Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 468
Filter
1.
Insect Sci ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012243

ABSTRACT

Successful bisexual reproduction requires interactions between males and females. Male-derived seminal fluid proteins (SFPs) transferred to females during mating profoundly affect females from pre- to post-mating, and the subsequent shift in female physiology enhances their fertility. SFPs have important evolutionary implications for the fitness of many insects. However, little is known about how females respond to male SFPs. In this study, we identified a male-derived SFP-phospholipase A2 (PLA2) in Ophraella communa. PLA2 is a vital enzyme in eicosanoid biosynthesis; however, it has not been identified as an insect SFP. We found that OcPLA2 is specifically expressed in males, especially in the male accessory glands (MAGs); it is transferred to the female during mating and functions as an SFP to enhance fertility. The expression of a female-derived gene encoding the WD repeat-containing protein 46 (WD46) was upregulated when OcPLA2 entered the female reproductive tract, and this contributed to female egg production by increasing triacylglycerol lipase (TGL) gene expression and the triglyceride (TG) content. This is the first study to identify PLA2 as an SFP in insects. Our findings also shed light on the regulatory role of OcPLA2 in beetle reproduction; the expression of OcPLA2 is initially correlated with female WD46 expression and later with the decline in TGL gene expression and the TG content. This represents a unique mechanism of reproductive regulation by an SFP.

2.
Front Plant Sci ; 15: 1390461, 2024.
Article in English | MEDLINE | ID: mdl-38863548

ABSTRACT

Introduction: The WD40 gene family, prevalent in eukaryotes, assumes diverse roles in cellular processes. Spartina alterniflora, a halophyte with exceptional salt tolerance, flood tolerance, reproduction, and diffusion ability, offers great potential for industrial applications and crop breeding analysis. The exploration of growth and development-related genes in this species offers immense potential for enhancing crop yield and environmental adaptability, particularly in industrialized plantations. However, the understanding of their role in regulating plant growth and development remains limited. Methods: In this study, we conducted a comprehensive analysis of WD40 genes in S. alterniflora at the whole-genome level, delving into their characteristics such as physicochemical properties, phylogenetic relationships, gene architecture, and expression patterns. Additionally, we cloned the TTG1 gene, a gene in plant growth and development across diverse species. Results: We identified a total of 582 WD40 proteins in the S. alterniflora genome, exhibiting an uneven distribution across chromosomes. Through phylogenetic analysis, we categorized the 582 SaWD40 proteins into 12 distinct clades. Examining the duplication patterns of SaWD40 genes, we observed a predominant role of segmental duplication in their expansion. A substantial proportion of SaWD40 gene duplication pairs underwent purifying selection through evolution. To explore the functional aspects, we selected SaTTG1, a homolog of Arabidopsis TTG1, for overexpression in Arabidopsis. Subcellular localization analysis revealed that the SaTTG1 protein localized in the nucleus and plasma membrane, exhibiting transcriptional activation in yeast cells. The overexpression of SaTTG1 in Arabidopsis resulted in early flowering and increased seed size. Discussion: These outcomes significantly contribute to our understanding of WD40 gene functions in halophyte species. The findings not only serve as a valuable foundation for further investigations into WD40 genes in halophyte but also offer insights into the molecular mechanisms governing plant development, offering potential avenues in molecular breeding.

3.
J Biol Chem ; 300(7): 107469, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876305

ABSTRACT

Leucine rich repeat kinase 2 (LRRK2) is a large multidomain protein containing two catalytic domains, a kinase and a GTPase, as well as protein interactions domains, including a WD40 domain. The association of increased LRRK2 kinase activity with both the familial and sporadic forms of Parkinson's disease has led to an intense interest in determining its cellular function. However, small molecule probes that can bind to LRRK2 and report on or affect its cellular activity are needed. Here, we report the identification and characterization of the first high-affinity LRRK2-binding designed ankyrin-repeat protein (DARPin), named E11. Using cryo-EM, we show that DARPin E11 binds to the LRRK2 WD40 domain. LRRK2 bound to DARPin E11 showed improved behavior on cryo-EM grids, resulting in higher resolution LRRK2 structures. DARPin E11 did not affect the catalytic activity of a truncated form of LRRK2 in vitro but decreased the phosphorylation of Rab8A, a LRRK2 substrate, in cells. We also found that DARPin E11 disrupts the formation of microtubule-associated LRRK2 filaments in cells, which are known to require WD40-based dimerization. Thus, DARPin E11 is a new tool to explore the function and dysfunction of LRRK2 and guide the development of LRRK2 kinase inhibitors that target the WD40 domain instead of the kinase.


