Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.252
Filter
1.
Cureus ; 16(7): e64416, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39131038

ABSTRACT

Introduction Small compounds like L-leucine can boost bone regrowth by blocking certain effects, sparking cell reactions through signaling sequences. This research explored how combining L-leucine with hyaluronic acid on the developed novel graft material affects the bone's ability to conduct bone-building processes. Material and methods This study was designed as an in-vitro experiment, where a novel bone graft was formulated by integrating L-leucine with hyaluronic acid and incorporated into a hydroxyapatite-based ovine bone graft material. The sintering procedure was modified to include the amino acid L-arginine. Comprehensive examinations were executed using methodologies such as scanning electron microscopy, X-ray diffractometry, Fourier-transform infrared spectroscopy (FTIR), MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and bone formation assay. These analyses were juxtaposed with the characteristics of the commercially accessible unaltered Bio-Oss, focusing on their physicochemical properties. The properties were compared with a commercially available bone graft material. Results The sintered hydroxyapatite/L-leucine graft displayed an interconnected pore structure, indicating that higher sintering and consolidation affected hydroxyapatite, as observed through scanning electron microscopy. X-ray diffraction (XRD) analysis confirmed hydroxyapatite in the sintered ovine bone samples, affirming their suitability for various biomedical applications. In the bone formation assay, optical density (OD) values were 61% for the hydroxyapatite/L-arginine graft, 58% for the Bio-Oss group, and 51% for the control group. The MTT assay, which assesses cell viability and metabolic activity, demonstrated biocompatibility and cell growth for all samples at 24 hours. Conclusion The research noted beneficial outcomes by incorporating L-leucine into the novel bone graft material with hyaluronic acid for bone grafting, demonstrating enhanced compatibility with existing bone tissue. However, the specific advantages of this combined approach are not fully known. It is essential to conduct more studies to uncover how this synergy works, assess its prolonged impacts, carry out clinical tests, and enhance the effectiveness of this blend for practical applications in bone graft surgeries.

2.
Angew Chem Int Ed Engl ; : e202407395, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137132

ABSTRACT

Copper-exchanged zeolite omega (Cu-omega) is a potent material for the selective conversion of methane-to-methanol (MtM) via the oxygen looping approach. However, its performance exhibits substantial variation depending on the operational conditions. Under an isothermal temperature regime, Cu-omega demonstrates subdued activity below 230 °C, but experiences a remarkable increase in activity at 290 °C. Applying a high-temperature activation protocol at 450 °C causes a rapid deactivation of the material. This behavioral divergence is investigated by combining reactivity studies, neutron and in situ high-resolution anomalous X-ray powder diffraction (HR-AXRPD), as well as electron paramagnetic resonance spectroscopy, to reveal that the migration of Cu throughout the framework is the primary cause of these behaviors, which in turn is governed by the degree of hydration of the system. This work suggests that control over the Cu migration throughout the zeolite framework may be harnessed to significantly increase the activity of Cu-omega by generating more active sites for the MtM conversion. These results underscore the power of in situ HR-AXRPD for unraveling the behavior of materials under reaction conditions and suggest that a re-evaluation of Cu-zeolites priorly deemed inactive for the MtM conversion across a broader range of conditions and looping protocols may be warranted.

3.
Int Dent J ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39138098

ABSTRACT

OBJECTIVES: This study evaluated the phase composition, phase transformation behaviour, and mechanical properties of five heat-treated NiTi instruments. METHODS: ProTaper NEXT (M-wire, PTN), ProTaper Gold (Gold-wire, PTG), One Curve (C-wire, OC), EdgeTaper Platinum (Fire-wire, ETP), NeoNiTi (electrical discharge machining-wire, NNA), and ProTaper Universal (conventional wire, PTU, control) with #25-tip size were tested (n = 12/group) for cyclic fatigue resistance (number of cycles to failure; NCF) and torsional resistance (angle of rotation to fracture and maximum torque at fracture [ultimate torsional strength]). The geometry and fracture surfaces of the tested instruments were examined by scanning electron microscopy. The phase transformation temperature and phase composition of the instruments were evaluated using differential scanning calorimetry and X-ray diffraction. Data were statistically analysed using one-way ANOVA and Tukey's post hoc test, with the significance level set at 5%. RESULTS: PTG showed the highest NCF (P < .05) at 37°C, while ETP exhibited the highest angle of rotation to fracture, ultimate torsional strength, and stiffness (P < .05). Scanning electron microscopy demonstrated typical clusters of fatigue striations and numerous cracks after cyclic fatigue fracture, whereas there was a concentric abrasion pattern with a dimple and microvoids at the centre after torsional fracture. In differential scanning calorimetry curves, austenite-finishing temperatures of heat-treated instruments were higher than 37°C, whereas that of PTU was lower than 37°C. PTU showed strong peaks of austenite at 25 and 37°C, whereas ETP showed a strong peak of R-phase at 25°C, but mostly austenite phase at 37°C in X-ray diffraction. CONCLUSIONS: Geometry, alloy type, and phase transformation temperatures of NiTi instruments affected their mechanical behaviour. CLINICAL RELEVANCE: PTG showed the highest NCF, suitable for markedly curved canals. ETP had the highest torsional resistance, appropriate for narrow and constricted canals.

