Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Heliyon ; 10(4): e25225, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38375293

ABSTRACT

Background: Smoke exposure from wildfires or residential wood burning for heat is a public health problem for many communities. Do-It-Yourself (DIY) portable air cleaners (PACs) are promoted as affordable alternatives to commercial PACs, but evidence of their effect on health outcomes is limited. Objective: Pilot test an evaluation of the effect of DIY PAC usage on self-reported symptoms, and investigate barriers and facilitators of PAC use, among members of a tribal community that routinely experiences elevated concentrations of fine particulate matter (PM2.5) from smoke. Methods: We conducted studies in Fall 2021 ("wildfire study"; N = 10) and Winter 2022 ("wood stove study"; N = 17). Each study included four sequential one-to-two-week phases: 1) initial, 2) DIY PAC usage ≥8 h/day, 3) commercial PAC usage ≥8 h/day, and 4) air sensor with visual display and optional PAC use. We continuously monitored PAC usage and indoor/outdoor PM2.5 concentrations in homes. Concluding each phase, we conducted phone surveys about participants' symptoms, perceptions, and behaviors. We analyzed symptoms associated with PAC usage and conducted an analysis of indoor PM2.5 concentrations as a mediating pathway using mixed effects multivariate linear regression. We categorized perceptions related to PACs into barriers and facilitators of use. Results: No association was observed between PAC usage and symptoms, and the mediation analysis did not indicate that small observed trends were attributable to changes in indoor PM2.5 concentrations. Small sample sizes hindered the ability to draw conclusions regarding the presence or absence of causal associations. DIY PAC usage was low; loud operating noise was a barrier to use. Discussion: This research is novel in studying health effects of DIY PACs during wildfire and wood smoke exposures. Such research is needed to inform public health guidance. Recommendations for future studies on PAC use during smoke exposure include building flexibility of intervention timing into the study design.

2.
Toxics ; 10(10)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36287895

ABSTRACT

In experimental settings, replacing old wood stoves with new wood stoves results in reduced personal exposure to household air pollution. We tested this assumption by measuring PM2.5 and levoglucosan concentrations inside homes and correlated them with wood stove age. Methods: Thirty homes in the Albuquerque, NM area were monitored over a seven-day period using in-home particulate monitors placed in a common living area during the winter months. Real-time aerosol monitoring was performed, and filter samples were analyzed gravimetrically to calculate PM2.5 concentrations and chemically to determine concentrations of levoglucosan. A linear regression model with backward stepwise elimination was performed to determine the factors that would predict household air pollution measures. Results: In this sample, 73.3% of the households used wood as their primary source of heating, and 60% burned daily or almost daily. The mean burn time over the test week was 50 ± 38 h, and only one household burned wood 24/day (168 h). The average PM2.5 concentration (standard deviation) for the 30 homes during the seven-day period was 34.6 µg/m3 (41.3 µg/m3), and median (min, max) values were 15.5 µg/m3 (7.3 µg/m3, 193 µg/m3). Average PM2.5 concentrations in 30 homes ranged from 0−15 µg/m3 to >100 µg/m3. Maximum PM2.5 concentrations ranged from 100−200 µg/m3 to >3000 µg/m3. The levoglucosan levels showed a linear correlation with the total PM2.5 collected by the filters (R2 = 0.92). However, neither mean nor peak PM2.5 nor levoglucosan levels were correlated with the age (10.85 ± 8.54 years) of the wood stove (R2 ≤ 0.07, p > 0.23). The final adjusted linear regression model showed that average PM2.5 was associated with reports of cleaning the flue with a beta estimate of 35.56 (3.47−67.65) and R2 = 0.16 (p = 0.04). Discussion: Cleaning the flue and not the wood stove age was associated with household air pollution indices. Education on wood stove maintenance and safe burning practices may be more important in reducing household air pollution than the purchase of new stoves.