Subject(s)
Ankyrin Repeat , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , rab GTP-Binding Proteins , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Humans , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , HEK293 Cells , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Phosphorylation , Cryoelectron Microscopy , Protein Binding
4.
Materials (Basel) ; 17(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38730747

ABSTRACT

Cementitious materials are used to construct an engineered barrier in repositories for radioactive waste. The cement matrix may contain a variety of organic compounds, some of which are polymeric admixtures used as plasticizers. Superplasticizers (SPs) are highly effective organic cement additives for reducing water amount, increasing workability, homogeneity, plasticity and the non-segregation of mortars and grouts, improving mechanical properties and resistance to destructive environments. SPs in cement could have an impact on the long-term safety of the disposals of radioactive waste. These organic agents can leach from the cementitious matrix into groundwater and may affect the migration behaviour of radionuclides. The detailed chemical composition and other characteristics of the cement (CEM I 42.5 R, Sweden) used for the leaching experiments were evaluated. It contained mainly CaO (52.51 ± 1.37, %), and the surface area of the cement particles was 13.2 ± 1.3 m2/g. An insignificant increase in pH (from 12.6 ± 0.1 to 12.8 ± 0.1) was observed for the leachates over 10 days. A commercially available cement superplasticizer based on polymelamine sulphonate (PMS) Peramin SMF10 (Peramin AB, Sweden) was chosen for the research. The product's chemical composition was analysed using wavelength-dispersive X-ray fluorescence (WD-XRF) spectroscopy, while other physico-chemical properties of the PMS superplasticizer were assessed by Raman spectroscopy and thermo-gravimetric analysis. In aqueous solutions and powders of PMS, the same most intensive features were observed at 774 cm-1 (ring out-of-plane deformation), 977 cm-1 (C-N-C bending, SO stretching) and 1055 cm-1 (C-N=C bending) in the Raman spectra. At up to 270 °C, the polymer was thermally stable. Raman and UV/Vis spectroscopies were used to assess the rate of the alkaline degradation of PMS superplasticizer in different aqueous solutions. No changes were observed in the hydrolytic solutions with any of the above analytical methods over a period of 3 years. The results obtained revealed a good thermal and chemical stability (in highly alkaline media, pH = 9.9-12.9) of the PMS polymer.

5.
Microbiol Spectr ; 12(7): e0045324, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38814079

ABSTRACT

Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections in the USA and of preventable blindness worldwide. This obligate intracellular pathogen replicates within a membrane-bound inclusion, but how it acquires nutrients from the host while avoiding detection by the innate immune system is incompletely understood. C. trachomatis accomplishes this in part through the translocation of a unique set of effectors into the inclusion membrane, the inclusion membrane proteins (Incs). Incs are ideally positioned at the host-pathogen interface to reprogram host signaling by redirecting proteins or organelles to the inclusion. Using a combination of co-affinity purification, immunofluorescence confocal imaging, and proteomics, we characterize the interaction between an early-expressed Inc of unknown function, Tri1, and tumor necrosis factor receptor-associated factor 7 (TRAF7). TRAF7 is a multi-domain protein with a RING finger ubiquitin ligase domain and a C-terminal WD40 domain. TRAF7 regulates several innate immune signaling pathways associated with C. trachomatis infection and is mutated in a subset of tumors. We demonstrate that Tri1 and TRAF7 specifically interact during infection and that TRAF7 is recruited to the inclusion. We further show that the predicted coiled-coil domain of Tri1 is necessary to interact with the TRAF7 WD40 domain. Finally, we demonstrate that Tri1 displaces the native TRAF7 binding partners, mitogen-activated protein kinase kinase kinase 2 (MEKK2), and MEKK3. Together, our results suggest that by displacing TRAF7 native binding partners, Tri1 has the capacity to alter TRAF7 signaling during C. trachomatis infection.IMPORTANCEChlamydia trachomatis is the leading cause of bacterial sexually transmitted infections in the USA and preventable blindness worldwide. Although easily treated with antibiotics, the vast majority of infections are asymptomatic and therefore go untreated, leading to infertility and blindness. This obligate intracellular pathogen evades the immune response, which contributes to these outcomes. Here, we characterize the interaction between a C. trachomatis-secreted effector, Tri1, and a host protein involved in innate immune signaling, TRAF7. We identified host proteins that bind to TRAF7 and demonstrated that Tri1 can displace these proteins upon binding to TRAF7. Remarkably, the region of TRAF7 to which these host proteins bind is often mutated in a subset of human tumors. Our work suggests a mechanism by which Tri1 may alter TRAF7 signaling and has implications not only in the pathogenesis of C. trachomatis infections but also in understanding the role of TRAF7 in cancer.


Subject(s)
Bacterial Proteins , Chlamydia Infections , Chlamydia trachomatis , Host-Pathogen Interactions , Humans , Chlamydia trachomatis/metabolism , Chlamydia trachomatis/genetics , Chlamydia trachomatis/immunology , HeLa Cells , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Chlamydia Infections/microbiology , Chlamydia Infections/metabolism , Chlamydia Infections/immunology , Signal Transduction , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics , Immunity, Innate , Protein Binding , Membrane Proteins/metabolism , Membrane Proteins/genetics , HEK293 Cells
6.
Polymers (Basel) ; 16(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38543452

ABSTRACT

The growth of the Urban Air Mobility (UAM) industry emphasizes the need for considerable study into assembly procedures and dependability to guarantee its effective integration into air transport networks. In this context, this study seeks to evaluate the mechanical characteristics of bolted joint Carbon Fiber Reinforced Plastic (CFRP), with a particular emphasis on bearing strength. By altering the w/D (specimen width to hole diameter) and e/D (distance between hole center and specimen end to hole diameter) ratios, the study investigates how edge and end distances affect material performance. The study discovered a shift from tension to bearing failure at w/D ratios of 4.0, with maximum bearing strength decreases of 90.50% and 69.96% compared to full bearing failure. Similarly, for e/D ratios of 1.5, 2.0, and 3.0, transitioning from shear to bearing failure at 2.0 resulted in maximum bearing strength losses of 94.90% and 75.96%, respectively. Maintaining a w/D ratio of at least 6.0 and an e/D ratio of at least 3.0 is critical for maintaining maximum performance and stability in CFRP structure design.

7.
Cell Rep ; 43(3): 113886, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38430516

ABSTRACT

The human WDR33 gene encodes three major isoforms. The canonical isoform WDR33v1 (V1) is a well-characterized nuclear mRNA polyadenylation factor, while the other two, WDR33v2 (V2) and WDR33v3 (V3), have not been studied. Here, we report that V2 and V3 are generated by alternative polyadenylation, and neither protein contains all seven WD (tryptophan-aspartic acid) repeats that characterize V1. Surprisingly, V2 and V3 are not polyadenylation factors but localize to the endoplasmic reticulum and interact with stimulator of interferon genes (STING), the immune factor that induces the cellular response to cytosolic double-stranded DNA. V2 suppresses interferon-ß induction by preventing STING disulfide oligomerization but promotes autophagy, likely by recruiting WIPI2 isoforms. V3, on the other hand, functions to increase STING protein levels. Our study has not only provided mechanistic insights into STING regulation but also revealed that protein isoforms can be functionally completely unrelated, indicating that alternative mRNA processing is a more powerful mechanism than previously appreciated.


Subject(s)
Polyadenylation , mRNA Cleavage and Polyadenylation Factors , Humans , mRNA Cleavage and Polyadenylation Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Membrane Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Immunity, Innate
8.
Vet Med Sci ; 10(3): e1366, 2024 05.
Article in English | MEDLINE | ID: mdl-38527110