4.
IUCrJ ; 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39133544

ABSTRACT

Mineral identification and quantification are key to the understanding and, hence, the capacity to predict material properties. The method of choice for mineral quantification is powder X-ray diffraction (XRD), generally using a Rietveld refinement approach. However, a successful Rietveld refinement requires preliminary identification of the phases that make up the sample. This is generally carried out manually, and this task becomes extremely long or virtually impossible in the case of very large datasets such as those from synchrotron X-ray diffraction computed tomography. To circumvent this issue, this article proposes a novel neural network (NN) method for automating phase identification and quantification. An XRD pattern calculation code was used to generate large datasets of synthetic data that are used to train the NN. This approach offers significant advantages, including the ability to construct databases with a substantial number of XRD patterns and the introduction of extensive variability into these patterns. To enhance the performance of the NN, a specifically designed loss function for proportion inference was employed during the training process, offering improved efficiency and stability compared with traditional functions. The NN, trained exclusively with synthetic data, proved its ability to identify and quantify mineral phases on synthetic and real XRD patterns. Trained NN errors were equal to 0.5% for phase quantification on the synthetic test set, and 6% on the experimental data, in a system containing four phases of contrasting crystal structures (calcite, gibbsite, dolomite and hematite). The proposed method is freely available on GitHub and allows for major advances since it can be applied to any dataset, regardless of the mineral phases present.

5.
Materials (Basel) ; 17(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39124461

ABSTRACT

In this investigation, our primary objective is to explore the structural, morphological, and electrical characteristics of Bi0.75Ba0.25(FeMn)0.5O3 ceramic material synthesized by the sol-gel method. The prepared sample underwent synthesis through the conventional sol-gel technique. Examination through X-ray diffraction (XRD) unveiled a well-defined rhombohedral structure within the R3´C space group. Moreover, to evaluate the purity and nano-grain morphology, we utilized energy dispersive spectroscopy (EDX) and scanning electron microscopy (SEM). Electrical assessments were carried out over a frequency span of 100 Hz to 1 MHz and temperatures ranging from 200 to 340 K. Employing the correlated barrier hopping (CBH) model, we analyzed the AC conductivity of our specimen. The activation energy, determined from both DC conductivity and impedance spectra, demonstrated close correspondence, suggesting that both conductivity and r laxation processes are influenced by similar factors. Notably, the dielectric properties hold significant importance, potentially rendering our sample suitable for electronic applications. Furthermore, we calculated thermodynamic parameters, such as enthalpy (ΔH), entropy change (ΔS), and free energy of activation (ΔF), offering deeper insights into the material's behavior and conductivity mechanisms.

6.
J Inorg Biochem ; 260: 112681, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39146673

ABSTRACT

Iron insertion into porphyrins is an essential step in heme biosynthesis. In the coproporphyrin-dependent pathway, specific to monoderm bacteria, this reaction is catalyzed by the monomeric enzyme coproporphyrin ferrochelatase. In addition to the mechanistic details of the metalation of the porphyrin, the identification of the substrate access channel for ferrous iron to the active site is important to fully understand this enzymatic system. In fact, whether the iron reaches the active site from the distal or the proximal porphyrin side is still under debate. In this study we have thoroughly addressed this question in Listeria monocytogenes coproporphyrin ferrochelatase by X-ray crystallography, steady-state and pre-steady-state imidazole ligand binding studies, together with a detailed spectroscopic characterization using resonance Raman and UV-vis absorption spectroscopies in solution. Analysis of the X-ray structures of coproporphyrin ferrochelatase-coproporphyrin III crystals soaked with ferrous iron shows that iron is present on both sides of the porphyrin. The kinetic and spectroscopic study of imidazole binding to coproporphyrin ferrochelatase­iron coproporphyrin III clearly indicates the presence of two possible binding sites in this monomeric enzyme that influence each other, which is confirmed by the observed cooperativity at steady-state and a biphasic behavior in the pre-steady-state experiments. The current results are discussed in the context of the entire heme biosynthetic pathway and pave the way for future studies focusing on protein-protein interactions.

7.
J Sci Food Agric ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150228

ABSTRACT

BACKGROUND: Rice bran, a by-product of rice processing, has not been fully utilized except for the small amount used for raising animals. The raw material source requirements of microcrystalline cellulose are becoming increasingly extensive. However, the characteristics of preparing microcrystalline cellulose from rice bran have not been reported, which limits the application of rice bran. RESULTS: Microcrystalline cellulose was obtained from rice bran by alkali treatment, delignification, bleaching and acid hydrolysis. The morphology, particle size distribution, degree of polymerization, crystallinity, and thermal stability of rice bran microcrystalline cellulose were analyzed. The chemical compositions, scanning electron microscopy and Fourier-transform infrared analysis for rice bran microcrystalline cellulose showed that the lignin and hemicellulose were successfully removed from the rice bran fiber matrix. The morphology of rice bran microcrystalline cellulose was shown to be of a short rod-shaped porous structure with an average diameter of 65.3 µm. The polymerization degree of rice bran microcrystalline cellulose was 150. The X-ray diffraction pattern of rice bran microcrystalline cellulose showed the characteristic peak of natural cellulose (type I), and its crystallization index was 71%. The rice bran microcrystalline cellulose may be used in biological composites with temperatures between 150 °C and 250 °C. CONCLUSION: These results suggest the feasibility of using rice bran as a low-price source of microcrystalline cellulose. © 2024 Society of Chemical Industry.

8.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 80(Pt 4): 347-359, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39136540

ABSTRACT

In the course of an investigation of the supramolecular behaviour of copper(II) complexes with the 5-phenylimidazole/perchlorate ligand system (`blend') remarkable solvatomorphism has been observed. By employing a variety of crystallization solvents (polar protic, polar/non-polar aprotic), a series of 12 crystalline solvatomorphs with the general formula [Cu(ClO4)2(LH)4]·x(solvent) have been obtained [LH = 5-phenylimidazole, x(solvent) = 3.3(H2O) (1), 2(methanol) (2), 2(ethanol) (3), 2(1-propanol) (4), 2(2-propanol) (5), 2(2-butanol) (6), 2(dimethylformamide) (7), 2(acetone) (8), 2(tetrahydrofurane) (9), 2(1,4-dioxane) (10), 2(ethyl acetate) (11) and 1(diethyl ether) (12)]. The structures have been solved using single-crystal X-ray diffraction and the complexes were characterized by thermal analysis and infrared spectroscopy. The solvatomorphs are isostructural (triclinic, P1), with the exception of compound 9 (monoclinic, P21/n). The supramolecular structures and the role of the various solvents is discussed. All potential hydrogen-bond functionalities, both of the [Cu(ClO4)2(LH)4] units and of the solvents, are utilized in the course of the crystallization process. The supramolecular assembly in all structures is directed by strong recurring Nimidazole-H...Operchlorate motifs leading to robust scaffolds composed of the [Cu(ClO4)2(LH)4] host complexes. The solvents are located in channels and, with the exception of the disordered waters in 1 and the diethyl ether in 12, participate in hydrogen-bonding formation with the [Cu(ClO4)2(LH)4] complexes, serving as both hydrogen-bond acceptors and donors (for the polar protic solvents in 2-6), or solely as hydrogen-bond acceptors (for the polar/non-polar aprotic solvents in 7-11), linking the complexes and contributing to the stability of the crystalline compounds.

