Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
Mol Genet Genomic Med ; 12(8): e2500, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39101447

ABSTRACT

BACKGROUND: Variations in the WWOX gene have been identified as the leading cause of several central nervous system disorders. However, most previous reports have focused on the description of clinical phenotype, neglecting functional verification. Herein, we presented a case of a patient with developmental epileptic encephalopathy (DEE) caused by WWOX gene variation. CASE PRESENTATION: Our patient was a 13-month-old girl with abnormal facial features, including facial hypotonia, arched eyebrows, a broad nose, and a depressed nasal bridge. She also had sparse and yellow hair, a low anterior hairline, and a short neck. Before the age of 8 months, she was suffering from mild seizures. Her developmental delay gradually worsened, and she suffered infantile spasms. After treatment with vigabatrin, seizures subsided. WWOX gene homozygous variation c.172+1G>C was identified using whole exome sequencing. Further minigene assay confirmed that the variation site affected splicing, causing protein truncation and affecting its function. CONCLUSION: Clinical phenotype and minigene results suggest that WWOX gene homozygous variation c.172+1G>C can cause severe DEE. We also concluded that vigabatrin can effectively treat seizures.


Subject(s)
Homozygote , Phenotype , Spasms, Infantile , WW Domain-Containing Oxidoreductase , Humans , WW Domain-Containing Oxidoreductase/genetics , Female , Infant , Spasms, Infantile/genetics , Spasms, Infantile/pathology , Anticonvulsants/therapeutic use , Mutation , Vigabatrin/therapeutic use , Tumor Suppressor Proteins
2.
Biochem Genet ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902482

ABSTRACT

With the emergence of combined surgical treatments, complemented by radiotherapy and chemotherapy, survival rates for esophageal cancer patients have improved, but the overall 5-year survival rate remains low. Therefore, there is an urgent need for further research into the pathogenesis of esophageal cancer and the development of effective prevention, diagnosis, and treatment methods. We initially utilized the GeneCards and DisGeNET databases to identify the esophageal cancer-associated gene WWOX (WW domain containing oxidoreductase). Subsequently, we employed RT-qPCR (Reverse transcription-quantitative PCR) and WB (western blot) to investigate the differential expression of WWOX in HEEC (human esophageal endotheliocytes) and various ESCC (esophageal squamous cell carcinoma) cell lines. We further evaluated alterations in cell proliferation, migration and apoptosis via CCK8 (cell counting kit-8) and clonal formation, Transwell assays and flow cytometry. Additionally, we investigated changes in protein expressions related to the Hippo signaling pathway (YAP/TEAD) through RT-qPCR and WB. Lastly, to further elucidate the regulatory mechanism of WWOX in ESCC, we performed exogenous YAP rescue experiments in ESCC cells with WWOX overexpression to investigate the alterations in apoptosis and proliferation. Results indicated that the expression of WWOX in ESCC was significantly downregulated. Subsequently, upon overexpression of WWOX, ESCC cell proliferation and migration decreased, while apoptosis increased. Additionally, the expression of YAP and TEAD were reduced. However, the sustained overexpression of YAP attenuated the inhibitory effects of WWOX on ESCC cell malignancy. In conclusion, WWOX exerts inhibitory effects on the proliferation and migration of ESCC and promotes apoptosis by suppressing the Hippo signaling pathway. These findings highlight the potential of WWOX as a novel target for the diagnosis and treatment of esophageal cancer.

3.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L687-L697, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38563965

ABSTRACT

Chronic cigarette smoke exposure decreases lung expression of WWOX which is known to protect the endothelial barrier during infectious models of acute respiratory distress syndrome (ARDS). Proteomic analysis of WWOX-silenced endothelial cells (ECs) was done using tandem mass tag mass spectrometry (TMT-MS). WWOX-silenced ECs as well as those isolated from endothelial cell Wwox knockout (EC Wwox KO) mice were subjected to cyclic stretch (18% elongation, 0.5 Hz, 4 h). Cellular lysates and media supernatant were harvested for assays of cellular signaling, protein expression, and cytokine release. These were repeated with dual silencing of WWOX and zyxin. Control and EC Wwox KO mice were subjected to high tidal volume ventilation. Bronchoalveolar lavage fluid and mouse lung tissue were harvested for cellular signaling, cytokine secretion, and histological assays. TMT-MS revealed upregulation of zyxin expression during WWOX knockdown which predicted a heightened inflammatory response to mechanical stretch. WWOX-silenced ECs and ECs isolated from EC Wwox mice displayed significantly increased cyclic stretch-mediated secretion of various cytokines (IL-6, KC/IL-8, IL-1ß, and MCP-1) relative to controls. This was associated with increased ERK and JNK phosphorylation but decreased p38 mitogen-activated kinases (MAPK) phosphorylation. EC Wwox KO mice subjected to VILI sustained a greater degree of injury than corresponding controls. Silencing of zyxin during WWOX knockdown abrogated stretch-induced increases in IL-8 secretion but not in IL-6. Loss of WWOX function in ECs is associated with a heightened inflammatory response during mechanical stretch that is associated with increased MAPK phosphorylation and appears, in part, to be dependent on the upregulation of zyxin.NEW & NOTEWORTHY Prior tobacco smoke exposure is associated with an increased risk of acute respiratory distress syndrome (ARDS) during critical illness. Our laboratory is investigating one of the gene expression changes that occurs in the lung following smoke exposure: WWOX downregulation. Here we describe changes in protein expression associated with WWOX knockdown and its influence on ventilator-induced ARDS in a mouse model.