ABSTRACT

BACKGROUND: DNA repair mechanisms are essential for tumorigenesis and disruption of HR mechanism is an important predisposing factor of human breast cancers (BC). PALB2 is an important part of the HR. There are similarities between canine mammary tumours (CMT) and BCs. As its human counterpart, PALB2 mutations could be a predisposing factor of CMT. OBJECTIVES: In this study, we aimed to investigate the impacts of PALB2 variants on tumorigenesis and canine mammary tumor (CMT) malignancy. METHODS: We performed Sanger sequencing to detect germline mutations in the WD40 domain of the canine PALB2 gene in CMT patients. We conducted in silico analysis to investigate the variants, and compared the germline PALB2 mutations in humans that cause breast cancer (BC) with the variants detected in dogs with CMT. RESULTS: We identified an intronic (c.3096+8C>G) variant, two exonic (p.A1050V and p.R1354R) variants, and a 3' UTR variant (c.4071T>C). Of these, p.R1354R and c.4071T>C novel variants were identified for the first time in this study. We found that the p.A1050V mutation had a significant effect. However, we could not determine sufficient similarity due to the differences in nucleotide/amino acid sequences between two species. Nonetheless, possible variants of human sequences in the exact location as their dog counterparts are associated with several cancer types, implying that the variants could be crucial for tumorigenesis in dogs. Our results did not show any effect of the variants on tumor malignancy. CONCLUSIONS: The current project is the first study investigating the relationship between the PALB2 gene WD40 domain and CMTs. Our findings will contribute to a better understanding of the pathogenic mechanism of the PALB2 gene in CMTs. In humans, variant positions in canines have been linked to cancer-related phenotypes such as familial BC, endometrial tumor, and hereditary cancer predisposition syndrome. The results of bioinformatics analyses should be investigated through functional tests or case-control studies.


Subject(s)
Dog Diseases , Fanconi Anemia Complementation Group N Protein , Mammary Neoplasms, Animal , Animals , Dogs , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/veterinary , Breast Neoplasms/pathology , Carcinogenesis , Dog Diseases/genetics , Dog Diseases/pathology , Fanconi Anemia Complementation Group N Protein/chemistry , Fanconi Anemia Complementation Group N Protein/genetics , Genetic Predisposition to Disease , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Mutation , Tumor Suppressor Proteins/genetics
9.
Methods Mol Biol ; 2761: 599-622, 2024.
Article in English | MEDLINE | ID: mdl-38427264

ABSTRACT

Road accidents, domestic falls, and persons associated with sports and military services exhibited the concussion or contusion type of traumatic brain injury (TBI) that resulted in chronic traumatic encephalopathy. In some instances, these complex neurological aberrations pose severe brain damage and devastating long-term neurological sequelae. Several preclinical (rat and mouse) TBI models simulate the clinical TBI endophenotypes. Moreover, many investigational neuroprotective candidates showed promising effects in these models; however, the therapeutic success of these screening candidates has been discouraging at various stages of clinical trials. Thus, a correct selection of screening model that recapitulates the clinical neurobiology and endophenotypes of concussion or contusion is essential. Herein, we summarize the advantages and caveats of different preclinical models adopted for TBI research. We suggest that an accurate selection of experimental TBI models may improve the translational viability of the investigational entity.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Contusions , Rats , Mice , Animals , Rodentia , Brain , Disease Models, Animal
10.
Int J Mol Sci ; 25(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397114

ABSTRACT

Lilium is a genus of important ornamental plants with many colouring pattern variations. Lilium auratum is the parent of Oriental hybrid lilies. A typical feature of L. auratum is the presence of red-orange special raised spots named papillae on the interior tepals. Unlike the usual raised spots, the papillae are slightly rounded or connected into sheets and usually have hairy tips. To elucidate the potential genes regulating papillae development in L. auratum, we performed high-throughput sequencing of its tepals at different stages. Genes involved in the flavonoid biosynthesis pathway were significantly enriched during the colouration of the papillae, and CHS, F3H, F3'H, FLS, DFR, ANS, and UFGT were significantly upregulated. To identify the key genes involved in the papillae development of L. auratum, we performed weighted gene coexpression network analysis (WGCNA) and further analysed four modules. In total, 51, 24, 1, and 6 hub genes were identified in four WGCNA modules, MEbrown, MEyellow, MEpurple, and MEred, respectively. Then, the coexpression networks were constructed, and important genes involved in trichome development and coexpressed with anthocyanin biosynthesis genes, such as TT8, TTG1, and GEM, were identified. These results indicated that the papillae are essentially trichomes that accumulate anthocyanins. Finally, we randomly selected 12 hub genes for qRT-PCR analysis to verify the accuracy of our RNA-Seq analysis. Our results provide new insights into the papillae development in L. auratum flowers.


Subject(s)
Lilium , Lilium/metabolism , Anthocyanins/metabolism , Gene Expression Profiling/methods , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism
11.
Pharmacol Ther ; 256: 108614, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401773

ABSTRACT

Histone methylation reader domains are protein modules that recognize specific histone methylation marks, such as methylated or unmethylated lysine or arginine residues on histones. These reader proteins play crucial roles in the epigenetic regulation of gene expression, chromatin structure, and DNA damage repair. Dysregulation of these proteins has been linked to various diseases, including cancer, neurodegenerative diseases, and developmental disorders. Therefore, targeting these proteins with chemical inhibitors has emerged as an attractive approach for therapeutic intervention, and significant progress has been made in this area. In this review, we will summarize the development of inhibitors targeting histone methylation readers, including MBT domains, chromodomains, Tudor domains, PWWP domains, PHD fingers, and WD40 repeat domains. For each domain, we will briefly discuss its identification and biological/biochemical functions, and then focus on the discovery of inhibitors tailored to target this domain, summarizing the property and potential application of most inhibitors. We will also discuss the structural basis for the potency and selectivity of these inhibitors, which will aid in further lead generation and optimization. Finally, we will also address the challenges and strategies involved in the development of these inhibitors. It should facilitate the rational design and development of novel chemical scaffolds and new targeting strategies for histone methylation reader domains with the help of this body of data.


Subject(s)
Histones , Neoplasms , Humans , Histones/metabolism , Epigenesis, Genetic , Methylation , Protein Domains , Protein Binding
12.
Int J Mol Sci ; 25(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38397079

ABSTRACT

Wilson's disease (WD) is an autosomal recessive disorder characterized by toxic accumulation of copper in the liver, brain, and other organs. The disease is caused by pathogenic variants in the ATP7B gene, which encodes a P-type copper transport ATPase. Diagnosing WD is associated with numerous difficulties due to the wide range of clinical manifestations and its unknown dependence on the physiological characteristics of the patient. This leads to a delay in the start of therapy and the subsequent deterioration of the patient's condition. However, in recent years, molecular genetic testing of patients using next generation sequencing (NGS) has been gaining popularity. This immediately affected the detection speed of WD. If, previously, the frequency of this disease was estimated at 1:35,000-45,000 people, now, when conducting large molecular genetic studies, the frequency is calculated as 1:7026 people. This certainly points to the problem of identifying WD patients. This review provides an update on the performance of epidemiological studies of WD and describes normal physiological functions of the protein and diversified disfunctions depending on pathogenic variants of the ATP7B gene. Future prospects in the development of WD genetic diagnostics are also discussed.


Subject(s)
Hepatolenticular Degeneration , Humans , Hepatolenticular Degeneration/epidemiology , Hepatolenticular Degeneration/genetics , Copper-Transporting ATPases/genetics , Copper , Brain , Mutation
13.
J Biomol Struct Dyn ; : 1-15, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38356140

ABSTRACT

Cancer is an aberrant differentiation of normal cells, characterized by uncontrolled growth and the potential to acquire invasive and aggressive properties that ultimately lead to metastasis. In the realm of scientific exploration, a multitude of pathways has been investigated and targeted by researchers, among which one specific pathway is recognized as WDR5-MYC. Continuous investigations and research show that WDR5-MYC is a therapeutic target protein. Hence, the discovery of naturally occurring compounds with anticancer properties has been suggested as a rapid and efficient alternative for the development of anticancerous therapeutics. A virtual screening approach was used to identify the most potent compounds from the NP-lib database at the MTiOpenScreen webserver against WDR5-MYC. This process yielded a total of 304 identified compounds. Subsequently, after screening, four potent compounds, namely Estrone (ZINC000003869899), Ethyl-1,2-benzanthracene (ZINC000003157052), Strychnine (ZINC000000119434) and 7H-DIBENZO [C, G] CARBAZOLE (ZINC000001562130), along with a cocrystallized 5-[4-(trifluoromethyl) phenyl]-1H-tetrazole inhibitor (QBP) as a reference ligand, were considered for stringent molecular docking. Thus, each compound exhibited significant docking energy between -8.2 and -7.7 kcal/mol and molecular contacts with essential residue Asn225, Lys250, Ser267 and Lys272 in the active pocket of WDR5-MYC against the QBP inhibitor (the native ligand QBP serves as a reference in the comparative analysis of docked complexes). The results support the potent compounds for drug-likeness and strong binding affinity with WDR5-MYC protein. Further, the stability of the selected compounds was predicted by molecular dynamics simulation (100 ns) contributed by intermolecular hydrogen bonds and hydrophobic interactions. This demonstrates the potential of the selected compounds to be used against breast cancer treatment.Communicated by Ramaswamy H. Sarma.

14.
BMC Genomics ; 25(1): 133, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38302866

ABSTRACT

BACKGROUND: WD40 proteins, which are highly prevalent in eukaryotes, play important roles in plant development and stress responses. However, systematic identification and exploration of WD40 proteins in tobacco have not yet been conducted. RESULTS: In this study, a total of 399 WD40 regulatory genes were identified in common tobacco (Nicotiana tabacum). Gene structure and motif analysis revealed structural and functional diversity among different clades of tobacco WD40 regulatory genes. The expansion of tobacco WD40 regulatory genes was mainly driven by segmental duplication and purifying selection. A potential regulatory network of NtWD40s suggested that NtWD40s might be regulated by miRNAs and transcription factors in various biological processes. Expression pattern analysis via transcriptome analysis and qRT-PCR revealed that many NtWD40s exhibited tissue-specific expression patterns and might be involved in various biotic and abiotic stresses. Furthermore, we have validated the critical role of NtTTG1, which was located in the nuclei of trichome cells, in enhancing the drought tolerance of tobacco plants. CONCLUSIONS: Our study provides comprehensive information to better understand the evolution of WD40 regulatory genes and their roles in different stress responses in tobacco.


Subject(s)
Drought Resistance , Nicotiana , Nicotiana/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Gene Expression Profiling , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Phylogeny
15.
Mol Cell Biochem ; 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38341833

ABSTRACT

BACKGROUND: WD repeat domain 12 (WDR12) plays a crucial role in the ribosome biogenesis pathway. However, its biological function in colorectal cancer (CRC) remains poorly understood. Therefore, this study aims to investigate the roles of WDR12 in the occurrence and progression of CRC, as well as its underlying mechanisms. METHODS: The expression of WDR12 was assessed through The Cancer Genome Atlas (TCGA) and the Human Protein Atlas (HPA) database. Functional experiments including Celigo assay, MTT assay, and Caspase-3/7 assay were conducted to validate the role of WDR12 in the malignant progression of CRC. Additionally, mRNA chip-sequencing and ingenuity pathway analysis (IPA) were performed to identify the molecular mechanism. RESULTS: WDR12 expression was significantly upregulated in CRC tissues compared to normal colorectal tissues. Knockdown of WDR12 reduced proliferation and promoted apoptosis of CRC cell lines in vitro and in vivo experiments. Furthermore, WDR12 expression had a significantly inverse association with diseases and functions, including cancer, cell cycle, DNA replication, recombination, cellular growth, proliferation and repair, as revealed by IPA analysis of mRNA chip-sequencing data. Moreover, the activation of cell cycle checkpoint kinases proteins in the cell cycle checkpoint control signaling pathway was enriched in the WDR12 knockdown CRC cell lines. Additionally, downregulation of rac family small GTPase 1 (RAC1) occurred upon WDR12 knockdown, thereby facilitating the proliferation and anti-apoptosis of CRC cells. CONCLUSION: Our study demonstrates that the WDR12/RAC1 axis promotes tumor progression in CRC. Therefore, WDR12 may serve as a novel oncogene and a potential target for individualized therapy in CRC. These findings provide an experimental foundation for the clinical development of drugs targeting the WDR12/RAC1 axis.

16.
Int J Mol Sci ; 25(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38279311

ABSTRACT

WD40 repeat proteins (WDRs) are present in all eukaryotes and include members that are implicated in numerous cellular activities. They act as scaffold proteins and thus as molecular "hubs" for protein-protein interactions, which mediate the assembly of multifunctional complexes that regulate key developmental processes in Arabidopsis thaliana, such as flowering time, hormonal signaling, and stress responses. Despite their importance, many aspects of their putative functions have not been elucidated yet. Here, we show that the late-flowering phenotype of the anthesis promoting factor 1 (aprf1) mutants is temperature-dependent and can be suppressed when plants are grown under mild heat stress conditions. To gain further insight into the mechanism of APRF1 function, we employed a co-immunoprecipitation (Co-IP) approach to identify its interaction partners. We provide the first interactome of APRF1, which includes proteins that are localized in several subcellular compartments and are implicated in diverse cellular functions. The dual nucleocytoplasmic localization of ARRF1, which was validated through the interaction of APRF1 with HEAT SHOCK PROTEIN 1 (HSP90.1) in the nucleus and with HSP90.2 in the cytoplasm, indicates a dynamic and versatile involvement of APRF1 in multiple biological processes. The specific interaction of APRF1 with the chaperon HSP90.1 in the nucleus expands our knowledge regarding the epigenetic regulation of flowering time in A. thaliana and further suggests the existence of a delicate thermoregulated mechanism during anthesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Epigenesis, Genetic , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Gene Expression Regulation, Plant , Flowers/metabolism
17.
Metab Brain Dis ; 39(1): 89-99, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37999884

ABSTRACT

Wilson disease (WD) is a rare hereditary copper metabolism disorder, wherein cognitive impairment is a common clinical symptom. Chrysophanol (CHR) is an active compound with neuroprotective effects. The study aims to investigate the neuroprotective effect of CHR in WD and attempted to understand the potential mechanisms. Network pharmacology analysis was applied to predict the core target genes of CHR against cognitive impairment in WD. The rats fed with copper-laden diet for 12 weeks, and the effect of CHR on the copper content in liver and 24-h urine, the learning and memory ability, the morphological changes and the apoptosis level of neurons in hippocampal CA1 region, the expression level of Bax, Bcl-2, Cleaved Caspase-3, p-PI3K, PI3K, p-AKT, and AKT proteins were detected. Network pharmacology analysis showed that cell apoptosis and PI3K-AKT signaling pathway might be the main participants in CHR against cognitive impairment in WD. The experiments showed that CHR could reduce the copper content in liver, increase the copper content in 24-h urine, improve the ability of the learning and memory, alleviate the damage and apoptosis level of hippocampal neurons, down-regulate the expression of Bax, Cleaved Caspase-3, and up-regulate the expressions of Bcl-2, p-PI3K/PI3K, p-AKT/AKT. These results suggested that CHR could alleviate cognitive impairment in WD by inhibiting cell apoptosis and triggering the PI3K-AKT signaling pathway.


Subject(s)
Anthraquinones , Cognitive Dysfunction , Hepatolenticular Degeneration , Humans , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Caspase 3/metabolism , Hepatolenticular Degeneration/drug therapy , Copper , bcl-2-Associated X Protein , Network Pharmacology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/genetics , Apoptosis
18.
Anal Sci ; 40(2): 309-317, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37980326

ABSTRACT

Arsenic is ranked as the first compound in the Substance Priority List 2023 by the Agency for Toxic Substances and Disease Registry (ATSDR). The most prominent entrance to the human body is through drinking water wherein the predominant species are arsenite and arsenate. The more toxic As(III) has rigorously threatened human health worldwide; hence, speciation and separation are the need of the hour. In this article, we have reported a simple method of arsenic speciation by wavelength dispersive X-ray fluorescence (WD-XRF) spectrometer. Valence to core (VtC) electronic transitions, i.e., AsKß2,5 fluorescence lines were used for arsenic speciation. This speciation study by WD-XRF entails direct measurement of activated alumina pellets containing arsenate and arsenite species adsorbed from water sample without separation of the trivalent and pentavalent species. This is the first report wherein the X-ray technique has been explored for speciation analysis of arsenic and the biggest advantage of the method lies in its applicability to direct analysis of synthesized nanotubes or other solid-phase extraction sorbents entrapping both the arsenic species. For determination of total arsenic using activated alumina as adsorbent, the most intense AsKα1,2 analytical lines were used and the instrumental limit of detection and the lower limit of quantification were 0.23 µg/L and 0.89 µg/L, respectively. For speciation, these limits were calculated to be 50 µg/L and 200 µg/L, respectively.


Subject(s)
Arsenic , Arsenites , Drinking Water , Humans , Drinking Water/chemistry , Arsenic/analysis , Arsenates , X-Rays , Spectrum Analysis , Aluminum Oxide
19.
Mol Cell ; 84(3): 552-569.e11, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38103557

ABSTRACT

Autophagy, an important quality control and recycling process vital for cellular homeostasis, is tightly regulated. The mTORC1 signaling pathway regulates autophagy under conditions of nutrient availability and scarcity. However, how mTORC1 activity is fine-tuned during nutrient availability to allow basal autophagy is unclear. Here, we report that the WD-domain repeat protein MORG1 facilitates basal constitutive autophagy by inhibiting mTORC1 signaling through Rag GTPases. Mechanistically, MORG1 interacts with active Rag GTPase complex inhibiting the Rag GTPase-mediated recruitment of mTORC1 to the lysosome. MORG1 depletion in HeLa cells increases mTORC1 activity and decreases autophagy. The autophagy receptor p62/SQSTM1 binds to MORG1, but MORG1 is not an autophagy substrate. However, p62/SQSTM1 binding to MORG1 upon re-addition of amino acids following amino acid's depletion precludes MORG1 from inhibiting the Rag GTPases, allowing mTORC1 activation. MORG1 depletion increases cell proliferation and migration. Low expression of MORG1 correlates with poor survival in several important cancers.


Subject(s)
GTP Phosphohydrolases , Monomeric GTP-Binding Proteins , Humans , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , HeLa Cells , Sequestosome-1 Protein/metabolism , Signal Transduction , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Lysosomes/metabolism , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism
20.
Int J Mol Sci ; 24(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37958759

ABSTRACT

The WD40 superfamily is widely found in eukaryotes and has essential subunits that serve as scaffolds for protein complexes. WD40 proteins play important regulatory roles in plant development and physiological processes, such as transcription regulation and signal transduction; it is also involved in anthocyanin biosynthesis. In rice, only OsTTG1 was found to be associated with anthocyanin biosynthesis, and evolutionary analysis of the WD40 gene family in multiple species is less studied. Here, a genome-wide analysis of the subfamily belonging to WD40-TTG1 was performed in nine AA genome species: Oryza sativa ssp. japonica, Oryza sativa ssp. indica, Oryza rufipogon, Oryza glaberrima, Oryza meridionalis, Oryza barthii, Oryza glumaepatula, Oryza nivara, and Oryza longistaminata. In this study, 383 WD40 genes in the Oryza genus were identified, and they were classified into four groups by phylogenetic analysis, with most members in group C and group D. They were found to be unevenly distributed across 12 chromosomes. A total of 39 collinear gene pairs were identified in the Oryza genus, and all were segmental duplications. WD40s had similar expansion patterns in the Oryza genus. Ka/Ks analyses indicated that they had undergone mainly purifying selection during evolution. Furthermore, WD40s in the Oryza genus have similar evolutionary patterns, so Oryza sativa ssp. indica was used as a model species for further analysis. The cis-acting elements analysis showed that many genes were related to jasmonic acid and light response. Among them, OsiWD40-26/37/42 contained elements of flavonoid synthesis, and OsiWD40-15 had MYB binding sites, indicating that they might be related to anthocyanin synthesis. The expression profile analysis at different stages revealed that most OsiWD40s were expressed in leaves, roots, and panicles. The expression of OsiWD40s was further analyzed by qRT-PCR in 9311 (indica) under various hormone treatments and abiotic stresses. OsiWD40-24 was found to be responsive to both phytohormones and abiotic stresses, suggesting that it might play an important role in plant stress resistance. And many OsiWD40s might be more involved in cold stress tolerance. These findings contribute to a better understanding of the evolution of the WD40 subfamily. The analyzed candidate genes can be used for the exploration of practical applications in rice, such as cultivar culture for colored rice, stress tolerance varieties, and morphological marker development.


Subject(s)
Oryza , Oryza/metabolism , Phylogeny , Anthocyanins/genetics , Anthocyanins/metabolism , Genome, Plant , Cold-Shock Response , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL