Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Publication year range
1.
Plant Dis ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764344

ABSTRACT

Wurfbainia villosa var. villosa is a traditional Chinese herbal medicine under the family Zingiberaceae, and its ripe fruits (called Fructus Amomi) are widely used clinically for the treatment of gastrointestinal disorders (Yang et al. 2023; Chen et al. 2023). In September 2023, plants of W. villosa var. villosa exhibited anthracnose-like symptoms on leaf with a disease incidence of 35% (n = 100 investigated plants) in an approximately 90 m2 field in Guangning, China (N23°42'51.70″, E112°26'35.75″). Light yellowish-green spots (~2 mm diameter) initially appeared on the infected leaves, gradually formed sub-circular or irregular spots, then fused and expanded, resulting in wilting of the leaves. To identify the causal agent, 10 symptomatic leaves were collected and transferred to the laboratory. The symptomatic leaf samples were surface sterilized in 0.5% NaClO for 2 min, and in 70% ethanol for 30 s, then washed three times with sterile water and air-dried on sterile filter paper. The leaf tissues were placed on potato dextrose agar (PDA) medium containing 100 µg mL-1 of ampicillin (Sigma-Aldrich, St. Louis, MO) and incubated for 7 days at 28°C in darkness. Nine isolates with similar colony morphology were isolated from the 10 plated leaves. Three representative isolates (GNAF03, GNAF06, GNAF09 with approximately 3.5 cm in diameter after 3 days of incubation) appeared gray to dark brown with dense aerial hyphae at the front and gray to black colonies on the reverse of the plates. Conidia were cylindrical and measured 21.2 to 29.3 µm long × 7.1 to 9.6 µm wide (n = 50). Appressoria were formed by the tips of germ tubes or hyphae and were brown, ellipsoid, thick-walled, and smooth-margined, measuring 10.2 to 12.3 µm long × 6.4 to 8.2 µm wide (n = 50). Morphologically, the fungal isolates resembled Colletotrichum sp. (Weir et al. 2012). For molecular analysis, genomic DNA was extracted from fresh mycelia of the three isolates, and the primers ACT-512F/ACT-783R, CL1/CL2A, GDF/GDR, and ITS1/ITS4 were used to amplify partial regions of rDNA-ITS, actin (ACT), calmodulin (CAL), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) regions, respectively (Weir et al. 2012). The resulting sequences with more than 99% nucleotide identity to C. gloeosporioides were submitted to GenBank (accession numbers PP552725, PP552726, and OR827444 for ACT; PP552727, PP552728, and OR827443 for CAL; PP552729, PP552730, and OR827445 for GAPDH; PP549996, PP549999, and OR841394 for ITS). A phylogenetic tree was generated by the maximum likelihood method using the concatenated sequences of ACT, CAL, GADPH, and ITS by Polysuite software (Damm et al. 2020). Based on morphological and molecular analysis, the three isolates were characterized as C. gloeosporioides. The pathogenicity of the GNAF09 isolate was assessed on W. villosa var. villosa seedling leaves inoculated by spraying with 40 µL of conidial suspension at 106 conidia mL-1 or wounded with a sterile toothpick then inoculated with mycelial agar plugs (5 mm diameter). Control leaves were inoculated with 40 µL of sterile distilled water or agar plugs without mycelia. The inoculated plants were placed in a humid chamber at 28°C with 80% humidity and a 12 h light-dark photoperiod. Symptoms similar to those seen on naturally infected leaves were observed on all inoculated leaves after 7 days inoculation. Re-isolation was performed from 80% of the inoculated leaves and isolates were confirmed as C. gloeosporioides morphologically, confirming Koch's postulates, and by sequencing the ACT, CAL, GADPH, and ITS regions. The control groups remained asymptomatic. In previous studies, C. gloeosporioides has also caused anthracnose on Chinese medicinal plants, including Baishao (Radix paeoniae alba) (Zhang et al. 2017) and Rubia cordifolia L. (Tang et al. 2020). To our knowledge, this is the first report of C. gloeosporioides causing anthracnose on W. villosa var. villosa in China. The results of our report serve as valuable references for further research on this disease.