Subject(s)
Endothelial Cells , Inflammation , Mice, Knockout , Ventilator-Induced Lung Injury , WW Domain-Containing Oxidoreductase , Animals , WW Domain-Containing Oxidoreductase/metabolism , WW Domain-Containing Oxidoreductase/genetics , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology , Inflammation/metabolism , Inflammation/pathology , Ventilator-Induced Lung Injury/metabolism , Ventilator-Induced Lung Injury/pathology , Ventilator-Induced Lung Injury/genetics , Cytokines/metabolism , Mice, Inbred C57BL , Gene Knockdown Techniques , Male , Lung/metabolism , Lung/pathology , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics
4.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38542478

ABSTRACT

We reported that a 31-amino-acid Zfra protein (zinc finger-like protein that regulates apoptosis) blocks neurodegeneration and cancer growth. Zfra binds WW domain-containing oxidoreductase (WWOX) to both N- and C-termini, which leads to accelerated WWOX degradation. WWOX limits the progression of neurodegeneration such as Alzheimer's disease (AD) by binding tau and tau-hyperphosphorylating enzymes. Similarly, Zfra binds many protein targets and accelerates their degradation independently of ubiquitination. Furthermore, Zfra4-10 peptide strongly prevents the progression of AD-like symptoms in triple-transgenic (3xTg) mice during aging. Zfra4-10 peptide restores memory loss in 9-month-old 3xTg mice by blocking the aggregation of a protein cascade, including TPC6AΔ, TIAF1, and SH3GLB2, by causing aggregation of tau and amyloid ß. Zfra4-10 also suppresses inflammatory NF-κB activation. Zfra-activated Hyal-2+ CD3- CD19- Z cells in the spleen, via Hyal-2/WWOX/Smad4 signaling, are potent in cancer suppression. In this perspective review, we provide mechanistic insights regarding how Zfra overrides WWOX to induce cancer suppression and retard AD progression via Z cells.


Subject(s)
Amyloid beta-Peptides , Neoplasms , Mice , Animals , WW Domain-Containing Oxidoreductase/genetics , WW Domain-Containing Oxidoreductase/metabolism , Apoptosis , Signal Transduction/physiology , Neoplasms/metabolism
5.
Am J Med Genet A ; 194(7): e63575, 2024 07.
Article in English | MEDLINE | ID: mdl-38407561

ABSTRACT

WOREE syndrome is an early infantile epileptic encephalopathy characterized by drug-resistant seizures and severe psychomotor developmental delays. We report a case of a WWOX splice-site mutation with uniparental isodisomy. A 1-year and 7-month-old girl presented with nystagmus and epileptic seizures from early infancy, with no fixation or pursuit of vision. Physical examination revealed small deformities, such as swelling of both cheeks, folded fingers, rocking feet, and scoliosis. Brain imaging revealed slight hypoplasia of the cerebrum. Electroencephalogram showed focal paroxysmal discharges during the interictal phase of seizures. Vitamin B6 and zonisamide were administered for early infantile epileptic encephalopathy; however, the seizures were not relieved. Despite altering the type and dosage of antiepileptic drugs and ACTH therapy, the seizures were intractable. Whole-exome analysis revealed the homozygosity of WWOX(NM_016373.4):c.516+1G>A. The WWOX mRNA sequencing using peripheral blood RNA confirmed that exon 5 was homozygously deleted. Based on these results, the patient was diagnosed with WOREE syndrome at 5 months. The WWOX variant found in this study is novel and has never been reported before. WOREE syndrome being extremely rare, further case series and analyses of its pathophysiology are warranted.