3.
Int J Hyg Environ Health ; 241: 113944, 2022 04.
Article in English | MEDLINE | ID: mdl-35176573

ABSTRACT

Ambient air pollution causes a range of adverse health effects, whereas effects of indoor sources of air pollution are not well described in high-income countries. We compared hazards of ambient air pollution and indoor sources with respect to important biomarkers of cardiorespiratory effects in terms of lung function and systemic inflammation in a middle-aged Danish cohort. Our cohort comprised 5199 men and women aged 49-63 years at the recruitment during April 2009 to March 2011, with information on exposure to second-hand smoke (SHS) and use of candles, wood stove, kerosene heater and gas cooker as well as relevant covariates. Ambient air pollution exposure was assessed as 2-year mean nitrogen dioxide (NO2) at the address (mean ± SD: 17.1 ± 9.9 µg/m3) and 4-day average levels of particulate matter with diameter <2.5 µm (PM2.5; mean ± SD: 12.5 ± 6.0 µg/m3) in urban background. Lung function was assessed as % predicted forced expiratory volume in the first second (FEV1) and inflammatory markers comprised interleukin-6 (IL-6), IL-10, IL-18, interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and high sensitivity C-reactive protein (hs-CRP). We used random-effect regression models controlling for potential confounders as well as models with further adjustment for self-reported health or for all other exposures. In models adjusted for confounders FEV1 was inversely associated with exposure to NO2, (-0,83% per 10 µg/m3; 95% CI: -1.26; -0.41%), SHS (-0.56% per 1 of 5 categories increment; 95% CI: -0.89; -0.23%), and gas cooker without hood (-0.89%; 95% CI: -1.62; -0.17%), whereas use of wood stove and candles showed positive associations, although these attenuated by mutual adjustment for all exposures or self-reported health. IL-6 showed positive associations with NO2 (6.30% increase in log-transformed values per 10 µg/m3; 95% CI: 3.54; 9.05%), PM2.5 (7.82% per 10 µg/m3; 95% CI: 3.35; 12.4%), SHS (4.38% per increase of 1 of 5 categories; 95% CI: 2.22; 6.54%) and use of kerosene (13.8%; 95% CI: 2.51; 25.1%), whereas the associations with use of wood stove and candles were inverse. PM2.5 and NO2 showed positive associations with IFN-γ and TNF-α, while PM2.5 further associated with IL-10 and IL-18. Hs-CRP was inversely associated with use of candles. These results suggest that the levels of exposure to ambient air pollution and SHS are more harmful than are the levels of exposure to indoor combustion sources from candles and wood stoves in a high-income setting.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution, Indoor/analysis , Biomarkers , Environmental Exposure/analysis , Female , Humans , Lung/chemistry , Male , Middle Aged , Particulate Matter/analysis
4.
Indoor Air ; 31(4): 1109-1124, 2021 07.
Article in English | MEDLINE | ID: mdl-33620109

ABSTRACT

Household heating using wood stoves is common practice in many rural areas of the United States (US) and can lead to elevated concentrations of indoor fine particulate matter (PM2.5 ). We collected 6-day measures of indoor PM2.5 during the winter and evaluated household and stove-use characteristics in homes at three rural and diverse study sites. The median indoor PM2.5 concentration across all homes was 19 µg/m3 , with higher concentrations in Alaska (median = 30, minimum = 4, maximum = 200, n = 10) and Navajo Nation homes (median = 29, minimum = 3, maximum = 105, n = 23) compared with Montana homes (median = 16, minimum = 2, maximum = 139, n = 59). Households that had not cleaned the chimney within the past year had 65% higher geometric mean PM2.5 compared to those with chimney cleaned within 6 months (95% confidence interval [CI]: -1, 170). Based on a novel wood stove grading method, homes with low-quality and medium-quality stoves had substantially higher PM2.5 compared to homes with higher-quality stoves (186% higher [95% CI: 32, 519] and 161% higher; [95% CI:27, 434], respectively). Our findings highlight the need for, and complex nature of, regionally appropriate interventions to reduce indoor air pollution in rural wood-burning regions. Higher-quality stoves and behavioral practices such as regular chimney cleaning may help improve indoor air quality in such homes.


Subject(s)
Air Pollution, Indoor , Particulate Matter , Air Pollution, Indoor/analysis , Cooking , Environmental Monitoring , Family Characteristics , Humans , Particulate Matter/analysis , United States , Wood
5.
J Expo Sci Environ Epidemiol ; 30(2): 350-361, 2020 03.
Article in English | MEDLINE | ID: mdl-31253828

ABSTRACT

BACKGROUND: Residential wood stove use has become more prevalent in high-income countries, but only limited data exist on indoor exposure to PM2.5 and its components. METHODS: From 2014 to 2016, we collected 7-day indoor air samples in 137 homes of pregnant women in Northern New England, using a micro-environmental monitor. We examined associations of wood stove use with PM2.5 mass and its components [black carbon (BC), organic and elemental carbon and their fractions, and trace elements], adjusted for sampling season, community wood stove use, and indoor activities. We examined impact of stove age, EPA-certification, and wood moisture on indoor pollutants. RESULTS: Median (IQR) household PM2.5 was 6.65 (5.02) µg/m3 and BC was 0.23 (0.20) µg/m3. Thirty percent of homes used a wood stove during monitoring. In homes with versus without a stove, PM2.5 was 20.6% higher [although 95% confidence intervals (-10.6, 62.6) included the null] and BC was 61.5% higher (95% CI: 11.6, 133.6). Elemental carbon (total and fractions 3 and 4), potassium, calcium, and chloride were also higher in homes with a stove. Older stoves, non-EPA-certified stoves, and wet or mixed (versus dry) wood were associated with higher pollutant concentrations, especially BC. CONCLUSIONS: Homes with wood stoves, particularly those that were older and non-EPA-certified or burning wet wood had higher concentrations of indoor air combustion-related pollutants.


Subject(s)
Air Pollution, Indoor/statistics & numerical data , Environmental Monitoring , Particulate Matter/analysis , Wood , Adult , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Carbon/analysis , Cooking , Female , Humans , New England , Pregnancy , Seasons , Soot
6.
Contemp Clin Trials ; 89: 105909, 2020 02.
Article in English | MEDLINE | ID: mdl-31838259

ABSTRACT

BACKGROUND: Acute lower respiratory tract infections (LRTIs) account for >27% of all hospitalizations among US children under five years of age. Residential burning of biomass for heat leads to elevated indoor levels of fine particulate matter (PM2.5) that often exceed current health based air quality standards. This is concerning as PM2.5 exposure is associated with many adverse health outcomes, including a greater than three-fold increased risk of LRTIs. Evidence-based efforts are warranted in rural and American Indian/Alaska Native (AI/AN) communities in the US that suffer from elevated rates of childhood LRTI and commonly use wood for residential heating. DESIGN: In three rural and underserved settings, we conducted a three-arm randomized controlled, post-only intervention trial in wood stove homes with children less than five years old. Education and household training on best-burn practices were introduced as one intervention arm (Tx1). This intervention was evaluated against an indoor air filtration unit arm (Tx2), as well as a control arm (Tx3). The primary outcome was LRTI incidence among children under five years of age. DISCUSSION: To date, exposure reduction strategies in wood stove homes have been either inconsistently effective or include factors that limit widespread dissemination and continued compliance in rural and economically disadvantaged populations. As part of the "KidsAIR" study described herein, the overall hypothesis was that a low-cost, educational intervention targeting indoor wood smoke PM2.5 exposures would be a sustainable approach for reducing children's risk of LRTI in rural and AI/AN communities.


Subject(s)
Health Education/organization & administration , Heating/adverse effects , Particulate Matter/adverse effects , Respiratory Tract Infections/epidemiology , Rural Population , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/prevention & control , Child, Preschool , Female , Filtration , Heating/methods , Humans , Infant , Male , Research Design , Smoke/adverse effects , Smoke/prevention & control , Socioeconomic Factors , Wood
7.
Sci Total Environ ; 689: 580-589, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31279204

ABSTRACT

Wood-fuelled systems are commonly used all over the world for residential heating, and recently wood pellets have been replacing traditional firewood. This article presents an environmental life cycle assessment of five wood-based combustion systems for residential heating: i) a pellet stove using maritime pine pellets; a wood stove using ii) eucalyptus (Eucalyptus globulus Labill.) and iii) maritime pine (Pinus pinaster Ait.) split logs; and a fireplace using iv) eucalyptus and v) maritime pine split logs. The functional unit is 1 MJ of thermal energy for residential heating. System boundaries include four stages: (1) forest management; (2) pellet and wood split log production; (3) distribution; and (4) thermal energy generation. Environmental impacts were calculated for seven impact categories from the ReCiPe 2016 midpoint method, and a sensitivity analysis was performed using the Product Environmental Footprint (PEF) life cycle impact assessment method and modifying the distances travelled. Of the five heating systems analysed, the fireplace presents the worst performance for all the impact categories with the exception of freshwater eutrophication and marine eutrophication, when maritime pine split logs are burned in the fireplace. Comparing the pellet stove with the wood stove, neither system is better for all the impact categories analysed. Regarding sensitivity analysis, the use of an alternative characterisation method leads to similar trends in the results in comparison with those obtained from the ReCiPe method, while changes in transport distances do not affect the total impacts to a large extent.

8.
Appl Energy ; 235: 369-378, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-31130767

ABSTRACT

Approximately three billion people cook with solid fuels, mostly wood, on open fires or rudimentary stoves. These traditional cooking methods produce particulate matter and carbon monoxide known to cause significant respiratory health problems, especially among women and children, who often have the highest exposure. In this work, an inexpensive potassium-based catalyst was incorporated in a chimneyless biomass cookstove to reduce harmful emissions through catalytic oxidation. Potassium titanate was identified as an effective and stable oxidation catalyst capable of oxidizing particulate matter and carbon monoxide. Using a cordierite monolith to incorporate potassium titanate within a bespoke, rocket-style, improved cookstove led to a 36% reduction in particulate matter emissions relative to a baseline stove with a blank monolith and a 26% reduction relative to a stove with no monolith. Additionally, the catalytic stove reduced particulate matter emissions by 82%, reduced carbon monoxide emissions by 70%, and improved efficiency by 100% compared to a carefully tended, three-stone fire. Potassium titanate was also shown to oxidize carbon monoxide at temperatures as low as 500 °C, or as low as 300 °C when doped with copper or cobalt.

9.
Environ Pollut ; 220(Pt B): 797-806, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27838060

ABSTRACT

Residential woodsmoke is an under-regulated source of fine particulate matter (PM2.5), often surpassing mobile and industrial emissions in rural communities in North America and elsewhere. In the province of British Columbia (BC), Canada, many municipalities are hesitant to adopt stricter regulations for residential wood burning without empirical evidence that smoke is affecting local air quality. The objective of this study was to develop a retrospective algorithm that uses 1-h PM2.5 concentrations and daily temperature data to identify smoky days in order to prioritise communities by smoke impacts. Levoglucosan measurements from one of the smokiest communities were used to establish the most informative values for three algorithmic parameters: the daily standard deviation of 1-h PM2.5 measurements; the daily mean temperature; and the daytime-to-nighttime ratio of PM2.5 concentrations. Alternate parameterizations were tested in 45 sensitivity analyses. Using the most informative parameter values on the most recent two years of data for each community, the number of smoky days ranged from 5 to 277. Heat maps visualizing seasonal and diurnal variation in PM2.5 concentrations showed clear differences between the higher- and lower-ranked communities. Some communities were sensitive to one or more of the parameters, but the overall rankings were consistent across the 45 analyses. This information will allow stakeholder agencies to work with local governments on implementing appropriate intervention strategies for the most smoke-impacted communities.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Particulate Matter/analysis , Smoke/analysis , Wood/chemistry , British Columbia , Cities , Housing , Humans , North America , Retrospective Studies
10.
Med Leg J ; 84(2): 87-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26873733

ABSTRACT

Carbon monoxide poisoning can result from, e.g., the use of unvented coal-burning heaters, indoor barbecues, or inhalation of exhaust of vehicles. The latter is sometimes used to commit suicide. The most common presentation of carbon monoxide poisoning is cerebral hypoxia. Despite frequent use of indoor coal-burning heaters and stoves during winter months in the northern part of India, carbon monoxide poisoning has been infrequently reported. We describe two cases of carbon monoxide poisoning who reported to the Emergency Department in the early morning of a winter season with un-witnessed, unexplained development of altered level of consciousness.