2.
J Agric Food Chem ; 72(23): 13250-13261, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38813660

ABSTRACT

In plant secondary metabolite biosynthesis, acylation is a diverse physiological process, with BAHD acyltransferases playing an essential role. Borneol acetyltransferase (BAT) is an alcohol acetyltransferase, which catalyzes borneol and acetyl-CoA to synthesize bornyl acetate (BA). However, the enzymes involved in the biosynthesis of BA have so far only been characterized in Wurfbainia villosa, the studies on the WvBATs have only been conducted in vitro, and the catalytic activity was relatively low. In this research, three genes (WlBAT1, WlBAT2, and WlBAT3) have been identified to encode BATs that are capable of acetylating borneol to synthesize BA in vitro. We also determined that WlBAT1 has the highest catalytic efficiency for borneol-type substrates, including (+)-borneol, (-)-borneol, and isoborneol. Furthermore, we found that BATs could catalyze a wide range of substrate types in vitro, but in vivo, they exclusively catalyzed borneol-type substrates. Through molecular simulations and site-directed mutagenesis, it was revealed that residues D32, N36, H168, N297, N355, and H384 are crucial for the catalytic activity of WlBAT1, while the R382I-D385R double mutant of WlBAT1 exhibited an increasing acylation efficiency for borneol-type substrates in vitro and in vivo. These findings offer key genetic elements for the metabolic engineering of plants and synthetic biology to produce BA.


Subject(s)
Acetyltransferases , Camphanes , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Acetyltransferases/genetics , Acetyltransferases/metabolism , Acetyltransferases/chemistry , Camphanes/metabolism , Camphanes/chemistry , Biocatalysis , Substrate Specificity , Kinetics , Mutagenesis, Site-Directed
3.
Plant J ; 118(4): 1218-1231, 2024 May.
Article in English | MEDLINE | ID: mdl-38323895

ABSTRACT

Borneol, camphor, and bornyl acetate are highly promising monoterpenoids widely used in medicine, flavor, food, and chemical applications. Bornyl diphosphate (BPP) serves as a common precursor for the biosynthesis of these monoterpenoids. Although bornyl diphosphate synthase (BPPS) that catalyzes the cyclization of geranyl diphosphate (GPP) to BPP has been identified in multiple plants, the enzyme responsible for the hydrolysis of BPP to produce borneol has not been reported. Here, we conducted in vitro and in vivo functional characterization to identify the Nudix hydrolase WvNUDX24 from W. villosa, which specifically catalyzes the hydrolysis of BPP to generate bornyl phosphate (BP), and then BP forms borneol under the action of phosphatase. Subcellular localization experiments indicated that the hydrolysis of BPP likely occurs in the cytoplasm. Furthermore, site-directed mutagenesis experiments revealed that four critical residues (R84, S96, P98, and G99) for the hydrolysis activity of WvNUDX24. Additionally, the functional identification of phosphatidic acid phosphatase (PAP) demonstrated that WvPAP5 and WvPAP10 were able to hydrolyze geranylgeranyl diphosphate (GGPP) and farnesyl diphosphate (FPP) to generate geranylgeranyl phosphate (GGP) and farnesyl phosphate (FP), respectively, but could not hydrolyze BPP, GPP, and neryl diphosphate (NPP) to produce corresponding monophosphate products. These findings highlight the essential role of WvNUDX24 in the first step of BPP hydrolysis to produce borneol and provide genetic elements for the production of BPP-related terpenoids through plant metabolic engineering and synthetic biology.


Subject(s)
Camphanes , Nudix Hydrolases , Plant Proteins , Pyrophosphatases , Pyrophosphatases/metabolism , Pyrophosphatases/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Camphanes/metabolism , Brassicaceae/genetics , Brassicaceae/enzymology , Brassicaceae/metabolism , Polyisoprenyl Phosphates/metabolism
4.
Planta ; 258(4): 69, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37608037

ABSTRACT

MAIN CONCLUSION: Genome-wide screening of short-chain dehydrogenases/reductases (SDR) family reveals functional diversification of borneol dehydrogenase (BDH) in Wurfbainia villosa. Wurfbainia villosa is an important medicinal plant, the fruits of which accumulate abundant terpenoids, especially bornane-type including borneol and camphor. The borneol dehydrogenase (BDH) responsible for the conversion of borneol to camphor in W. villosa remains unknown. BDH is one member of short-chain dehydrogenases/reductases (SDR) family. Here, a total of 115 classical WvSDR genes were identified through genome-wide screening. These WvSDRs were unevenly distributed on different chromosomes. Seven candidate WvBDHs based on phylogenetic analysis and expression levels were selected for cloning. Of them, four BDHs can catalyze different configurations of borneol and other monoterpene alcohol substrates to generate the corresponding oxidized products. WvBDH1 and WvBDH2, preferred (+)-borneol to (-)-borneol, producing the predominant ( +)-camphor. WvBDH3 yielded approximate equivalent amount of (+)-camphor and (-)-camphor, in contrast, WvBDH4 generated exclusively (+)-camphor. The metabolic profiles of the seeds showed that the borneol and camphor present were in the dextrorotatory configuration. Enzyme kinetics and expression pattern in different tissues suggested WvBDH2 might be involved in the biosynthesis of camphor in W. villosa. All results will increase the understanding of functional diversity of BDHs.


Subject(s)
Alcohol Oxidoreductases , Camphor , Phylogeny
5.
Zhongguo Zhong Yao Za Zhi ; 48(3): 642-648, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872227

ABSTRACT

Wurfbainia villosa fruit is rich in volatile terpenoids, among which pinene is one of the main components and has anti-inflammatory, antibacterial, anti-tumor, and other pharmacological activities. This research group found that W. villosa fruits were rich in α-pinene by GC-MS, and terpene synthase(WvTPS63, formerly known as AvTPS1) with ß-pinene as the main product was cloned and identified, but α-pinene synthase had not been identified. In this study, based on the genome data of W. villosa, we screened and found WvTPS66 with highly similar sequences to WvTPS63, identified enzyme functions of WvTPS66 in vitro, and performed a comparative analysis of sequence, catalytic function, expression pattern, and promoter with WvTPS63. Multiple sequence alignment showed that the amino acid sequences of WvTPS63 and WvTPS66 were highly similar and the conservative motif of terpene synthase was almost identical. In vitro enzymatic experiments on catalytic functions showed that both could produce pinene, and the main product of WvTPS63 was ß-pinene, while that of WvTPS66 was α-pinene. Expression pattern analysis showed that WvTS63 was highly expressed in flowers, WvTPS66 was expressed in the whole plant, and the highest expression level was found in the pericarp, which indicated that it might be mainly responsible for the synthesis of α-pinene in fruits. In addition, promoter analysis revealed the presence of multiple regulatory elements related to stress response in the promoter regions of both genes. The findings of this study can provide a reference for the functional study of terpene synthase genes and new genetic elements for pinene biosynthesis.


Subject(s)
Anti-Bacterial Agents , Terpenes , Amino Acid Sequence
6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970533

ABSTRACT

Wurfbainia villosa fruit is rich in volatile terpenoids, among which pinene is one of the main components and has anti-inflammatory, antibacterial, anti-tumor, and other pharmacological activities. This research group found that W. villosa fruits were rich in α-pinene by GC-MS, and terpene synthase(WvTPS63, formerly known as AvTPS1) with β-pinene as the main product was cloned and identified, but α-pinene synthase had not been identified. In this study, based on the genome data of W. villosa, we screened and found WvTPS66 with highly similar sequences to WvTPS63, identified enzyme functions of WvTPS66 in vitro, and performed a comparative analysis of sequence, catalytic function, expression pattern, and promoter with WvTPS63. Multiple sequence alignment showed that the amino acid sequences of WvTPS63 and WvTPS66 were highly similar and the conservative motif of terpene synthase was almost identical. In vitro enzymatic experiments on catalytic functions showed that both could produce pinene, and the main product of WvTPS63 was β-pinene, while that of WvTPS66 was α-pinene. Expression pattern analysis showed that WvTS63 was highly expressed in flowers, WvTPS66 was expressed in the whole plant, and the highest expression level was found in the pericarp, which indicated that it might be mainly responsible for the synthesis of α-pinene in fruits. In addition, promoter analysis revealed the presence of multiple regulatory elements related to stress response in the promoter regions of both genes. The findings of this study can provide a reference for the functional study of terpene synthase genes and new genetic elements for pinene biosynthesis.


Subject(s)
Terpenes , Amino Acid Sequence , Anti-Bacterial Agents
7.
Plant J ; 112(3): 630-645, 2022 11.
Article in English | MEDLINE | ID: mdl-36071028