Subject(s)
Mutation , RNA Splice Sites , Spasms, Infantile , Uniparental Disomy , WW Domain-Containing Oxidoreductase , Humans , Female , Infant , WW Domain-Containing Oxidoreductase/genetics , Spasms, Infantile/genetics , Spasms, Infantile/drug therapy , Spasms, Infantile/pathology , Uniparental Disomy/genetics , Uniparental Disomy/pathology , RNA Splice Sites/genetics , Mutation/genetics , Phenotype , Exome Sequencing , Electroencephalography , Tumor Suppressor Proteins
6.
BMC Med Genomics ; 16(1): 291, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37974179

ABSTRACT

BACKGROUND: Biallelic loss-of-function variants in WWOX cause WWOX-related epileptic encephalopathy (WOREE syndrome), which has been reported in 60 affected individuals to date. In this study, we report on an affected individual with WOREE syndrome who presented with early-onset refractory seizures and global neurodevelopmental delay and died at the age of two and a half years. METHODS: We present clinical and molecular findings in the affected individual, including biallelic pathogenic variants in the WWOX gene. We employed different molecular approaches, such as whole exome sequencing, quantitative real-time polymerase chain reaction (qPCR), and whole-genome sequencing, to identify the genetic variants. The breakpoints were determined through gap PCR and Sanger sequencing. RESULT: Whole exome sequencing revealed homozygous exon 6 deletion in the WWOX gene in the proband. Quantitative real-time PCR confirmed that the parents were heterozygous carriers of exon 6 deletion. However, using whole-genome sequencing, we identified three larger deletions (maternal allele with exon 6-8 deletion and paternal allele with two deletions in proximity one in intron 5 and the other in exon 6) involving the WWOX gene in the proband, with deletion sizes of 13,261 bp, 53,904 bp, and 177,200 bp. The exact breakpoints were confirmed through gap PCR and Sanger sequencing. We found that the proband inherited the discontinuous deletion of intron 5 and exon 6 from the father, and the exons 6-8 deletion from the mother using gap PCR. CONCLUSION: Our findings extend the variant spectrum of WOREE syndrome and support the critical role of the WWOX gene in neural development.


Subject(s)
Mothers , Tumor Suppressor Proteins , Female , Humans , Child, Preschool , WW Domain-Containing Oxidoreductase/genetics , Tumor Suppressor Proteins/genetics , Syndrome , Real-Time Polymerase Chain Reaction , Gene Deletion
7.
Front Neurosci ; 17: 1260409, 2023.
Article in English | MEDLINE | ID: mdl-37781246

ABSTRACT

Introduction: Glioblastoma (GBM) is notorious for its clinical and molecular heterogeneity, contributing to therapeutic failure and a grim prognosis. WWOX is one of the tumor suppressor genes important in nervous tissue or related pathologies, which was scarcely investigated in GBM for reliable associations with prognosis or disease progression despite known alterations. Recently, we observed a phenotypic heterogeneity between GBM cell lines (U87MG, T98G, U251MG, DBTRG-05MG), among which the anti-GBM activity of WWOX was generally corresponding, but colony growth and formation were inconsistent in DBTRG-05MG. This prompted us to investigate the molecular landscapes of these cell lines, intending to translate them into the clinical context. Methods: U87MG/T98G/U251MG/DBTRG-05MG were subjected to high-throughput sequencing, and obtained data were explored via weighted gene co-expression network analysis, differential expression analysis, functional annotation, and network building. Following the identification of the most relevant DBTRG-distinguishing driver genes, data from GBM patients were employed for, e.g., differential expression analysis, survival analysis, and principal component analysis. Results: Although most driver genes were unique for each cell line, some were inversely regulated in DBTRG-05MG. Alongside driver genes, the differentially-expressed genes were used to build a WWOX-related network depicting protein-protein interactions in U87MG/T98G/U251MG/DBTRG-05MG. This network revealed processes distinctly regulated in DBTRG-05MG, e.g., microglia proliferation or neurofibrillary tangle assembly. POLE4 and HSF2BP were selected as DBTRG-discriminating driver genes based on the gene significance, module membership, and fold-change. Alongside WWOX, POLE4 and HSF2BP expression was used to stratify patients into cell lines-resembling groups that differed in, e.g., prognosis and treatment response. Some differences from a WWOX-related network were certified in patients, revealing genes that clarify clinical outcomes. Presumably, WWOX overexpression in DBTRG-05MG resulted in expression profile change resembling that of patients with inferior prognosis and drug response. Among these patients, WWOX may be inaccessible for its partners and does not manifest its anti-cancer activity, which was proposed in the literature but not regarding glioblastoma or concerning POLE4 and HSF2BP. Conclusion: Cell lines data enabled the identification of patients among which, despite high expression of WWOX tumor suppressor, no advantageous outcomes were noted due to the cancer-promoting profile ensured by other genes.

