Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
Environ Monit Assess ; 196(10): 928, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39266934

ABSTRACT

Sediment loss and export pose significant global environmental issues, profoundly affecting water quality, soil fertility, and ecosystem stability, particularly in vulnerable mountain ecosystems like the Indian Himalayas. The present study used remote sensing data and the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) sediment delivery ratio (SDR) model to analyze spatial-temporal variations in soil loss (SL), sediment export (SE), and sediment retention (SR) capabilities in the South Shimla watershed, Himachal Pradesh, India, from 1993 to 2023. The findings showed significant changes in land use and land cover (LULC): evergreen forest and scrub land decreased sharply by 11.53% and 36.43%, respectively, while agricultural areas and built-up areas increased notably by 71.16% and 215.76%, respectively. Despite a decline of 19.18% in SL and 24.43% in SE, sediment loss and export varied across the study area, highlighting the heterogeneous nature of sediment dynamics. The overall retention capacity increased by 2.59%, with scrub forests playing a critical role in SR, while built-up areas showed the lowest retention. Northern and central sub-watersheds (SWs) experienced a significant decrease in retention capacity (from - 1.92 to - 11.6%), whereas those in the southern and eastern regions saw an increase in SR (from 3.69 to 28.24%). These results underscore the complex interactions between LULC changes, sediment dynamics, and retention services, highlighting the importance of preserving natural ecosystems and informing policy for landscape-based conservation and development planning in the vulnerable Himalayan region.


Subject(s)
Conservation of Natural Resources , Ecosystem , Environmental Monitoring , Geologic Sediments , India , Geologic Sediments/chemistry , Soil/chemistry , Agriculture , Forests , Himalayas
2.
Article in English | MEDLINE | ID: mdl-39322930

ABSTRACT

Deserts and semi-arid environments are habitats to rare species, rich cultural heritage, and essential ecological processes. Approximately 46% of the world's surface area is covered by drylands (arid, semi-arid, and dry sub-humid areas), where 3 billion people live and unfortunately witness water insecurity and desertification implications. In this context, the present study argued that reduced dryland ecosystem services and decreased ecosystem health have resulted from the individual and compounding impacts of desertification, water scarcity, and climate change. At 1.5 °C, 2 °C, and 3 °C of global warming, under the shared socio-economic pathway SSP2, the number of people living in drylands who will be affected by various effects on water, energy, and land sectors is projected to reach 951 million, 1152 million, and 1285 million, respectively. Due to combinations of land use change, rainfall variations, fire suppression, and CO2 fertilization, as well as unsustainable management, widespread woody encroachment has occurred in many shrublands and savannas in Africa, Australia, North America, and South America. This has altered biodiversity and reduces ecosystem services, such as water availability and grazing potential. The north side of the Mediterranean, southern Africa, and North and South America are projected to have the most semiarid expansion. Contrarily, drylands are expected to shrink in India, northern China, eastern equatorial Africa, and the southern Sahara. Growing research evidence highlights the adoption of policy frameworks deriving the solutions from soil land management (SLM), indigenous and local knowledge (ILK), early warning systems coupled with adaptation and mitigation responses, and targets of sustainable development goals (SDGs).

3.
Ecotoxicol Environ Saf ; 283: 116790, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39083864

ABSTRACT

Terrestrial dissolved organic matter (tDOM) holds great promise for controlling cyanobacteria blooms through watershed management. To identify tDOM that could inhibit the growth, photosynthesis and colony formation, unicellular Microcystis aeruginosa Kützing (FACHB-469) was cultivated and treated with varying concentrations of gallic acid, proline and tea polyphenols at different levels of iron. The results indicated that gallic acid and tea polyphenols could inhibit Microcystis growth by suppressing photosynthesis and colony formation by reducing extracellular polysaccharides (EPS) secretion. However, proline had no significant effect on the growth, photosynthesis, colony size and EPS content of Microcystis. Transcriptome analysis showed Microcystis may optimize the internal energy transfer mode of photosynthesis through the change of phycobilisome at different levels of iron. In addition, Microcystis adapted to different iron concentration environments by regulating the expression of genes associated with iron uptake and transport. These findings suggest that the effects of plant species on algal blooms should be considered in reforestation of watershed. This consideration necessitates finding a balance between the costs and benefits of controlling cyanobacteria blooms using tDOM.