ABSTRACT

Wurfbainia villosa is a well-known medicinal and edible plant that is widely cultivated in the Lingnan region of China. Its dried fruits (called Fructus Amomi) are broadly used in traditional Chinese medicine for curing gastrointestinal diseases and are rich in volatile terpenoids. Here, we report a high-quality chromosome-level genome assembly of W. villosa with a total size of approximately 2.80 Gb, 42 588 protein-coding genes, and a very high percentage of repetitive sequences (87.23%). Genome analysis showed that W. villosa likely experienced a recent whole-genome duplication event prior to the W. villosa-Zingiber officinale divergence (approximately 11 million years ago), and a recent burst of long terminal repeat insertions afterward. The W. villosa genome enabled the identification of 17 genes involved in the terpenoid skeleton biosynthesis pathway and 66 terpene synthase (TPS) genes. We found that tandem duplication events have an important contribution to the expansion of WvTPSs, which likely drove the production of volatile terpenoids. In addition, functional characterization of 18 WvTPSs, focusing on the TPS-a and TPS-b subfamilies, showed that most of these WvTPSs are multi-product TPS and are predominantly expressed in seeds. The present study provides insights into the genome evolution and the molecular basis of the volatile terpenoids diversity in W. villosa. The genome sequence also represents valuable resources for the functional gene research and molecular breeding of W. villosa.


Subject(s)
Alkyl and Aryl Transferases , Alkyl and Aryl Transferases/genetics , Terpenes/metabolism , Plants/metabolism , Chromosomes
8.
Front Plant Sci ; 13: 860152, 2022.
Article in English | MEDLINE | ID: mdl-35432416

ABSTRACT

Bornyl acetate (BA) is known as a natural aromatic monoterpene ester with a wide range of pharmacological and biological activities. Borneol acetyltransferase (BAT), catalyzing borneol and acetyl-CoA to synthesize BA, is alcohol acetyltransferase, which belongs to the BAHD super acyltransferase family, however, BAT, responsible for the biosynthesis of BA, has not yet been characterized. The seeds of Wurfbainia villosa (homotypic synonym: Amomum villosum) are rich in BA. Here we identified 64 members of the BAHD gene family from the genome of W. villosa using both PF02458 (transferase) and PF07247 (AATase) as Hidden Markov Model (HMM) to screen the BAHD genes. A total of sixty-four WvBAHDs are distributed on 14 chromosomes and nine unanchored contigs, clustering into six clades; three WvBAHDs with PF07247 have formed a separated and novel clade: clade VI. Twelve candidate genes belonging to clade I-a, I-b, and VI were selected to clone and characterize in vitro, among which eight genes have been identified to encode BATs acetylating at least one type of borneol to synthesize BA. All eight WvBATs can utilize (-)-borneol as substrates, but only five WvBATs can catalyze (+)-borneol, which is the endogenous borneol substrate in the seeds of W. villosa; WvBAT3 and WvBAT4 present the better catalytic efficiency on (+)-borneol than the others. The temporal and spatial expression patterns of WvBATs indicate that WvBAT3 and WvBAT4 are seed-specific expression genes, and their expression levels are correlated with the accumulation of BA, suggesting WvBAT3 and WvBAT4 might be the two key BATs for BA synthesis in the seeds of W. villosa. This is the first report on BAT responsible for the last biosynthetic step of BA, which will contribute to further studies on BA biosynthesis and metabolism engineering of BA in other plants or heterologous hosts.

9.
Physiol Mol Biol Plants ; 26(4): 747-758, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32255937

ABSTRACT

Wurfbainia villosa, which belongs to the huge family Zingiberaceae, is used in the clinic for the treatment of spleen and stomach diseases in southern China. The complete chloroplast genome of W. villosa was sequenced and analyzed using next-generation sequencing technology in the present work. The results showed that the W. villosa chloroplast genome is a circular molecule with 163,608 bp in length. It harbors a pair of inverted repeat regions (IRa and IRb) of 29,820 bp in length, which separate the large single copy (LSC, 88,680 bp) region and the small single copy (SSC, 15,288 bp) region. After annotation, 134 genes were identified in this plastome in total, comprising of 87 protein-coding genes, 38 transfer RNA genes, 8 ribosomal RNA genes and one pseudogene (ycf1). Codon usage, RNA editing sites and single/long sequence repeats were investigated to understand the structural characteristics of the W. villosa chloroplast genome. Furthermore, IR contraction and expansion were analyzed by comparison of complete chloroplast genomes of W. villosa and four other Zingiberaceae species. Finally, a phylogeny study based on the chloroplast genome of W. villosa, along with that of 15 different species, was conducted to further investigate the relationship among these lineages. Overally, our results represented the first insight into the chloroplast genome of W. villosa, and could serve as a significant reference for species identification, genetic diversity analysis and phylogenetic research between W. villosa and other species within Zingiberaceae.

SELECTION OF CITATIONS
SEARCH DETAIL