8.
Front Genet ; 14: 1214968, 2023.
Article in English | MEDLINE | ID: mdl-37519886

ABSTRACT

Introduction: The discovery of non-coding RNA (ncRNA) dates back to the pre-genomics era, but the progress in this field is still dynamic and leverages current post-genomics solutions. WWOX is a global gene expression modulator that is scarcely investigated for its role in regulating cancer-related ncRNAs. In bladder cancer (BLCA), the link between WWOX and ncRNA remains unexplored. The description of AP-2α and AP-2γ transcription factors, known as WWOX-interacting proteins, is more commonplace regarding ncRNA but still merits investigation. Therefore, this in vitro and in silico study aimed to construct an ncRNA-containing network with WWOX/AP-2 and to investigate the most relevant observation in the context of BLCA cell lines and patients. Methods: RT-112, HT-1376, and CAL-29 cell lines were subjected to two stable lentiviral transductions. High-throughput sequencing of cellular variants (deposited in the Gene Expression Omnibus database under the GSE193659 record) enabled the investigation of WWOX/AP-2-dependent differences using various bioinformatics tools (e.g., limma-voom, FactoMineR, multiple Support Vector Machine Recursive Feature Elimination (mSVM-RFE), miRDB, Arena-Idb, ncFANs, RNAhybrid, TargetScan, Protein Annotation Through Evolutionary Relationships (PANTHER), Gene Transcription Regulation Database (GTRD), or Evaluate Cutpoints) and repositories such as The Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia. The most relevant observations from cap analysis gene expression sequencing (CAGE-seq) were confirmed using real-time PCR, whereas TCGA data were validated using the GSE31684 cohort. Results: The first stage of the whole study justified focusing solely on WWOX rather than on WWOX combined with AP-2α/γ. The most relevant observation of the developed ncRNA-containing network was LINC01137, i.e., long non-coding RNAs (lncRNAs) that unraveled the core network containing UPF1, ZC3H12A, LINC01137, WWOX, and miR-186-5p, the last three being a novel lncRNA/miRNA/mRNA axis. Patients' data confirmed the LINC01137/miR-186-5p/WWOX relationship and provided a set of dependent genes (i.e., KRT18, HES1, VCP, FTH1, IFITM3, RAB34, and CLU). Together with the core network, the gene set was subjected to survival analysis for both TCGA-BLCA and GSE31684 patients, which indicated that the increased expression of WWOX or LINC01137 is favorable, similar to their combination with each other (WWOX↑ and LINC01137↑) or with MIR186 (WWOX↑/LINC01137↑ but MIR186↓). Conclusion: WWOX is implicated in the positive feedback loop with LINC01137 that sponges WWOX-targeting miR-186-5p. This novel WWOX-containing lncRNA/miRNA/mRNA axis should be further investigated to depict its relationships in a broader context, which could contribute to BLCA research and treatment.

9.
Int J Med Sci ; 20(7): 969-975, 2023.
Article in English | MEDLINE | ID: mdl-37324196

ABSTRACT

The downregulation of WW domain-containing oxidoreductase (WWOX), a tumor suppressor gene, is associated with the tumorigenesis and poor prognosis of various cancers. In this study, we investigated the associations between the polymorphisms of WWOX, clinicopathologic features of prostate cancer (PCa), and risk of postoperative biochemical recurrence (BCR). We evaluated the effects of five single-nucleotide polymorphisms (SNPs) of WWOX on the clinicopathologic features of 578 patients with PCa. The risk of postoperative BCR was 2.053-fold higher in patients carrying at least one "A" allele in WWOX rs12918952 than in those with homozygous G/G. Furthermore, patients with at least one polymorphic "T" allele in WWOX rs11545028 had an elevated (1.504-fold) risk of PCa with seminal vesicle invasion. In patients with postoperative BCR, the risks of an advanced Gleason grade and clinical metastasis were 3.317- and 5.259-fold higher in patients carrying at least one "G" allele in WWOX rs3764340 than in other patients. Our findings indicate the WWOX SNPs are significantly associated with highly aggressive pathologic features of PCa and an elevated risk of post-RP biochemical recurrence.


Subject(s)
Prostatic Neoplasms , Seminal Vesicles , Male , Humans , WW Domain-Containing Oxidoreductase/genetics , Seminal Vesicles/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/surgery , Prostatic Neoplasms/pathology , Prostate/pathology , Prostatectomy , Prostate-Specific Antigen , Neoplasm Recurrence, Local/pathology , Tumor Suppressor Proteins/genetics
11.
Biology (Basel) ; 12(3)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36979157

ABSTRACT

Following the discovery of WWOX, research has moved in many directions, including the role of this putative tumor suppressor in the central nervous system and related diseases. The task of determining the nature of WWOX in glioblastoma (GBM) is still considered to be at the initial stage; however, the influence of this gene on the GBM malignant phenotype has already been reported. Because most of the available in vitro research does not consider several cellular GBM models or a wide range of investigated biological assays, the present study aimed to determine the main processes by which WWOX exhibits anticancer properties in GBM, while taking into account the phenotypic heterogeneity between cell lines. Ectopic WWOX overexpression was studied in T98G, DBTRG-05MG, U251MG, and U87MG cell lines that were compared with the use of assays investigating cell viability, proliferation, apoptosis, adhesion, clonogenicity, three-dimensional and anchorage-independent growth, and invasiveness. Observations presenting the antineoplastic properties of WWOX were consistent for T98G, U251MG, and U87MG. Increased proliferation and tumor growth were noted in WWOX-overexpressing DBTRG-05MG cells. A possible explanation for this, arrived at via bioinformatics tools, was linked to the TARDBP transcription factor and expression differences of USP25 and CPNE2 that regulate EGFR surface abundance. Collectively, and despite various cell line-specific circumstances, WWOX exhibits its anticancer nature mainly via a reduction of cell viability and invasiveness of glioblastoma.

12.
Epilepsia ; 64(5): 1351-1367, 2023 05.
Article in English | MEDLINE | ID: mdl-36779245

ABSTRACT

OBJECTIVE: WWOX is an autosomal recessive cause of early infantile developmental and epileptic encephalopathy (WWOX-DEE), also known as WOREE (WWOX-related epileptic encephalopathy). We analyzed the epileptology and imaging features of WWOX-DEE, and investigated genotype-phenotype correlations, particularly with regard to survival. METHODS: We studied 13 patients from 12 families with WWOX-DEE. Information regarding seizure semiology, comorbidities, facial dysmorphisms, and disease outcome were collected. Electroencephalographic (EEG) and brain magnetic resonance imaging (MRI) data were analyzed. Pathogenic WWOX variants from our cohort and the literature were coded as either null or missense, allowing individuals to be classified into one of three genotype classes: (1) null/null, (2) null/missense, (3) missense/missense. Differences in survival outcome were estimated using the Kaplan-Meier method. RESULTS: All patients experienced multiple seizure types (median onset = 5 weeks, range = 1 day-10 months), the most frequent being focal (85%), epileptic spasms (77%), and tonic seizures (69%). Ictal EEG recordings in six of 13 patients showed tonic (n = 5), myoclonic (n = 2), epileptic spasms (n = 2), focal (n = 1), and migrating focal (n = 1) seizures. Interictal EEGs demonstrated slow background activity with multifocal discharges, predominantly over frontal or temporo-occipital regions. Eleven of 13 patients had a movement disorder, most frequently dystonia. Brain MRIs revealed severe frontotemporal, hippocampal, and optic atrophy, thin corpus callosum, and white matter signal abnormalities. Pathogenic variants were located throughout WWOX and comprised both missense and null changes including five copy number variants (four deletions, one duplication). Survival analyses showed that patients with two null variants are at higher mortality risk (p-value = .0085, log-rank test). SIGNIFICANCE: Biallelic WWOX pathogenic variants cause an early infantile developmental and epileptic encephalopathy syndrome. The most common seizure types are focal seizures and epileptic spasms. Mortality risk is associated with mutation type; patients with biallelic null WWOX pathogenic variants have significantly lower survival probability compared to those carrying at least one presumed hypomorphic missense pathogenic variant.