Subject(s)
Iron , Microcystis , Photosynthesis , Microcystis/drug effects , Microcystis/growth & development , Photosynthesis/drug effects , Gallic Acid/pharmacology , Proline/metabolism , Polyphenols , Eutrophication , Tea/chemistry
4.
Environ Sci Pollut Res Int ; 31(31): 44150-44168, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926312

ABSTRACT

This study aimed to predict the impact of changing hydro-climatic variables and land use changes on the future health status of the Safaroud Watershed, northern Iran. It also sought to explore the significance of hydro-climatic and land use variables in prioritizing sub-watersheds based on the watershed health index. The study involved extracting key characteristics related to anthropogenetic, climatic, and hydrological factors for pressure, state, and response indicators. The current watershed health index was calculated, followed by predictions of watershed health based on dynamic hydro-climatic and land-use variables for the next 10 and 20 years. The Safaroud Watershed health assessment and zoning showed that the average value and standard deviation of the current pressure index were equal to 0.573 and 0.185, respectively. The lowest value of this index was around 0.290 and related to sub-watershed 5, and the highest value was around 0.840 and related to sub-watershed 11. The initial evaluation of the classification indicated the prevalence of moderate and high-pressure conditions with a range of about 79%. Finally, the physical factors of sub-watersheds (time of concentration with 15.72%) had the lowest role. In general, among the criteria used to calculate the pressure index in the current period, anthropogenetic and climatic factors showed the highest percentage of participation in determining the pressure index. The quantification of the current watershed health status and the 10- and 20-year-forecast periods showed that the values of the watershed health index were similar. However, the changes in the health index in the sub-watersheds at the beginning of the study period ranged from relatively unhealthy favorable conditions to moderately positive and moderately negative conditions.


Subject(s)
Climate , Iran , Environmental Monitoring/methods , Health Status
5.
Water Sci Technol ; 89(7): 1665-1681, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619896

ABSTRACT

By integrating the successful case of the European Union emissions trading system, this study proposes a water emissions trading system, a novel method of reducing water pollution. Assuming that upstream governments allocate initial quotas to upstream businesses as the compensation standard, this approach defines the foundational principles of market trading mechanisms and establishes a robust watershed ecological compensation model to address challenges in water pollution prevention. To be specific, the government establishes a reasonable initial quota for upstream enterprises, which can be used to limit the emissions of upstream pollution. When enterprises exceed their allocated emissions quota, they face financial penalties. Conversely, these emissions rights can be transformed into profitable assets by participating in the trading market as a form of ecological compensation. Numerical simulations demonstrate that various pollutant emissions from upstream businesses will have various effects on the profits of other businesses. Businesses in the upstream region received reimbursement from the assigned emission rights through the market mechanism, demonstrating that ecological compensation for the watershed can be achieved through the market mechanism. This novel market trading system aims at controlling emissions management from the perspectives of individual enterprises and ultimately optimizing the aquatic environment.


Subject(s)
Environmental Pollutants , Rivers , Water Pollution/analysis , Models, Theoretical , China
6.
J Environ Manage ; 356: 120590, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38522281

ABSTRACT

Understanding the origins of sediment transport in river systems is crucial for effective watershed management, especially after catastrophic events. This information is essential for the development of integrated strategies that guarantee water security in river basins. The present study aimed to investigate the rupture of the B1 tailings dam of the Córrego do Feijão mine, which drastically affected the Brumadinho region (Minas Gerais, Brazil). To address this issue, a confluence-based sediment fingerprinting approach was developed through the SedSAT model. Uncertainty was assessed through Monte Carlo simulations and Mean Absolute Error (MAE). Estimates of the overall average contributions of each tributary were quantified for each station and annually during the period 2019-2021. It was observed that the sampling point PT-09, closest to the dam breach, contributed to almost 80% of the Paraopeba River in 2019. Despite the dredging efforts, this percentage increased to 90% in 2020 due to the need to restore the highly degraded area. Additionally, the main tributaries contributing to sediment increase in the river are Manso River "TT-03" (almost 36%), associated with an area with a high percentage of urban land use, and Cedro stream "TT-07" (almost 71%), whose geology promotes erosion, leading to higher sediment concentration. Uncertainties arise from the limited number of available tracers, variations caused by dredging activities, and reduced data in 2020 due to the pandemic. Parameters such as land use, riparian vegetation degradation, downstream basin geology, and increased precipitation are key factors for successfully assessing tributary contributions to the Paraopeba River. The obtained results are promising for a preliminary analysis, allowing the quantification of key areas due to higher erosion and studying how this disaster affected the watershed. This information is crucial for improving decision-making, environmental governance, and the development of mitigating measures to ensure water security. This study is pioneering in evaluating this methodology in watersheds affected by environmental disasters, where restoration efforts are ongoing.