9.
J Appl Crystallogr ; 57(Pt 4): 1205-1211, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39108805

ABSTRACT

With the emergence of ultrafast X-ray sources, interest in following fast processes in small molecules and macromolecules has increased. Most of the current research into ultrafast structural dynamics of macromolecules uses X-ray free-electron lasers. In parallel, small-scale laboratory-based laser-driven ultrafast X-ray sources are emerging. Continuous development of these sources is underway, and as a result many exciting applications are being reported. However, because of their low flux, such sources are not commonly used to study the structural dynamics of macromolecules. This article examines the feasibility of time-resolved powder diffraction of macromolecular microcrystals using a laboratory-scale laser-driven ultrafast X-ray source.

10.
J Appl Crystallogr ; 57(Pt 4): 1217-1228, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39108808

ABSTRACT

Presented and discussed here is the implementation of a software solution that provides prompt X-ray diffraction data analysis during fast dynamic compression experiments conducted within the dynamic diamond anvil cell technique. It includes efficient data collection, streaming of data and metadata to a high-performance cluster (HPC), fast azimuthal data integration on the cluster, and tools for controlling the data processing steps and visualizing the data using the DIOPTAS software package. This data processing pipeline is invaluable for a great number of studies. The potential of the pipeline is illustrated with two examples of data collected on ammonia-water mixtures and multiphase mineral assemblies under high pressure. The pipeline is designed to be generic in nature and could be readily adapted to provide rapid feedback for many other X-ray diffraction techniques, e.g. large-volume press studies, in situ stress/strain studies, phase transformation studies, chemical reactions studied with high-resolution diffraction etc.

11.
Chem Asian J ; : e202400804, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136411

ABSTRACT

: Design of material showing contraction upon heating is highly challenging due to varying mechanism. However, imidazole is found to be a potential molecule that may provide low CTE materials when incorporated in the matrix.Here we have reported thermal expansion property of imidazolium salts of five aliphaticα, ω-alkane dicarboxylic acids and three aromatic acids. Either uniaxial or biaxial negative thermal expansion (NTE) has been observed in most of the salts. In some cases, axial zero thermal expansion (ZTE) has been observed. The role of imidazolium moiety for the anomalous thermal expansion behaviour of the salts has been analyzed in this study. The controlled TE behaviour of the salts is attributed to the hydrogen bonding and transverse vibration in all imidazolium salts. Owing to the high transverse vibration observed in imidazolium ion as well as the heavier oxygen atoms of acids in each case, the distance between hydrogen bonded atoms decreases - which provides either low expansion or contraction along one of the principal axes.

12.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 80(Pt 4): 340-346, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39136539

ABSTRACT

An algorithm is proposed for determining the orientational relationships and crystal unit-cell parameters of thin films using a laboratory X-ray diffractometer and stereographic projections. It is illustrated by the treatment of experimental data obtained for yttrium orthoferrite YFeO3 films on single crystalline sapphire (Al2O3) substrates for film thicknesses in the range from 100 to 7000 Å. Precise determination of unit-cell constants and angles is possible by combining the results of X-ray measurements made in the in-plane and out-of-plane geometries. The unit-cell unit parameters and orientation relationships for thin films were determined. For the studied films, typical errors in determining unit-cell parameters and angles are better than 0.17 Šand 0.17°, respectively.

13.
Sci Rep ; 14(1): 18809, 2024 08 13.
Article in English | MEDLINE | ID: mdl-39138273

ABSTRACT

Damage from ice and potential toxicity of ice-inhibiting cryoprotective agents (CPAs) are key issues in assisted reproduction of humans, domestic and research animals, and endangered species using cryopreserved oocytes and embryos. The nature of ice formed in bovine oocytes (similar in size to oocytes of humans and most other mammals) after rapid cooling and during rapid warming was examined using synchrotron-based time-resolved x-ray diffraction. Using cooling rates, warming rates and CPA concentrations of current practice, oocytes show no ice after cooling but always develop large ice fractions-consistent with crystallization of most free water-during warming, so most ice-related damage must occur during warming. The detailed behavior of ice at warming depended on the nature of ice formed during cooling. Increasing cooling rates allows oocytes soaked as in current practice to remain essentially ice free during both cooling and warming. Much larger convective warming rates are demonstrated and will allow routine ice-free cryopreservation with smaller CPA concentrations. These results clarify the roles of cooling, warming, and CPA concentration in generating ice in oocytes and establish the structure and grain size of ice formed. Ice formation can be eliminated as a factor affecting post-warming oocyte viability and development in many species, improving outcomes and allowing other deleterious effects of the cryopreservation cycle to be independently studied.


Subject(s)
Cryopreservation , Cryoprotective Agents , Ice , Oocytes , Cryopreservation/methods , Animals , Cryoprotective Agents/pharmacology , Cattle , Female , X-Ray Diffraction
14.
Cureus ; 16(7): e63582, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39087177

ABSTRACT

Background The fabrication of titanium carbide (Ti3C2)-cobalt sulfide (Co3S4)-based biosensors with high sensitivity and selectivity can change the biosensor manufacturing industry completely. Molecular and clinical diagnostics, disease progression monitoring, and drug discovery could utilize these sensors for early biomarker detection. MXene (Ti3C2) is a two-dimensional material with exceptional electrical conductivity, hydrophilicity, great thermal stability, large interlayer spacing, and a high surface area. Ti3C2's remarkable characteristics make it well-suited for biomolecule immobilization and target analyte detection. Co3S4 is a transition metal chalcogenide that has shown great potential in biosensors. Co3S4 nanoparticles (NPs) can potentially enhance Ti3C2 electrocatalytic activity, particularly in amino acid detection. L-arginine is a semi-essential amino acid, and the body frequently uses it to support healthy circulation and plays a crucial role in protein synthesis. We fabricated the Ti3C2-Co3S4 biosensor for L-arginine detection. Aim  This study aims to synthesize and apply Ti3C2-Co3S4 nanocomposites in amino acid biosensing. Materials and methods The Ti3C2 nanosheets were synthesized by the selective removal of an aluminum (Al) layer from the precursor (Ti3AlC2) using hydrofluoric acid (HF). The resulting mixture serves as an etchant, especially targeting the Al layers on Ti3AlC2 while protecting the desired MXene layers at room temperature. Cobalt nitrate hexahydrate was dissolved in deionized water. Sodium hydroxide was added to the cobalt solution and stirred. Thioacetamide was added to the above solution and stirred (Solution B). A mixture of Solution A and Solution B was stirred for 30 minutes. The mixture is transferred to a hydrothermal reactor and maintained at a temperature of 180°C for 12 hours. Once the reaction completes, we cool the resultant mixture to room temperature and then filter it using the washing technique. The sample underwent a 12-hour drying process at 80°C.  Results  This study investigated the use of a biosensor that employed Ti3C2-Co3S4 NPs to detect the concentration of L-arginine. The X-ray diffraction (XRD) shows clear and distinct peaks, which means that the synthesized Ti3C2-Co3S4 nanostructures have a crystalline structure. Scanning electron microscopy (SEM) analysis revealed that the sheetlike structure of synthesized Ti3C2-Co3S4 nanostructures revealed the crystalline morphology. The results of this study show that the Ti3C2-Co3S4 NP-based biosensor can be used to detect L-arginine in a sensitive and selective way. Conclusion  This study investigated the synthesis of Ti3C2-Co3S4 NPs and their ability to detect L-arginine levels and show a distinct correlation between the L-arginine concentration and the fluorescence intensity, demonstrating the biosensor's effectiveness in detecting L-arginine levels.

15.
Ann Work Expo Health ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102735

ABSTRACT

Internationally, respirable crystalline silica (RCS) occupational exposure limits (OELs) are being reassessed and, in some jurisdictions, lowered, putting pressure on the capabilities of the analytical techniques used to achieve robust analyses and reliable detection limits. In preparation of a lower OEL, options for lowering the limit of detection (LoD) for RCS analysis have been assessed. Using a Direct-on-Filter X-Ray Diffraction (XRD) analysis under reduced scan speeds in combination with low-noise RCS sampling filters, an LoD of 0.25 µg/filter and a limit of quantification (LoQ) of 0.82 µg/filter can be achieved. Both limits would translate in an LoD of 0.24 µg/m3 and LoQ of 0.78 µg/m3 when sampling respirable dust for 8 h at 2.2 L/min, providing a technical solution to monitor exposures at the proposed OEL of 0.025 mg/m3 (25 µg /m3) and below, with general sampling conditions as typically applied in Australia. This is the first report showing that the OEL of 0.025 mg/m3 (25 µg /m3) is measurable by one of the standardized, direct-on-filter XRD methods.

16.
J Synchrotron Radiat ; 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39116009

ABSTRACT

Bragg coherent X-ray diffraction imaging (BCDI) has emerged as a powerful technique for strain imaging and morphology reconstruction of nanometre-scale crystals. However, BCDI often suffers from angular distortions that appear during data acquisition, caused by radiation pressure, heating or imperfect scanning stages. This limits the applicability of BCDI, in particular for small crystals and high-flux X-ray beams. Here, we present a pre-processing algorithm that recovers the 3D datasets from the BCDI dataset measured under the impact of large angular distortions. We systematically investigate the performance of this method for different levels of distortion and find that the algorithm recovers the correct angles for distortions up to 16.4× (1640%) the angular step size dθ = 0.004°. We also show that the angles in a continuous scan can be recovered with high accuracy. As expected, the correction provides marked improvements in the subsequent phase retrieval.

17.
Chemistry ; : e202401346, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058415

ABSTRACT

N-substituted pyridino-based congeners of Ebselen, named here as Pyrselen, incorporating proximal Se and N atoms, undergo dimerization in solution and in the solid state through a dual donor-acceptor arrangement of chalcogen bonding sites. Dimerization constants were measured within the 15-50 M-1 range. Computational studies on the dimers depict a notable charge-transfer contribution to the association, validating Pyrselen as an effective scaffold for designing chalcogen-bonding-based recognition motifs. Insert abstract text here.

18.
IUCrJ ; 11(Pt 4): 476-485, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38958014

ABSTRACT

A series of events underscoring the significant advancements in micro-crystallization and in vivo crystallography were held during the 26th IUCr Congress in Melbourne, positioning microcrystallography as a pivotal field within structural biology. Through collaborative discussions and the sharing of innovative methodologies, these sessions outlined frontier approaches in macromolecular crystallography. This review provides an overview of this rapidly moving field in light of the rich dialogues and forward-thinking proposals explored during the congress workshop and microsymposium. These advances in microcrystallography shed light on the potential to reshape current research paradigms and enhance our comprehension of biological mechanisms at the molecular scale.


Subject(s)
Crystallization , Crystallography, X-Ray/methods , Crystallography/methods , Macromolecular Substances/chemistry
19.
IUCrJ ; 11(Pt 4): 634-642, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38958016

ABSTRACT

Spectroscopic data, particularly diffraction data, are essential for materials characterization due to their comprehensive crystallographic information. The current crystallographic phase identification, however, is very time consuming. To address this challenge, we have developed a real-time crystallographic phase identifier based on a convolutional self-attention neural network (CPICANN). Trained on 692 190 simulated powder X-ray diffraction (XRD) patterns from 23 073 distinct inorganic crystallographic information files, CPICANN demonstrates superior phase-identification power. Single-phase identification on simulated XRD patterns yields 98.5 and 87.5% accuracies with and without elemental information, respectively, outperforming JADE software (68.2 and 38.7%, respectively). Bi-phase identification on simulated XRD patterns achieves 84.2 and 51.5% accuracies, respectively. In experimental settings, CPICANN achieves an 80% identification accuracy, surpassing JADE software (61%). Integration of CPICANN into XRD refinement software will significantly advance the cutting-edge technology in XRD materials characterization.

20.
Food Chem ; 458: 140240, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964112

ABSTRACT

Five different millets (foxtail, little, barnyard, kodo and browntop) with and without sprouting were subjected to flaking. Phytic acid and phenolic content tends to decrease significantly, whereas antioxidant activity increased up to 77.32% on flaking of millets. A significant decrease in peak and final viscosity was observed in millet flakes. A-type diffraction pattern was predominant for unsprouted millets whereas the flaked millets showed V-type crystallinity. The protein digestibility significantly increased up to 37.77% in flakes made from sprouted millets. The mineral bioavailability upon flaking of millets increased, especially Ca (88.22% for little), Fe (43.04% for barnyard) and Zn (61.77% for kodo), which is attributed to the reduction in phytic acid. Flaking, however, led to an increase in rapidly and slowly digestible starch with a corresponding decrease in resistant starch. Among the unsprouted and sprouted millet flakes, foxtail received the highest sensory scores for overall acceptability.

SELECTION OF CITATIONS
SEARCH DETAIL