Subject(s)
Carbon Monoxide Poisoning/diagnosis , Consciousness Disorders/physiopathology , Blood Gas Analysis , Carbon Monoxide Poisoning/pathology , Carbon Monoxide Poisoning/therapy , Female , Humans , Hyperbaric Oxygenation , India , Male , Middle Aged , Survivors/statistics & numerical data
11.
Environ Res ; 138: 93-100, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25701812

ABSTRACT

Ambient particulate matter (PM) exposures have adverse impacts on public health, but research evaluating indoor PM concentrations in rural homes in the United States using wood as fuel for heating is limited. Our objectives were to characterize indoor PM mass and particle number concentrations (PNCs), quantify infiltration of outdoor PM into the indoor environment, and investigate potential predictors of concentrations and infiltration in 96 homes in the northwestern US and Alaska using wood stoves as the primary source of heating. During two forty-eight hour sampling periods during the pre-intervention winter of a randomized trial, we assessed PM mass (<2.5µm) and PNCs (particles/cm(3)) in six size fractions (0.30-0.49, 0.50-0.99, 1.00-2.49, 2.5-5.0, 5.0-10.0, 10.0+µm). Daily mean (sd) PM2.5 concentrations were 28.8 (28.5)µg/m(3) during the first sampling period and 29.1 (30.1)µg/m(3) during the second period. In repeated measures analyses, household income was inversely associated with PM2.5 and smaller size fraction PNCs, in particular. Time of day was a significant predictor of indoor and outdoor PM2.5 concentrations, and infiltration efficiency was relatively low (Finf (sd)=0.27 (0.20)). Our findings demonstrate relatively high mean PM concentrations in these wood burning homes and suggest potential targets for interventions for improving indoor air quality and health in rural settings.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Air Pollution, Indoor/prevention & control , Environmental Monitoring , Inhalation Exposure , Particulate Matter/analysis , Wood/toxicity , Adolescent , Adult , Alaska , Child , Female , Heating , Humans , Idaho , Male , Montana , Particle Size , Rural Population , Seasons , Socioeconomic Factors
12.
Atmos Environ (1994) ; 51(C): 86-93, 2012 May.
Article in English | MEDLINE | ID: mdl-23471123

ABSTRACT

In this study, we investigated the emissions, including odor, from log wood stoves, burning wood types indigenous to mid-European countries such as Austria, Czech Republic, Hungary, Slovak Republic, Slovenia, Switzerland, as well as Baden-Württemberg and Bavaria (Germany) and South Tyrol (Italy). The investigations were performed with a modern, certified, 8 kW, manually fired log wood stove, and the results were compared to emissions from a modern 9 kW pellet stove. The examined wood types were deciduous species: black locust, black poplar, European hornbeam, European beech, pedunculate oak (also known as "common oak"), sessile oak, turkey oak and conifers: Austrian black pine, European larch, Norway spruce, Scots pine, silver fir, as well as hardwood briquettes. In addition, "garden biomass" such as pine cones, pine needles and dry leaves were burnt in the log wood stove. The pellet stove was fired with softwood pellets. The composite average emission rates for log wood and briquettes were 2030 mg MJ-1 for CO; 89 mg MJ-1 for NOx, 311 mg MJ-1 for CxHy, 67 mg MJ-1 for particulate matter PM10 and average odor concentration was at 2430 OU m-3. CO, CxHy and PM10 emissions from pellets combustion were lower by factors of 10, 13 and 3, while considering NOx - comparable to the log wood emissions. Odor from pellets combustion was not detectable. CxHy and PM10 emissions from garden biomass (needles and leaves) burning were 10 times higher than for log wood, while CO and NOx rise only slightly. Odor levels ranged from not detectable (pellets) to around 19,000 OU m-3 (dry leaves). The odor concentration correlated with CO, CxHy and PM10. For log wood combustion average odor ranged from 536 OU m-3 for hornbeam to 5217 OU m-3 for fir, indicating a considerable influence of the wood type on odor concentration.

SELECTION OF CITATIONS
SEARCH DETAIL