Subject(s)
Environmental Monitoring , Structure Collapse , Environmental Monitoring/methods , Conservation of Natural Resources , Anthropogenic Effects , Geologic Sediments , Environmental Policy , Brazil
7.
Water Res ; 253: 121286, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38341974

ABSTRACT

By integrating soil and water assessment tool (SWAT) modeling and land use and land cover (LULC) based multi-variable statistical analysis, this study aimed to identify driving factors, potential thresholds, and critical source areas (CSAs) to enhance water quality in southern Alabama and northwest Florida's Choctawhatchee Watershed. The results revealed the significance of forest cover and of the lumped developed areas and cultivated crops ("Source Areas") in influencing water quality. The stepwise linear regression analysis based on self-organizing maps (SOMs) showed that a negative correlation between forest percent cover and total nitrogen (TN), organic nitrogen (ORGN), and organic phosphorus (ORGP), highlighting the importance of forests in reducing nutrient loads. Conversely, Source Area percentage was positively correlated with total phosphorus (TP) loads, indicating the influence of human activities on TP levels. The receiver operating characteristic (ROC) curve analysis determined thresholds for forest percentage and Source Area percentage as 37.47 % and 20.26 %, respectively. These thresholds serve as important reference points for identifying CSAs. The CSAs identified based on these thresholds covered a relatively small portion (28 %) but contributed 47 % of TN and 50 % of TP of the whole watershed. The study underscores the importance of considering both physical process-based modeling and multi-variable statistical analysis for a comprehensive understanding of watershed management, i.e., the identification of CSAs and the associated variables and their tipping points to maintain water quality.


Subject(s)
Non-Point Source Pollution , Water Pollutants, Chemical , Humans , Water Quality , Soil , Non-Point Source Pollution/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Rivers , Phosphorus/analysis , Nitrogen/analysis , China
8.
Environ Sci Pollut Res Int ; 31(16): 23568-23578, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38421543

ABSTRACT

Shallow urban lakes are naturally vulnerable to ecosystem degradation. Rapid urbanization in recent decades has led to a variety of aquatic problems such as eutrophication, algal blooms, and biodiversity loss, increasing the risk to lake-wide ecological sustainability. Instead of a simple binary assessment of ecological risk, holistic evaluation frameworks that consider multiple stressors and receptors can provide a more comprehensive assessment of overall ecological risk. In this study, we analyzed a combined dataset of government statistics, remote sensing images, and 1 year of field measurements to develop an index system for urban lake ecological risk assessment based on the pressure-state-response (PSR) framework. We used the developed ecological safety index (ESI) system to evaluate the ecological risk for three urban lakes in Jiangsu Province, China: Lake Yangcheng-LYC, Lake Changdang-LCD, and Lake Tashan-LTS. LYC and LTS were classified as "mostly safe" and "generally recognized as safe," respectively, while LCD was assessed as having "potential ecological risk." Our data suggest that socioeconomic pressure and aquatic health are the two main factors affecting the ecological risk in both LYC and LCD. The ecological risk of LTS could be improved more effectively if regional management plans are well implemented. Our study highlights the pressure of external wastewater loading, low forest-grassland coverage, and lake shoreline damage on the three selected urban lakes. The findings of this study can inform watershed management for lake ecosystem restoration and environmental sustainability.


Subject(s)
Ecosystem , Environmental Monitoring , Environmental Monitoring/methods , Lakes , Biodiversity , China , Risk Assessment , Eutrophication
9.
Sci Total Environ ; 917: 170177, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38280589

ABSTRACT

The present study evaluated sustainable development indicators of the Nekarood Watershed in Iran using global Sustainable Development Goals (SDGs) indicators. Identifying values and thresholds, justification of optimum values, ranking, and performance assessment of the associated SDGs' indicators were accordingly addressed. Moreover, due to a lack of complete information and ecological conditions, 77 indicators were selected based on compliance with the indicators of global SDGs. These indicators were used to evaluate the development situation of the study area. The indicators were then normalized, weighed, aggregated, and ranked into four categories from achieving to highly challenging. The results showed that among the SDGs, five goals performed above the mean of the global sustainable development goals. So, goals 3 and 1 had the highest performance of 69.82 and 57.97 %, respectively. Likewise, goals 7 and 16 showed the lowest performance beyond the global average of 51.08 and 54.62 %, respectively. SDG3-1-1, SDG3-1-2, SDG3-2-1, and SDG3-2-2 indicators with 100 % performance positively affected SDG3. SDG1-5-1 indicator with 100 % performance also had the most positive effect on SDG1. The performances of nine goals were also lower than the global mean. In this case, the lowest performance was assigned to goal 2, followed by goals 9, 17, 10, and 6, respectively, with 15.24, 19.71, 22.19, 24.98, and 45.78 %. SDG2-4-2, SDG2-4-1, and SDG2-3-1 indicators had the most negative effect on the performance of SDG2. SDG9-2-2 and SDG10-4-1 indicators also had the most negative effect on goals 9 and 10, respectively. The highest performance of the indicators was associated with the Ministry of Health and Medical Education, and the lowest was related to the Ministries of Agriculture Jihad and the Ministry of Industry, Mine, and Trade. The results of the present study verified an overall performance of 36.42 % for the Nekarood Watershed concerning the global SDGs, representing significantly challenging conditions.

10.
Environ Sci Pollut Res Int ; 30(53): 114556-114568, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37861837

ABSTRACT

Due to the striving for the development of economy and agriculture, anthropogenic activities in many countries dramatically alter natural hydrology. These activities are primarily responsible for river deterioration. Thus, we need to assess the river environment and take measures for remediation. According to the survey data, the study identified the critical factors causing water quality deterioration and evaluated the aquatic biodiversity in the Wanyu River. First, based on the monitoring data of water (dissolved oxygen (DO), chemical oxygen demand (COD), total phosphorus (TP), and ammonia nitrogen (NH3-N)), sediment (copper (Cu), zinc (Zn), lead (Pb), arsenic (As), nickel (Ni), mercury (Hg), cadmium (Cd), and chromium (Cr)), and aquatic biodiversity (fish and hydrophyte), the study identified the critical factors causing river quality deterioration. Second, the study provided some recommendations that would consolidate the restoration efforts. Consequently, because of the government's efforts in building the municipal sewage treatment plant, dredging, and other measures, the river environment improved during the 2020-2021 period. The maximum concentrations of COD, NH3-N, and TP in water were reduced by 17.76%, 26.17%, and 20.93%, respectively. The sediment had no risk of heavy metal pollution in the past 2 years. And we could utilize sludge as garden soil or compost resource. However, reducing agricultural pollution, internal nutrient loading, and cost-effective restoration and evaluation represent significant challenges in the efforts to recover the river ecosystem.


Subject(s)
Mercury , Metals, Heavy , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Rivers , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Mercury/analysis , Water Quality , China , Phosphorus/analysis , Risk Assessment , Geologic Sediments
11.
Environ Sci Technol ; 57(44): 17042-17050, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37878501

ABSTRACT

Onsite wastewater treatment systems (OWTSs) are important nonpoint sources (NPSs) of pollution to consider in watershed management. However, limited OWTS data availability makes it challenging to account for them as an NPS of water pollution. In this study, we succeeded in obtaining OWTS permits and integrated them with environmental data to model the pollution potential from OWTSs at the watershed scale using GIS-based multicriteria decision analysis. Then, in situ water quality parameters─Escherichia coli (E. coli), total nitrogen, total phosphorus, temperature, and pH─were measured along the main tributary at base-flow conditions. Three general linear models were developed to relate E. coli to water quality parameters and OWTS pollution indicators. It was found that the model with the OWTS pollution potential had the lowest corrected Akaike information criterion (AICc) value (35.01) compared to the models that included classified OWTS pollution potential input criteria (AICc = 36.76) and land cover (AICc = 36.74). These results demonstrate that OWTSs are a significant contributor to surface water pollution, and future efforts should be made to improve access to OWTS data (i.e., location and age) to account for these systems as an NPS of water pollution.


Subject(s)
Environmental Monitoring , Water Purification , Environmental Monitoring/methods , Escherichia coli , Water Pollution , Water Quality
12.
Sci Total Environ ; 905: 167123, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37741382

ABSTRACT

Today, land degradation and the decrease in the expected services of watersheds have been mainly influenced by human-induced activities. Hence, it requires more attention to adaptively manage and provide feasible solutions to watershed disruptions. However, appropriate management of precious commodities such as water, soil, air, and vegetation cover needs insight planning on a proper scale. Nonetheless, such an integrated approach to comprehensive health assessment of watershed resources is yet to be indoctrinated by scholars, implemental agencies, managers, and policymakers. Accordingly, the present endeavor has tried to evaluate the health status of Iran's 30 second-order large watersheds with the pressure-state-response (PSR) approach. In this regard, 44 problem-oriented, influential, and, at the same time, accessible variables with compatible scales at the national level were primarily determined in climatic, hydrologic, anthropogenic, and natural sectors. The collinearity-free and independent variables were then finalized using the variance inflation factor (VIF) test. Ultimately, P, S, and R indices were calculated using the arithmetic mean of 25 normalized variables based on which PSR-based health and security indices were also mapped countrywide. The results indicated that P, S, and R indices varied from 0.49 to 0.69, 0.42 to 0.82, and 0.40 to 0.94, respectively. Health and security indices ranged from 0.46 to 0.69 and 0.30 to 0.89, respectively. The weighted mean of P, S, and R was 0.59, 0.62, and 0.67, respectively, wholly placing them in the intermediate class. The weighted health and security indices were also 0.58 and 0.59, representing the intermediate class. The results showed that study watersheds had different health and security conditions from interplaying watershed-specific factors. The results revealed the necessity of watershed-unique managerial strategies to cope with the existing unfavorable conditions at the country level. However, further insight with high resolution is recommended for the high-priority watersheds to plan implementation and executive projects.

13.
J Environ Manage ; 345: 118724, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37542805

ABSTRACT

Nonpoint source (NPS) water quality trading (WQT) is a market-based approach to improving water quality. Past work has shown that these programs could increase localized pollutant loadings, in part by exporting water quality controls from urban to rural areas. Virginia's NPS WQT program has enabled thousands of transactions and may provide a model for other programs, but its impacts on urban water quality have not been thoroughly assessed. We quantify the impact of NPS WQT purchases in Virginia on water quality and hydrology in an urban catchment. We go on to assess outcomes of a policy alternative where buyers and sellers are collocated in the urban catchment. Simulation results show that NPS WQT increased total phosphorus (TP) loading by an average of 0.8 lbs TP/year for each 1.0 offsite credits purchased in the analyzed catchment. The TP loading increased in years with greater rainfall, such that TP loads were increased by up to 1.2 lbs TP/year for each offsite credit purchased. These loading increases may or may not be acceptable, depending on the cumulative number of purchases within an urban catchment and existing local water quality issues. In our policy alternative with buyers and sellers collocated in the catchment, we found that the TP increase from development was completely offset at the catchment scale, with a decrease of 4.3 lbs TP/year for each 1.0 credits purchased. This suggests that credits awarded for urban mitigation practices are undervalued compared with water quality requirements for credit purchasers. This undervaluation is a result of the Virginia trading program using one approach to compute the credit value for buyers and a different approach to compute the credit value for sellers. We demonstrate how using a single model to determine both buyer and seller credit values in urban areas could provide greater transparency and mitigate the risk of urban pollution hot spots. This work demonstrates the importance of consistency in the scale of pollutant load calculations between buyers and sellers for NPS WQT, and contributes novel insight into the implications of WQT for urban NPS pollution.