Subject(s)
Brain Diseases , Epileptic Syndromes , Spasms, Infantile , Humans , Brain Diseases/genetics , Spasms, Infantile/diagnostic imaging , Spasms, Infantile/genetics , Spasms, Infantile/complications , Seizures/diagnostic imaging , Seizures/genetics , Seizures/complications , Brain/pathology , Epileptic Syndromes/complications , Electroencephalography , Spasm , WW Domain-Containing Oxidoreductase/genetics , WW Domain-Containing Oxidoreductase/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
13.
Prog Neurobiol ; 223: 102425, 2023 04.
Article in English | MEDLINE | ID: mdl-36828035

ABSTRACT

WWOX gene loss-of-function (LoF) has been associated with neuropathologies resulting in developmental, epileptic, and ataxic phenotypes of varying severity based on the level of WWOX dysfunction. WWOX gene biallelic germline variant p.Pro47Thr (P47T) has been causally associated with a new form of autosomal recessive cerebellar ataxia with epilepsy and intellectual disability (SCAR12, MIM:614322). This mutation affecting the WW1 protein binding domain of WWOX, impairs its interaction with canonical proline-proline-X-tyrosine motifs in partner proteins. We generated a mutant knock-in mouse model of Wwox P47T mutation that phenocopies human SCAR12. WwoxP47T/P47T mice displayed epilepsy, profound social behavior and cognition deficits, and poor motor coordination, and unlike KO models that survive only for 1 month, live beyond 1 year of age. These deficits progressed with age and mice became practically immobile, suggesting severe cerebellar dysfunction. WwoxP47T/P47T mice brains revealed signs of progressive neuroinflammation with elevated astro-microgliosis that increased with age. Cerebellar cortex displayed significantly reduced molecular and granular layer thickness and a strikingly reduced number of Purkinje cells with degenerated dendrites. Transcriptome profiling from various brain regions of WW domain LoF mice highlighted widespread changes in neuronal and glial pathways, enrichment of bioprocesses related to neuroinflammation, and severe cerebellar dysfunction. Our results show significant pathobiological effects and potential mechanisms through which WWOX partial LoF leads to epilepsy, cerebellar neurodegeneration, neuroinflammation, and ataxia. Additionally, the mouse model described here will be a useful tool to understand the role of WWOX in common neurodegenerative conditions in which this gene has been identified as a novel risk factor.


Subject(s)
Cerebellar Diseases , Epilepsy , Neurodegenerative Diseases , Humans , Mice , Animals , Neuroinflammatory Diseases , Mutation , Phenotype , WW Domain-Containing Oxidoreductase/genetics , Tumor Suppressor Proteins/genetics
14.
Int Immunopharmacol ; 115: 109671, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36621327

ABSTRACT

Acute lung injury (ALI) is characterized by acute systemic inflammatory responses that may lead to severe acute respiratory distress syndrome (ARDS). The clinical course of ALI/ARDS is variable; however, it has been reported that lipopolysaccharides (LPS) play a role in its development. The fragile chromosomal site gene WWOX is highly sensitive to genotoxic stress induced by environmental exposure and is an important candidate gene for exposure-related lung disease research. However, the expression of WWOX and its role in LPS-induced ALI still remain unidentified. This study investigated the expression of WWOX in mouse lung and epithelial cells and explored the role of WWOX in LPS-induced ALI model in vitro and in vivo. In addition, we explored one of the possible mechanisms by which WWOX alleviates ALI from the perspective of autophagy. Here, we observed that LPS stimulation reduced the expression of WWOX and the autophagy marker microtubule-associated protein 1 light chain 3ß-II (MAP1LC3B/LC3B) in mouse lung epithelial and human epithelial (H292) cells. Overexpression of WWOX led to the activation of autophagy and inhibited inflammatory responses in LPS-induced ALI cells and mouse model. More importantly, we found that WWOX interacts with mechanistic target of rapamycin [serine/threonine kinase] (mTOR) and regulates mTOR and ULK-1 signaling-mediated autophagy. Thus, reduced WWOX levels were associated with LPS-induced ALI. WWOX can activate autophagy in lung epithelial cells and protect against LPS-induced ALI, which is partly related to the mTOR-ULK1 signaling pathway.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Mice , Animals , Humans , Lipopolysaccharides/toxicity , TOR Serine-Threonine Kinases/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Lung/metabolism , Inflammation/metabolism , Respiratory Distress Syndrome/metabolism , Autophagy , WW Domain-Containing Oxidoreductase/genetics , WW Domain-Containing Oxidoreductase/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
15.
Int J Mol Sci ; 25(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38203337

ABSTRACT

Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperproliferation, aberrant differentiation of keratinocytes, and dysregulated immune responses. WW domain-containing oxidoreductase (WWOX) is a non-classical tumor suppressor gene that regulates multiple cellular processes, including proliferation, apoptosis, and migration. This study aimed to explore the possible role of WWOX in the pathogenesis of psoriasis. Immunohistochemical analysis showed that the expression of WWOX was increased in epidermal keratinocytes of both human psoriatic lesions and imiquimod-induced mice psoriatic model. Immortalized human epidermal keratinocytes were transduced with a recombinant adenovirus expressing microRNA specific for WWOX to downregulate its expression. Inflammatory responses were detected using Western blotting, real-time quantitative reverse transcription polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay. In human epidermal keratinocytes, WWOX knockdown reduced nuclear factor-kappa B signaling and levels of proinflammatory cytokines induced by polyinosinic: polycytidylic acid [(poly(I:C)] in vitro. Furthermore, calcium chelator and protein kinase C (PKC) inhibitors significantly reduced poly(I:C)-induced inflammatory reactions. WWOX plays a role in the inflammatory reaction of epidermal keratinocytes by regulating calcium and PKC signaling. Targeting WWOX could be a novel therapeutic approach for psoriasis in the future.


Subject(s)
Dermatitis , Psoriasis , Animals , Humans , Mice , Disease Models, Animal , Inflammation , NF-kappa B , Psoriasis/chemically induced , Psoriasis/genetics , Tumor Suppressor Proteins/genetics , WW Domain-Containing Oxidoreductase/genetics
16.
Front Pediatr ; 11: 1301166, 2023.
Article in English | MEDLINE | ID: mdl-38161429

ABSTRACT

The WWOX gene encodes a 414-amino-acid protein composed of two N-terminal WW domains and a C-terminal short-chain dehydrogenase/reductase (SDR) domain. WWOX protein is highly conserved among species and mainly expressed in the cerebellum, cerebral cortex, brain stem, thyroid, hypophysis, and reproductive organs. It plays a crucial role in the biology of the central nervous system, and it is involved in neuronal development, migration, and proliferation. Biallelic pathogenic variants in WWOX have been associated with an early infantile epileptic encephalopathy known as WOREE syndrome. Both missense and null variants have been described in affected patients, leading to a reduction in protein function and stability. The most severe WOREE phenotypes have been related to biallelic null/null variants, associated with the complete loss of function of the protein. All affected patients showed brain anomalies on magnetic resonance imaging (MRI), suggesting the pivotal role of WWOX protein in brain homeostasis and developmental processes. We provided a literature review, exploring both the clinical and radiological spectrum related to WWOX pathogenic variants, described to date. We focused on neuroradiological findings to better delineate the WOREE phenotype with diagnostic and prognostic implications.

17.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498839

ABSTRACT

When WWOX is downregulated in middle age, aggregation of a protein cascade, including TRAPPC6AΔ (TPC6AΔ), TIAF1, and SH3GLB2, may start to occur, and the event lasts more than 30 years, which results in amyloid precursor protein (APP) degradation, amyloid beta (Aß) generation, and neurodegeneration, as shown in Alzheimer's disease (AD). Here, by treating neuroblastoma SK-N-SH cells with neurotoxin MPP+, upregulation and aggregation of TPC6AΔ, along with aggregation of TIAF1, SH3GLB2, Aß, and tau, occurred. MPP+ is an inducer of Parkinson's disease (PD), suggesting that TPC6AΔ is a common initiator for AD and PD pathogenesis. Zfra, a 31-amino-acid zinc finger-like WWOX-binding protein, is known to restore memory deficits in 9-month-old triple-transgenic (3xTg) mice by blocking the aggregation of TPC6AΔ, SH3GLB2, tau, and amyloid ß, as well as inflammatory NF-κB activation. The Zfra4-10 peptide exerted a strong potency in preventing memory loss during the aging of 3-month-old 3xTg mice up to 9 months, as determined by a novel object recognition task (ORT) and Morris water maize analysis. Compared to age-matched wild type mice, 11-month-old Wwox heterozygous mice exhibited memory loss, and this correlates with pT12-WWOX aggregation in the cortex. Together, aggregation of pT12-WWOX may link to TPC6AΔ aggregation for AD progression, with TPC6AΔ aggregation being a common initiator for AD and PD progression.


Subject(s)
Adaptor Proteins, Signal Transducing , Alzheimer Disease , Amyloid beta-Peptides , Parkinson Disease , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Disease Models, Animal , Memory Disorders , Mice, Transgenic , Signal Transduction , tau Proteins/metabolism , Parkinson Disease/metabolism
18.
Molecules ; 27(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36364214

ABSTRACT

The tumor-suppressor gene, WW domain-containing oxidoreductase (WWOX), has been found to be lost in various types of cancers. ROS result as a tightly regulated signaling process for the induction of cell senescence. The aim of this study was to investigate the role of WWOX in the regulation of ROS and cell senescence, which is intriguing in terms of the possible mechanism of WWOX contributing to bladder cancer. In this study, we used the AY-27 rat bladder tumor cell line and F344 orthotopic bladder tumor models to reveal the pro-senescence effects of WWOX and the corresponding underlying mechanism in bladder cancer. WWOX-overexpressing lentivirus (LV-WWOX) remarkably stimulated cellular senescence, including increased senescence-associated secretory phenotype (SASP) formation, enlarged cellular morphology, and induced SA-ß-Gal-positive staining. A further mechanism study revealed that the pro-senescence effect of LV-WWOX was dependent on increased intercellular reactive oxygen species (ROS) generation, which subsequently triggered p21/p27. Moreover, LV-WWOX significantly inhibited the tumor size by 30.49% in the F344/AY-27 rat orthotopic model (p < 0.05) by activating cellular senescence. The expression of p21 was significantly enhanced in the orthotopic bladder tumors under WWOX treatment. The orthotopic bladder tumors in the groups of rats verified the effect in vivo. Our study suggests that WWOX, an ROS-dependent senescence-induced gene, could be further studied for its therapeutic implications in bladder cancer.


Subject(s)
Urinary Bladder Neoplasms , Rats , Animals , Urinary Bladder Neoplasms/genetics , Reactive Oxygen Species/metabolism , Oxidoreductases/metabolism , Rats, Inbred F344 , Cellular Senescence/genetics , Cell Line, Tumor , WW Domain-Containing Oxidoreductase/genetics , Tumor Suppressor Proteins/genetics
19.
Biomolecules ; 12(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36291747

ABSTRACT

Glaucomatous optic neuropathy is a common cause for blindness. An elevated intraocular pressure is the main risk factor, but also a contribution of the immune system seems likely. In the experimental autoimmune glaucoma model used here, systemic immunization with an optic nerve homogenate antigen (ONA) leads to retinal ganglion cell (RGC) and optic nerve degeneration. We processed retinae for quantitative real-time PCR and immunohistology 28 days after immunization. Furthermore, we performed mRNA profiling in this model for the first time. We detected a significant RGC loss in the ONA retinae. This was accompanied by an upregulation of mRNA expression of genes belonging to the heat shock protein family. Furthermore, mRNA expression levels of the genes of the immune system, such as C1qa, C1qb, Il18, and Nfkb1, were upregulated in ONA animals. After laser microdissection, inner retinal layers were used for mRNA microarrays. Nine of these probes were significantly upregulated in ONA animals (p < 0.05), including Hba-a1 and Cxcl10, while fifteen probes were significantly downregulated in ONA animals (p < 0.05), such as Gdf15 and Wwox. Taken together, these findings provide further insights into the pivotal role of the immune response in glaucomatous optic neuropathy and could help to identify novel diagnostic or therapeutic strategies.


Subject(s)
Glaucoma , Optic Nerve Diseases , Animals , Interleukin-18/metabolism , Up-Regulation , Heat-Shock Proteins/metabolism , RNA, Messenger/genetics , Glaucoma/genetics , Glaucoma/metabolism
20.
Life Sci ; 310: 121086, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36257459

ABSTRACT

Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most common cause of cancer-related deaths. The WW-domain containing oxidoreductase (WWOX) protein suppresses carcinogenesis and its absence is closely related to aggressive HCC phenotypes. In this study, by using SPR analysis, cell viability assay and xenograft mice models, we found that albendazole (ABZ), a safe and effective anthelmintic drug, exhibited the binding affinity with WWOX protein and potential inhibition effect on HCC cells in vitro and in vivo. Overexpression and knockdown of WWOX confirmed that the suppression of HCC by ABZ. Flow cytometric analysis, western blotting analysis and Co-IP were conducted to study the mechanism of ABZ. Our data showed that ABZ regulated the interaction between WWOX and its binding proteins including p53 and C-MYC. Furthermore, ABZ triggered p53-induced intrinsic apoptosis and suppressed EMT-mediated migration by C-MYC/Fibronectin axis. In addition, ∆NP73 expression was significantly inhibited by ABZ, which further sensitized p53-induced intrinsic apoptosis and cell cycle arrest. In summary, ABZ could suppress the proliferation and migration of HCC cells by regulating WWOX-dependent signaling pathway.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , Carcinoma, Hepatocellular/metabolism , Albendazole/pharmacology , Liver Neoplasms/metabolism , Tumor Suppressor Protein p53 , Cell Line, Tumor , Apoptosis , Cell Proliferation , WW Domain-Containing Oxidoreductase/metabolism , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL