medium-sized DRG neurons revealed that both compounds decreased total Ca2+. Application of 3-14-3-S (but not 3-25-R) blocked transiently expressed CaV3.1-3.3 channels with a similar IC50 value. 3-14-3-S decreased T-type, but not N-type, Ca2+ currents in DRG neurons. Furthermore, intrathecal delivery of 3-14-3-S relieved tonic, neuropathic, and inflammatory pain in preclinical models. 3-14-3-S did not exhibit any activity against G protein-coupled opioid receptors. Preliminary docking studies also suggest that 3-14-3-S can bind to the central pore domain of T-type channels. Together, our chemical characterization and functional and behavioral data identify a novel T-type calcium channel blocker with in vivo efficacy in experimental models of tonic, neuropathic, and inflammatory pain.


Subject(s)
Calcium Channel Blockers , Calcium Channels, T-Type , Neuralgia , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/metabolism , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , Neuralgia/drug therapy , Rats , Rats, Sprague-Dawley
3.
Biochem Biophys Res Commun ; 586: 107-113, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34837834

ABSTRACT

The Rad, Rem, Rem2, and Gem/Kir (RGK) sub-family of small GTP-binding proteins are crucial in regulating high voltage-activated (HVA) calcium channels. RGK proteins inhibit calcium current by either promoting endocytosis or reducing channel activity. They all can associate directly with Ca2+ channel ß subunit (CaVß), and the binding between CaVα1/CaVß appears essential for the endocytic promotion of CaV1.X, CaV2.1, and CaV2.2 channels. In this study, we investigated the inhibition of CaV2.3 channels by RGK proteins in the absence of CaVß. To this end, Xenopus laevis oocytes expressing CaV2.3 channels devoid of auxiliary subunit were injected with purified Gem and Rem and found that only Gem had an effect. Ca currents and charge movements were reduced by injection of Gem, pointing to a reduction in the number of channels in the plasma membrane. Since this reduction was ablated by co-expression of the dominant-negative mutant of dynamin K44A, enhanced endocytosis appears to mediate this reduction in the number of channels. Thus, Gem inhibition of CaV2.3 channels would be the only example of a CaVß independent promotion of dynamin-dependent endocytosis.


Subject(s)
Action Potentials/physiology , Calcium Channels, R-Type/genetics , Cation Transport Proteins/genetics , Dynamins/genetics , Monomeric GTP-Binding Proteins/genetics , Amino Acid Substitution , Animals , Calcium Channels, R-Type/metabolism , Cation Transport Proteins/metabolism , Dynamins/metabolism , Endocytosis/genetics , Female , Gene Expression , Humans , Monomeric GTP-Binding Proteins/metabolism , Mutation , Oocytes/cytology , Oocytes/metabolism , Patch-Clamp Techniques , Plasmids/chemistry , Plasmids/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transfection , Transgenes , Xenopus laevis
4.
Article in English | MEDLINE | ID: mdl-34868281

ABSTRACT

Phα1ß is a neurotoxin purified from spider venom that acts as a high-voltage-activated (HVA) calcium channel blocker. This spider peptide has shown a high selectivity for N-type HVA calcium channels (NVACC) and an analgesic effect in several animal models of pain. Its activity was associated with a reduction in calcium transients, glutamate release, and reactive oxygen species production from the spinal cord tissue and dorsal ganglia root (DRG) in rats and mice. It has been reported that intrathecal (i.t.) administration of Phα1ß to treat chronic pain reverted opioid tolerance with a safer profile than ω-conotoxin MVIIA, a highly selective NVACC blocker. Following a recent development of recombinant Phα1ß (CTK 01512-2), a new molecular target, TRPA1, the structural arrangement of disulphide bridges, and an effect on glial plasticity have been identified. CTK 01512-2 reproduced the antinociceptive effects of the native toxin not only after the intrathecal but also after the intravenous administration. Herein, we review the Phα1ß antinociceptive activity in the most relevant pain models and its mechanisms of action, highlighting the impact of CTK 01512-2 synthesis and its potential for multimodal analgesia.

5.
Brain Struct Funct ; 226(7): 2125-2151, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34181058

ABSTRACT

Extraocular motoneurons initiate dynamically different eye movements, including saccades, smooth pursuit and vestibulo-ocular reflexes. These motoneurons subdivide into two main types based on the structure of the neuro-muscular interface: motoneurons of singly-innervated (SIF), and motoneurons of multiply-innervated muscle fibers (MIF). SIF motoneurons are thought to provoke strong and brief/fast muscle contractions, whereas MIF motoneurons initiate prolonged, slow contractions. While relevant for adequate functionality, transmitter and ion channel profiles associated with the morpho-physiological differences between these motoneuron types, have not been elucidated so far. This prompted us to investigate the expression of voltage-gated potassium, sodium and calcium ion channels (Kv1.1, Kv3.1b, Nav1.6, Cav3.1-3.3, KCC2), the transmitter profiles of their presynaptic terminals (vGlut1 and 2, GlyT2 and GAD) and transmitter receptors (GluR2/3, NMDAR1, GlyR1α) using immunohistochemical analyses of abducens and trochlear motoneurons and of abducens internuclear neurons (INTs) in macaque monkeys. The main findings were: (1) MIF and SIF motoneurons express unique voltage-gated ion channel profiles, respectively, likely accounting for differences in intrinsic membrane properties. (2) Presynaptic glutamatergic synapses utilize vGlut2, but not vGlut1. (3) Trochlear motoneurons receive GABAergic inputs, abducens neurons receive both GABAergic and glycinergic inputs. (4) Synaptic densities differ between MIF and SIF motoneurons, with MIF motoneurons receiving fewer terminals. (5) Glutamatergic receptor subtypes differ between MIF and SIF motoneurons. While NMDAR1 is intensely expressed in INTs, MIF motoneurons lack this receptor subtype entirely. The obtained cell-type-specific transmitter and conductance profiles illuminate the structural substrates responsible for differential contributions of neurons in the abducens and trochlear nuclei to eye movements.


Subject(s)
Ion Channels/metabolism , Abducens Nerve , Animals , Eye Movements , Macaca , Motor Neurons , Oculomotor Muscles , Reflex, Vestibulo-Ocular , Trochlear Nerve
6.
Brain Res ; 1763: 147451, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33773979

ABSTRACT

Neurons in the subfornical organ (SFO) sense both neurotransmitters and circulating humoral factors such as angiotensin II (AII) and atrial natriuretic peptide (ANP), and regulate multiple physiological functions including drinking behavior. We recently reported that AII at nanomolar concentrations induced a persistent [Ca2+]i increase in acutely dissociated SFO neurons and that this effect of AII was reversibly inhibited by GABA. In the present study, we studied the inhibitory mechanism of GABA using Ca2+ imaging and patch-clamp electrophysiology. The AII-induced persistent [Ca2+]i increase was inhibited by GABA in more than 90% of AII-responsive neurons and by other two SFO inhibitory ligands, ANP and galanin, in about 60 and 30% of neurons respectively. The inhibition by GABA was mimicked by the GABAA and GABAB receptor agonists muscimol and baclofen. The involvement of both GABA receptor subtypes was confirmed by reversal of the GABA-mediated inhibition only when the GABAA and GABAB receptors antagonists bicuculline methiodide and CGP55845 were both present. The GABAB agonist baclofen rapidly and reversibly inhibited voltage-gated Ca2+ channel (VGCC) currents recorded in response to depolarizing pulses in voltage-clamp electrophysiology using Ba2+ as a charge carrier (IBa). Baclofen inhibition of IBa was antagonized by CGP55845, confirming GABAB receptor involvement; was reduced by N-ethylmaleimide, suggesting downstream Gi-mediated actions; and was partially removed by a large prepulse, indicating voltage-dependency. The magnitude of IBa inhibition by baclofen was reduced by the application of selective blockers for N-, P/Q-, and L-type VGCCs (ω-conotoxin GVIA, ω-agatoxin IVA, and nifedipine respectively). Overall, our study indicates that GABA inhibition of the AII-induced [Ca2+]i increase is mediated by both GABAA and GABAB receptors, and that GABAB receptors associated with Gi proteins suppress Ca2+ entry through VGCCs in SFO neurons.


Subject(s)
Angiotensin II/metabolism , Bicuculline/analogs & derivatives , Calcium/metabolism , GABA-A Receptor Agonists/pharmacology , GABA-B Receptor Agonists/pharmacology , Subfornical Organ/drug effects , Animals , Baclofen/metabolism , Bicuculline/pharmacology , Calcium Channels/metabolism , Ethylamines/pharmacology , Male , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Wistar , Receptors, GABA-B/metabolism , Subfornical Organ/metabolism
7.
J. venom. anim. toxins incl. trop. dis ; 27: e20210001, 2021. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1351017

ABSTRACT

Phα1ß is a neurotoxin purified from spider venom that acts as a high-voltage-activated (HVA) calcium channel blocker. This spider peptide has shown a high selectivity for N-type HVA calcium channels (NVACC) and an analgesic effect in several animal models of pain. Its activity was associated with a reduction in calcium transients, glutamate release, and reactive oxygen species production from the spinal cord tissue and dorsal ganglia root (DRG) in rats and mice. It has been reported that intrathecal (i.t.) administration of Phα1ß to treat chronic pain reverted opioid tolerance with a safer profile than ω-conotoxin MVIIA, a highly selective NVACC blocker. Following a recent development of recombinant Phα1ß (CTK 01512-2), a new molecular target, TRPA1, the structural arrangement of disulphide bridges, and an effect on glial plasticity have been identified. CTK 01512-2 reproduced the antinociceptive effects of the native toxin not only after the intrathecal but also after the intravenous administration. Herein, we review the Phα1ß antinociceptive activity in the most relevant pain models and its mechanisms of action, highlighting the impact of CTK 01512-2 synthesis and its potential for multimodal analgesia.


Subject(s)
Pain , Peptides/isolation & purification , Reactive Oxygen Species , Analgesics/adverse effects , Neurotoxins/isolation & purification
8.
J. venom. anim. toxins incl. trop. dis ; 27: e20210001, 2021. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1484769

ABSTRACT

Phα1ß is a neurotoxin purified from spider venom that acts as a high-voltage-activated (HVA) calcium channel blocker. This spider peptide has shown a high selectivity for N-type HVA calcium channels (NVACC) and an analgesic effect in several animal models of pain. Its activity was associated with a reduction in calcium transients, glutamate release, and reactive oxygen species production from the spinal cord tissue and dorsal ganglia root (DRG) in rats and mice. It has been reported that intrathecal (i.t.) administration of Phα1ß to treat chronic pain reverted opioid tolerance with a safer profile than ω-conotoxin MVIIA, a highly selective NVACC blocker. Following a recent development of recombinant Phα1ß (CTK 01512-2), a new molecular target, TRPA1, the structural arrangement of disulphide bridges, and an effect on glial plasticity have been identified. CTK 01512-2 reproduced the antinociceptive effects of the native toxin not only after the intrathecal but also after the intravenous administration. Herein, we review the Phα1ß antinociceptive activity in the most relevant pain models and its mechanisms of action, highlighting the impact of CTK 01512-2 synthesis and its potential for multimodal analgesia.


Subject(s)
Analgesics/adverse effects , Pain , Reactive Oxygen Species , Neurotoxins/isolation & purification , Peptides/isolation & purification
9.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484774

ABSTRACT

Abstract Ph1 is a neurotoxin purified from spider venom that acts as a high-voltage-activated (HVA) calcium channel blocker. This spider peptide has shown a high selectivity for N-type HVA calcium channels (NVACC) and an analgesic effect in several animal models of pain. Its activity was associated with a reduction in calcium transients, glutamate release, and reactive oxygen species production from the spinal cord tissue and dorsal ganglia root (DRG) in rats and mice. It has been reported that intrathecal (i.t.) administration of Ph1 to treat chronic pain reverted opioid tolerance with a safer profile than -conotoxin MVIIA, a highly selective NVACC blocker. Following a recent development of recombinant Ph1 (CTK 01512-2), a new molecular target, TRPA1, the structural arrangement of disulphide bridges, and an effect on glial plasticity have been identified. CTK 01512-2 reproduced the antinociceptive effects of the native toxin not only after the intrathecal but also after the intravenous administration. Herein, we review the Ph1 antinociceptive activity in the most relevant pain models and its mechanisms of action, highlighting the impact of CTK 01512-2 synthesis and its potential for multimodal analgesia.

10.
Article in English | MEDLINE | ID: mdl-31057389

ABSTRACT

Presynaptic Ca2+ influx through voltage-gated calcium channels (VGCCs) is a key step in synaptic transmission that links action potential (AP)-derived depolarization to vesicle release. However, investigation of presynaptic Ca2+ influx by patch clamp recordings is difficult due to the small size of the majority of synaptic boutons along thin axons that hamper clamp control. Genetically encoded calcium indicators (GECIs) in combination with live cell imaging provide an alternative method to study Ca2+ transients in individual presynaptic terminals. The indicator GCaMP6f was developed for fast speed and high sensitivity in detecting Ca2+ transients even in subcellular compartments. We fused GCaMP6f to synaptophysin (synGCaMP6f) to enrich the calcium indicator in presynaptic boutons of transfected primary hippocampal neurons to study presynaptic Ca2+ changes in response to individual APs or short bursts. Changes in fluorescence intensity were evaluated by normalization to control level or, alternatively, by normalization to maximal fluorescence using the calcium ionophore ionomycin. Measurements revealed robust Ca2+ transients with amplitudes that depend on parameters like the number of APs, stimulation frequency or external calcium concentration. Our findings indicate an appropriate sensitivity of synGCaMP6f for studying total presynaptic Ca2+ transients induced by single APs or short bursts that showed little rundown of the response after repeated bursts. Moreover, these recordings are fast enough to even study short-term plasticity like paired pulse facilitation (PPF) and frequency dependence of Ca2+ transients. In addition, synGCaMP6f could be used to dissect the contribution of different subtypes of VGCCs to presynaptic Ca2+ influx. Our results demonstrate that synGCaMP6f allows the reliable analysis of changes in presynaptic calcium concentration at many individual synaptic boutons in parallel and provides the possibility to study the regulation of this important step in synaptic transmission.

11.
Channels (Austin) ; 13(1): 48-61, 2019 12.
Article in English | MEDLINE | ID: mdl-30672394

ABSTRACT

Voltage-activated calcium channels play an important role in excitability of sensory nociceptive neurons in acute and chronic pain models. We have previously shown that low-voltage-activated calcium channels, or T-type channels (T-channels), increase excitability of sensory neurons after surgical incision in rats. We have also found that endogenous 5ß-reduced neuroactive steroid epipregnanolone [(3ß,5ß)-3-hydroxypregnan-20-one] blocked isolated T-currents in dorsal root ganglion (DRG) cells in vitro, and reduced nociceptive behavior in vivo, after local intraplantar application into the foot pads of heathy rats and mice. Here, we investigated if epipregnanolone exerts an antinociceptive effect after intrathecal (i.t.) application in healthy rats, as well as an antihyperalgesic effect in a postsurgical pain model. We also studied if this endogenous neurosteroid blocks currents originating from high voltage-activated (HVA) calcium channels in rat sensory neurons. In in vivo studies, we found that epipregnanolone alleviated thermal and mechanical nociception in healthy rats after i.t. administration without affecting their sensory-motor abilities. Furthermore, epipregnanolone effectively reduced mechanical hyperalgesia after i.t application in rats after surgery. In subsequent in vitro studies, we found that epipregnanolone blocked isolated HVA currents in nociceptive sensory neurons with an IC50 of 3.3 µM in a G-protein-dependent fashion. We conclude that neurosteroids that have combined inhibitory effects on T-type and HVA calcium currents may be suitable for development of novel pain therapies during the perioperative period.


Subject(s)
Anesthetics/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/metabolism , Pregnanolone/pharmacology , Spinal Cord/drug effects , Surgical Wound/drug therapy , Anesthetics/administration & dosage , Anesthetics/chemistry , Animals , Calcium Channel Blockers/administration & dosage , Calcium Channel Blockers/chemistry , Electrophysiology , Female , Injections, Spinal , Models, Animal , Molecular Conformation , Patch-Clamp Techniques , Pregnanolone/administration & dosage , Pregnanolone/chemistry , Rats , Rats, Sprague-Dawley , Spinal Cord/metabolism
12.
Article in English | MEDLINE | ID: mdl-29556214

ABSTRACT

Pancreatic beta cells during the first month of development acquire functional maturity, allowing them to respond to variations in extracellular glucose concentration by secreting insulin. Changes in ionic channel activity are important for this maturation. Within the voltage-gated calcium channels (VGCC), the most studied channels are high-voltage-activated (HVA), principally L-type; while low-voltage-activated (LVA) channels have been poorly studied in native beta cells. We analyzed the changes in the expression and activity of VGCC during the postnatal development in rat beta cells. We observed that the percentage of detection of T-type current increased with the stage of development. T-type calcium current density in adult cells was higher than in neonatal and P20 beta cells. Mean HVA current density also increased with age. Calcium current behavior in P20 beta cells was heterogeneous; almost half of the cells had HVA current densities higher than the adult cells, and this was independent of the presence of T-type current. We detected the presence of α1G, α1H, and α1I subunits of LVA channels at all ages. The Cav 3.1 subunit (α1G) was the most expressed. T-type channel blockers mibefradil and TTA-A2 significantly inhibited insulin secretion at 5.6 mM glucose, which suggests a physiological role for T-type channels at basal glucose conditions. Both, nifedipine and TTA-A2, drastically decreased the beta-cell subpopulation that secretes more insulin, in both basal and stimulating glucose conditions. We conclude that changes in expression and activity of VGCC during the development play an important role in physiological maturation of beta cells.

14.
Eur J Pharmacol ; 751: 1-12, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25622555

ABSTRACT

Adrenal chromaffin cells (CCs) express high-voltage activated calcium channels (high-VACCs) of the L, N and PQ subtypes; in addition, T-type low-VACCs are also expressed during embryo and neonatal life. Effects of the more frequently used T channel blockers NNC 55-0396 (NNC), mibefradil, and Ni2+ on the whole-cell Ba2+ current (IBa), the K+-elicited [Ca2+]c transients and catecholamine secretion have been studied in adult bovine CCs (BCCs) and rat embryo CCs (RECCs). NNC, mibefradil, and Ni2+ blocked BCC IBa with IC50 of 1.8, 4.9 and 70 µM, while IC50 to block IBa in RECCs were 2.1, 4.4 and 41 µM. Pronounced blockade of K+-elicited [Ca2+]c transients and secretion was also elicited by the three agents. However, the hypoxia-induced secretion (HIS) of catecholamine in RECCs was blocked substantially (75%) with thresholds concentrations of NCC (IC20 to block IBa); this was not the case for mibefradil and Ni2+ that required higher concentrations to block the HIS response. Thus, out of the three compounds, NNC seemed to be an adequate pharmacological tool to discern the contribution of T channels to the HIS response, without a contamination with high-VACC blockade.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium/metabolism , Catecholamines/metabolism , Chromaffin Cells/drug effects , Exocytosis/drug effects , Signal Transduction/drug effects , Animals , Animals, Newborn , Barium/metabolism , Benzimidazoles/pharmacology , Calcium Channels/metabolism , Cattle , Cell Hypoxia/drug effects , Chromaffin Cells/cytology , Chromaffin Cells/metabolism , Cyclopropanes/pharmacology , Cytosol/drug effects , Cytosol/metabolism , Dose-Response Relationship, Drug , Membrane Potentials/drug effects , Mibefradil/pharmacology , Naphthalenes/pharmacology , Nickel/pharmacology , Potassium/pharmacology , Rats
15.
Expert Opin Ther Pat ; 24(9): 959-77, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25118673

ABSTRACT

INTRODUCTION: Altered homeostasis of cell calcium movement is a central stage in multiple diseases of CNS. This explains the great therapeutic interest in blockers for the various subtypes of voltage-activated calcium channels (VACCs) expressed in neurons. Mitigation of Ca(2+) entry excess elicited by those blockers may restore the altered synaptic transmission, synaptic plasticity and gene expression to normal parameters, ending the enhanced neuronal vulnerability. AREAS COVERED: This review summarize 23 patents on ligands for L-, N- or T-type channels, claimed to have potential therapeutic interest in epilepsy, pain, migraine and neurodegenerative diseases. EXPERT OPINION: Collections of compounds are generally screened in cell lines expressing a given subtype of VACCs. IC50 to block such channels are often, but not always, provided. In few instances, compounds exhibiting the highest potency in in vitro experiments are also tested in animal models of pain, behavior, epilepsy or Alzheimer's disease. Attempts to develop selectivity for a given VACC subtype with non-peptidic organic ligands have so far failed. Due to their wide tissue expression, such selectivity is crucial for minimizing possible side effects. However, the few data reported by patents does not allow prediction of selectivity of the new compounds in many cases.


Subject(s)
Calcium Channel Blockers/therapeutic use , Calcium/metabolism , Central Nervous System Diseases/drug therapy , Animals , Calcium Channel Blockers/adverse effects , Calcium Channel Blockers/pharmacology , Calcium Channels/drug effects , Calcium Channels/metabolism , Central Nervous System Diseases/physiopathology , Drug Design , Gene Expression Regulation/drug effects , Humans , Ligands , Neurons/metabolism , Patents as Topic , Synaptic Transmission/drug effects
16.
Am J Physiol Cell Physiol ; 307(5): C455-65, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24990647

ABSTRACT

At early life, the adrenal chromaffin cells respond with a catecholamine surge under hypoxic conditions. This response depends on Ca(2+) entry through voltage-activated calcium channels (VACCs). We have investigated here three unresolved questions that concern this response in rat embryo chromaffin cells (ECCs): 1) the relative contribution of L (α1D, Cav1.3), N (α1B, Cav2.2), and PQ (α1A, Cav2.1) to the whole cell Ca(2+) current (ICa); 2) the relative contribution of L and N/PQ channels to the cytosolic Ca(2+) elevations triggered by hypoxia (Δ[Ca(2+)]c); and 3) the role of L and non-L high-VACCs in the regulation of the catecholamine surge occurring during prolonged (1 min) hypoxia exposure of ECCs. Nimodipine halved peak ICa and blocked 60% the total Ca(2+) entry during a 50-ms depolarizing pulse to 0 mV (QCa). Combined ω-agatoxin IVA plus ω-conotoxin GVIA (Aga/GVIA) blocked 30% of both ICa peak and QCa. This relative proportion of L- and non-L VACCs was corroborated by Western blot that indicated 55, 23, and 25% relative expression of L, N, and PQ VACCs. Exposure of ECCs to hypoxia elicited a mild but sustained Δ[Ca(2+)]c; the area of Δ[Ca(2+)]c was blocked 50% by nifedipine and 10% by Aga/GVIA. Exposure of ECCs to 1-min hypoxia elicited an initial transient burst of amperometric secretory spikes followed by scattered spikes along the time of cell exposure to hypoxia. This bulk response was blocked 85% by nimodipine and 35% by Aga/GVIA. Histograms on secretory spike frequency vs. time indicated a faster initial inactivation when Ca(2+) entry took place through N/PQ channels; more sustained secretion but at a lower rate was associated to Ca(2+) entry through L channels. The results suggest that the HIS response may initially be controlled by L and P/Q channels, but later on, N/PQ channels inactivate and the delayed HIS response is maintained at lower rate by slow-inactivating L channels.


Subject(s)
Calcium Channels, L-Type/physiology , Calcium Channels, N-Type/physiology , Calcium Channels, P-Type/physiology , Calcium Channels, Q-Type/physiology , Catecholamines/metabolism , Chromaffin Cells/metabolism , Animals , Binding Sites/physiology , Calcium Channels, L-Type/metabolism , Calcium Channels, N-Type/metabolism , Calcium Channels, P-Type/metabolism , Calcium Channels, Q-Type/metabolism , Cell Hypoxia/physiology , Cells, Cultured , Chromaffin Cells/physiology , Embryo, Mammalian/metabolism , Embryo, Mammalian/physiology , Rats
17.
Mol Cell Endocrinol ; 376(1-2): 136-47, 2013 Aug 25.
Article in English | MEDLINE | ID: mdl-23791846

ABSTRACT

Neuroendocrine cells contain small and large vesicles, but the functional significance of vesicle diameter is unclear. We studied unitary exocytic events of prolactin-containing vesicles in lactotrophs by monitoring discrete steps in membrane capacitance. In the presence of sphingosine, which recruits VAMP2 for SNARE complex formation, the frequency of transient and full fusion events increased. Vesicles with larger diameters proceeded to full fusion, but smaller vesicles remained entrapped in transient exocytosis. The diameter of vesicle dense cores released by full fusion exocytosis into the extracellular space was larger than the diameter of the remaining intracellular vesicles beneath the plasma membrane. Labeling with prolactin- and VAMP2-antibodies revealed a correlation between the diameters of colocalized prolactin- and VAMP2-positive structures. It is proposed that sphingosine-mediated facilitation of regulated exocytosis is not only related to the number of SNARE complexes per vesicle but also depends on the vesicle size, which may determine the transition between transient and full fusion exocytosis.


Subject(s)
Cell Membrane/drug effects , Lactotrophs/drug effects , Secretory Vesicles/drug effects , Secretory Vesicles/ultrastructure , Sphingosine/pharmacology , Animals , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Electric Capacitance , Exocytosis/drug effects , Gene Expression , Lactotrophs/cytology , Lactotrophs/metabolism , Male , Membrane Fusion/drug effects , Membrane Potentials/drug effects , Patch-Clamp Techniques , Prolactin/genetics , Prolactin/metabolism , Rats , Rats, Wistar , SNARE Proteins/genetics , SNARE Proteins/metabolism , Secretory Vesicles/metabolism , Vesicle-Associated Membrane Protein 2/genetics , Vesicle-Associated Membrane Protein 2/metabolism
18.
Korean J Physiol Pharmacol ; 14(1): 45-9, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20221279

ABSTRACT

R-type Ca(v)2.3 high voltage-activated Ca(2+) channels in peripheral sensory neurons contribute to pain transmission. Recently we have demonstrated that, among the six Ca(v)2.3 isoforms (Ca(v)2.3a~Ca(v)2.3e), the Ca(v)2.3e isoform is primarily expressed in trigeminal ganglion (TG) nociceptive neurons. In the present study, we further investigated expression patterns of Ca(v)2.3 isoforms in the dorsal root ganglion (DRG) neurons. As in TG neurons, whole tissue RT-PCR analyses revealed the presence of two isoforms, Ca(v)2.3a and Ca(v)2.3e, in DRG neurons. Single-cell RT-PCR detected the expression of Ca(v)2.3e mRNA in 20% (n=14/70) of DRG neurons, relative to Ca(v)2.3a expression in 2.8% (n=2/70) of DRG neurons. Ca(v)2.3e mRNA was mainly detected in small-sized neurons (n=12/14), but in only a few medium-sized neurons (n=2/14) and not in large-sized neurons, indicating the prominence of Ca(v)2.3e in nociceptive DRG neurons. Moreover, Ca(v)2.3e was preferentially expressed in tyrosine-kinase A (trkA)-positive, isolectin B4 (IB4)-negative and transient receptor potential vanilloid 1 (TRPV1)-positive neurons. These results suggest that Ca(v)2.3e may be the main R-type Ca(2+) channel isoform in nociceptive DRG neurons and thereby a potential target for pain treatment, not only in the trigeminal system but also in the spinal system.

19.
Article in English | WPRIM (Western Pacific) | ID: wpr-727342

ABSTRACT

R-type Cav2.3 high voltage-activated Ca2+ channels in peripheral sensory neurons contribute to pain transmission. Recently we have demonstrated that, among the six Cav2.3 isoforms (Cav2.3a~Cav2.3e), the Cav2.3e isoform is primarily expressed in trigeminal ganglion (TG) nociceptive neurons. In the present study, we further investigated expression patterns of Cav2.3 isoforms in the dorsal root ganglion (DRG) neurons. As in TG neurons, whole tissue RT-PCR analyses revealed the presence of two isoforms, Cav2.3a and Cav2.3e, in DRG neurons. Single-cell RT-PCR detected the expression of Cav2.3e mRNA in 20% (n=14/70) of DRG neurons, relative to Cav2.3a expression in 2.8% (n=2/70) of DRG neurons. Cav2.3e mRNA was mainly detected in small-sized neurons (n=12/14), but in only a few medium-sized neurons (n=2/14) and not in large-sized neurons, indicating the prominence of Cav2.3e in nociceptive DRG neurons. Moreover, Cav2.3e was preferentially expressed in tyrosine-kinase A (trkA)-positive, isolectin B4 (IB4)-negative and transient receptor potential vanilloid 1 (TRPV1)-positive neurons. These results suggest that Cav2.3e may be the main R-type Ca2+ channel isoform in nociceptive DRG neurons and thereby a potential target for pain treatment, not only in the trigeminal system but also in the spinal system.


Subject(s)
Animals , Rats , Calcium Channels, R-Type , Diagnosis-Related Groups , Ganglia, Spinal , Lectins , Neurons , Nociceptors , Protein Isoforms , RNA, Messenger , Sensory Receptor Cells , Spinal Nerve Roots , Trigeminal Ganglion
SELECTION OF CITATIONS
SEARCH DETAIL
...