Subject(s)
Environmental Pollutants , Non-Point Source Pollution , Water Pollutants, Chemical , Water Quality , Virginia , Computer Simulation , Phosphorus/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , China , Nitrogen/analysis
14.
Sci Total Environ ; 892: 164432, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37245832

ABSTRACT

Unsustainable human activities have disrupted the natural cycle of trace elements, causing the accumulation of chemical pollutants and making it challenging to determine their sources due to interwoven natural and human-induced processes. A novel approach was introduced for identifying the sources and for quantifying the contribution of trace elements discharge from rivers to soils. We integrated fingerprinting techniques, soil and sediment geochemical data, geographically weighted regression model (GWR) and soil quality indices. The FingerPro package and the state-of-the-art tracer selection techniques including the conservative index (CI) and consensus ranking (CR) were used to quantify the relative contribution of different upland sub-watersheds in trace element discharge soil. Our analysis revealed that off-site sources (upland watersheds) and in-site sources (land use) both play an important role in transferring trace elements to the Haraz plain (northern Iran). The unmixing model's results suggest that the Haraz sub-watersheds exhibit a higher contribution to trace elements transfer in the Haraz plain, and therefore, require greater attention in terms of implementing soil and water conservation strategies. However, it is noteworthy that the Babolroud (adjacent to Haraz) exhibited a better performance of the model. A spatial correlation between certain heavy metals, such as As and Cu, and rice cultivation existed. Additionally, we found a significant spatial correlation between Pb and residential areas, particularly in the Amol region. Our result highlights the importance of using advanced spatial statistical techniques, such as GWR, to identify subtle but critical associations between environmental variables and sources of pollution. The methodology used comprehensively identifies dynamic trace element sourcing at the watershed scale, allowing for pollutant source identification and practical strategies for soil and water quality control. Tracer selection techniques (CI and CR) based on conservatives and consensus improve unmixing model accuracy and flexibility for precise fingerprinting.


Subject(s)
Environmental Pollutants , Metals, Heavy , Soil Pollutants , Trace Elements , Humans , Soil , Trace Elements/analysis , Rivers , Environmental Monitoring/methods , Iran , Anthropogenic Effects , Metals, Heavy/analysis , Environmental Pollutants/analysis , Soil Pollutants/analysis , Water Quality , China , Risk Assessment
15.
Environ Sci Pollut Res Int ; 30(23): 64377-64398, 2023 May.
Article in English | MEDLINE | ID: mdl-37067710

ABSTRACT

In Ethiopia, watershed management interventions have been implemented since the 1980s to curve land degradation and improve the agricultural productivity of smallholder farmers. However, little effort has been made to investigate the impacts of watershed management on land use/cover changes and landscape greenness. Thus, this study was conducted to assess the long-term impacts of watershed management on land use/cover changes and landscape greenness in the Yezat watershed. Landsat images for 1990, 2000, 2010, and 2021 were employed and analyzed to produce maps of the respective years using GIS and remote sensing techniques. Data from satellite images, coupled with field observation and the socio-economic survey, revealed an effective approach for analyzing the extent, rate, and spatial patterns of land use/cover changes. Normalized difference vegetation index (NDVI) was also employed to detect vegetation greenness. The results of the study show that between 1990 and 2021, the built-up area, plantation, natural forest, shrubland, and grasslands were increased by + 254 ha, + 712.3 ha, 196.3 ha, + 1070.8, and + 425.3 ha respectively due to watershed management interventions. Conversely, cultivated land was decreased with a rate of - 2658.7 ha, in the study area. However, the reverse is true between 1990 and 2000 due to large-scale land degradation. Besides, the result of the study also shows that a low landscape greenness value (- 0.11) was observed between 1990 and 2000, and a high landscape greenness value (+ 0.2) was observed between 1990 and 2021. The observed change in landscape greenness in the watershed was due to the change in shrubland (+ 1070.8 ha), grassland (+ 425.3 ha), plantation (+ 712.3 ha), and forestland (+ 196.3 ha) covers between 1990 and 2021 years. Such observed changes in land use land covers, landscape greenness, and cultivated land in the study watershed have important implications for the improvement of soil moisture, soil fertility, biodiversity, groundwater recharge, carbon sequestration, soil erosion land, crop yield, and ecosystem services.


Subject(s)
Ecosystem , Environmental Monitoring , Ethiopia , Environmental Monitoring/methods , Forests , Soil , Conservation of Natural Resources/methods
16.
Environ Monit Assess ; 195(5): 572, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37060377

ABSTRACT

Erosion is an important environmental issue threatening natural resources and ecosystems, especially soil and water. Soil losses occur in many parts of the world due to erosion at different degrees, and various rehabilitation plans have been carried out to reduce these losses. However, soil protection applications are generally carried out by considering only the essential characteristics of the soil. This may decrease the chance of success of rehabilitation applications. The present study aimed to determine the soil quality index (SQI) by weighting the soil quality parameters according to the analytical hierarchy process (AHP) in the Çapakçur microcatchment (Bingöl, Türkiye) where soil loss is high. Accordingly, 428 soil samples were taken from the study area and analyzed. The soil losses in the Çapakçur watershed were calculated employing the revised universal soil loss equation (RUSLE). To determine the soil quality index, a total of 20 indicators were used, including (i) physical soil properties, (ii) chemical soil properties, and (iii) soil nutrient content. Soil quality index results are divided into classes between 1 and 5. As a result of the study, the annual total amount of soil lost from the microcatchment was calculated as 96,915.20 tons, and the yearly average amount of soil lost from the unit area was calculated as 10.14 tons ha-1. According to SQI, the largest area in the microcatchment was Class-2 (weak), with 39.49%, whereas the smallest area was 1.4% (the most suitable). However, it was determined that there was a significant negative relationship between SQI and soil erodibility. Considering the SQI distribution of the area in the planning of soil protection and erosion prevention practices in watershed rehabilitation studies may increase success.


Subject(s)
Ecosystem , Soil , Soil/chemistry , Geographic Information Systems , Conservation of Natural Resources/methods , Environmental Monitoring/methods , Models, Theoretical
17.
Environ Monit Assess ; 195(5): 582, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37069470

ABSTRACT

Flash floods are one of the most severe natural disasters around the world because of their rapid and unpredictable nature. It is expected that the frequency and intensity of flood events will increase because of extreme rainfall events induced by climate change. In this context, the generation of a flood susceptibility map contributes to effective flood management in a basin. The present study aims to generate a flash flood susceptibility map for the Imali Stream Basin (ISB) situated within the Mediterranean region of Turkey. For this purpose, morphometric analysis, geographic information system (GIS), remote sensing (RS), and principal component analysis (PCA) were used in this study. ASTER GDEM (v.3) was used to delineate 9 sub-watersheds and to obtain the required morphometric parameters. To generate a flash flood susceptibility map, the original compound values ​​calculated for each sub-watershed were transformed into values ​​between 0 and 1 by using the min-max normalization method. Then, these values were divided into 3 classes called low, moderate, and high by using the equal interval classification method in ArcGIS. According to both flash flood susceptibility maps produced by using morphometric analysis and PCA, sub-watershed 5 has the highest flash flood susceptibility in the basin. The flash flood that occurred in sub-watershed 5 in 2016 contributes to these results. Therefore, flood management based on morphometric analysis can be a highly effective method for decision-makers and planners in the Mediterranean region, one of the hotspots to be affected by climate change.


Subject(s)
Disasters , Floods , Turkey , Environmental Monitoring/methods , Mediterranean Region
18.
J Environ Manage ; 336: 117642, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36907065

ABSTRACT

Fecal pollution is one of the most prevalent forms of pollution affecting waterbodies worldwide, threatening public health and negatively impacting aquatic environments. Microbial source tracking (MST) applies polymerase chain reaction (PCR) technology to help identify the source of fecal pollution. In this study, we combine spatial data for two watersheds with general and host-associated MST markers to target human (HF183/BacR287), bovine (CowM2), and general ruminant (Rum2Bac) sources. Concentrations of MST markers in samples were determined with droplet digital PCR (ddPCR). The three MST markers were detected at all sites (n = 25), but bovine and general ruminant markers were significantly associated with watershed characteristics. MST results, combined with watershed characteristics, suggest that streams draining areas with low-infiltration soil groups and high agricultural land use are at an increased risk for fecal contamination. Microbial source tracking has been applied in numerous studies to aid in identifying the sources of fecal contamination, but these studies usually lack information on the involvement of watershed characteristics. Our study combined watershed characteristics with MST results to provide more comprehensive insight into the factors that influence fecal contamination in order to implement the most effective best management practices.


Subject(s)
Environmental Monitoring , Water Pollution , Animals , Cattle , Humans , Water Pollution/analysis , Environmental Monitoring/methods , Polymerase Chain Reaction , Feces , Water Microbiology , Ruminants
19.
J Environ Manage ; 335: 117521, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36870193

ABSTRACT

Despite the widespread use of agricultural best management practices (BMPs) to reduce watershed scale nutrient loads, there remain few studies that use directly observed data - instead of models - to evaluate BMP effectiveness at the watershed scale. In this study, we make use of extensive ambient water quality data, stream biotic health data, and BMP implementation data within the New York State portion of the Chesapeake Bay watershed to assess the role of BMPs on reducing nutrient loads and modifying biotic health in major rivers. The specific BMPs considered were riparian buffers and nutrient management planning. A simple mass balance approach was used to evaluate the role of wastewater treatment plant nutrient reductions, agricultural land use changes, and these two agricultural BMPs in matching observed downward trends in nutrient load. In the Eastern nontidal network (NTN) catchment - where BMPs have been more widely reported - the mass balance model suggested a small but discernible contribution of BMPs in matching the observed downward trend in total phosphorus. Contrastingly, BMP implementations did not show clear contributions towards total nitrogen reductions in the Eastern NTN catchment nor for the total nitrogen and phosphorus in the Western NTN catchment, where BMP implementation data are more limited. Assessment of the relationship between stream biotic health and BMP implementation using regression models found limited connection between extent of BMP implementation and biotic health. In this case, however, spatiotemporal mismatches between the datasets and the relatively stable biotic health, typically of moderate to good quality even before BMP implementation, may reflect the need for better monitoring design to assess BMP effects at the subwatershed scale. Additional studies, perhaps using citizen scientists, may be able to provide more suitable data within the existing frameworks of the long-term surveys. Given the preponderance of studies that rely only on modeling to understand nutrient loading reductions achieved by implementation of BMPs, it is essential to continue to collect empirical data to meaningfully evaluate whether there are actual measurable changes due to BMPs.


Subject(s)
Rivers , Water Quality , New York , Agriculture , Nitrogen/analysis , Phosphorus/analysis , Environmental Monitoring
20.
PeerJ ; 11: e14830, 2023.
Article in English | MEDLINE | ID: mdl-36788814

ABSTRACT

This study aimed to analyze drought conditions and evaluate irrigation water availability and household water needs in the Krueng Jrue sub-watershed, Aceh Province, Indonesia. The Z-score statistics method was developed to analyze the drought, and the Mock model was used to generate discharges. We performed model validation using linear regression, which produced a coefficient of determination (R 2 = 0.90**) and coefficient of regression (r = 0.95**). In general, this area had a normal Z-score for precipitation (ZSP) class with 90 events (75%) and a normal Z-score for a discharge (ZSD) class with 89 events (74.2%). There were 0-11 (0-9.2%) moderate wet, very wet, extreme wet, moderate drought, and severe drought events. The consistency between the ZSP and ZSD indices reached 85.8%, indicating consensus between the meteorological droughts that were analyzed based on rainfall (ZSP) and hydrological droughts analyzed based on water discharge (ZSD). ZSP and ZSD indices showed negative values during the dry season (April to September) and positive values during the rainy season (October to March). There was a surplus of water availability for irrigation and household water needs during the rainy season and a deficit during the dry season. However, water deficits also occurred in certain months during the rainy rendeng planting season, for example, in October 2009, 2013, 2016, and 2017 as well as in February between 2008 to 2011 and from 2014 to 2017. This observation was probably due to the influence of global climate variables that need to be substantiated. This study offers necessary information for farmers, the community, and the local government when anticipating drought phenomenon, organizing the rice planting season, and evaluating water availability in other watersheds.


Subject(s)
Droughts , Water , Seasons , Hydrology , Rain
SELECTION OF CITATIONS
SEARCH DETAIL