Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters











Publication year range
1.
RNA ; 30(9): 1164-1183, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38844344

ABSTRACT

In recent years, numerous evidence has been accumulated about the extent of A-to-I editing in human RNAs and the key role ADAR1 plays in the cellular editing machinery. It has been shown that A-to-I editing occurrence and frequency are tissue-specific and essential for some tissue development, such as the liver. To study the effect of ADAR1 function in hepatocytes, we have created Huh7.5 ADAR1 KO cell lines. Upon IFN treatment, the Huh7.5 ADAR1 KO cells show rapid arrest of growth and translation, from which they do not recover. We analyzed translatome changes by using a method based on sequencing of separate polysome profile RNA fractions. We found significant changes in the transcriptome and translatome of the Huh7.5 ADAR1 KO cells. The most prominent changes include negatively affected transcription by RNA polymerase III and the deregulation of snoRNA and Y RNA levels. Furthermore, we observed that ADAR1 KO polysomes are enriched in mRNAs coding for proteins pivotal in a wide range of biological processes such as RNA localization and RNA processing, whereas the unbound fraction is enriched mainly in mRNAs coding for ribosomal proteins and translational factors. This indicates that ADAR1 plays a more relevant role in small RNA metabolism and ribosome biogenesis.


Subject(s)
Adenosine Deaminase , Hepatocytes , RNA Editing , RNA-Binding Proteins , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Humans , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Hepatocytes/metabolism , Polyribosomes/metabolism , Polyribosomes/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Protein Biosynthesis , Transcriptome , Gene Knockout Techniques , Cell Line
2.
J Extracell Biol ; 3(1): e123, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38938676

ABSTRACT

Cells can communicate via the release and uptake of extracellular vesicles (EVs), which are nano-sized membrane vesicles that can transfer protein and RNA cargo between cells. EVs contain microRNAs and various other types of non-coding RNA, of which Y RNA is among the most abundant types. Studies on how RNAs and their binding proteins are sorted into EVs have mainly focused on comparing intracellular (cytoplasmic) levels of these RNAs to the extracellular levels in EVs. Besides overall transcriptional levels that may regulate sorting of RNAs into EVs, the process may also be driven by local intracellular changes in RNA/RBP concentrations. Changes in extracellular Y RNA have been linked to cancer and cardiovascular diseases. Although the loading of RNA cargo into EVs is generally thought to be influenced by cellular stimuli and regulated by RNA binding proteins (RBP), little is known about Y RNA shuttling into EVs. We previously reported that immune stimulation alters the levels of Y RNA in EVs independently of cytosolic Y RNA levels. This suggests that Y RNA binding proteins, and/or changes in the local Y RNA concentration at EV biogenesis sites, may affect Y RNA incorporation into EVs. Here, we investigated the subcellular distribution of Y RNA and Y RNA binding proteins in activated and non-activated THP1 macrophages. We demonstrate that Y RNA and its main binding protein Ro60 abundantly co-fractionate in organelles involved in EV biogenesis and in EVs. Cellular activation led to an increase in Y RNA concentration at EV biogenesis sites and this correlated with increased EV-associated levels of Y RNA and Ro60. These results suggest that Y RNA incorporation into EVs may be controlled by local intracellular changes in the concentration of Y RNA and their protein binding partners.

3.
Biochem Biophys Res Commun ; 723: 150169, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38815487

ABSTRACT

Among the two Y RNAs in Deinococcus radiodurans, the functional properties of Yrn2 are still not known. Yrn2 although consists of a long stem-loop for Rsr binding, differs from Yrn1 in the effector binding site. An initial study on Yrn2 delineated it to be a UV-induced noncoding RNA. Apart from that Yrn2 has scarcely been investigated. In the current study, we identified Yrn2 as an γ-radiation induced Y RNA, which is also induced upon H2O2 and mitomycin treatment. Ectopically expressed Yrn2 appeared to be nontoxic to the cell growth. An overabundance of Yrn2 was found to ameliorate cell survival under oxidative stress through the detoxification of intracellular reactive oxygen species with a subsequent decrease in total protein carbonylation. A significant accumulation of intracellular Mn(II) with unaltered Fe(II) and Zn(II) with detected while Yrn2 is overabundant in the cells. This study identified the role of a novel Yrn2 under oxidative stress in D. radiodurans.


Subject(s)
Deinococcus , Hydrogen Peroxide , Oxidative Stress , Deinococcus/metabolism , Deinococcus/genetics , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , Reactive Oxygen Species/metabolism , RNA, Untranslated/metabolism , RNA, Untranslated/genetics , Gamma Rays
4.
J Neurochem ; 168(6): 961-976, 2024 06.
Article in English | MEDLINE | ID: mdl-38339812

ABSTRACT

Non-coding RNAs (ncRNAs) are highly plastic RNA molecules that can sequester cellular proteins and other RNAs, serve as transporters of cellular cargo and provide spatiotemporal feedback to the genome. Mounting evidence indicates that ncRNAs are central to biology, and are critical for neuronal development, metabolism and intra- and intercellular communication in the brain. Their plasticity arises from state-dependent dynamic structure states that can be influenced by cell type and subcellular environment, which can subsequently enable the same ncRNA with discrete functions in different contexts. Here, we highlight different classes of brain-enriched ncRNAs, including microRNA, long non-coding RNA and other enigmatic ncRNAs, that are functionally important for both learning and memory and adaptive immunity, and describe how they may promote cross-talk between these two evolutionarily ancient biological systems.


Subject(s)
Adaptive Immunity , Brain , Learning , Memory , RNA, Untranslated , Humans , Animals , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Brain/metabolism , Brain/immunology , Adaptive Immunity/physiology , Memory/physiology , Learning/physiology , Immune System/metabolism , Neurochemistry
5.
Genome Med ; 16(1): 21, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38308367

ABSTRACT

BACKGROUND: The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations. METHODS: Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis. RESULTS: The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis. CONCLUSIONS: This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these elements might indicate increased cancer risk.


Subject(s)
Genome-Wide Association Study , Neoplasms , Humans , Female , Phenotype , Quantitative Trait Loci , Genetic Pleiotropy , Neoplasms/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
6.
Vet Q ; 44(1): 1-8, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38288969

ABSTRACT

Hypoxia may promote tumor progression, and hypoxically altered noncoding RNA (ncRNA) expression may play a role in metastasis. Canine oral melanoma (COM) frequently metastasizes, and ncRNA expression under hypoxia may be clinically significant. We aimed to elucidate ncRNA fragments whose expression is altered by hypoxia in COM-derived primary KMeC and metastatic LMeC cell lines using next-generation sequencing to validate these results in qRT-PCR, and then compare expression between metastatic and non-metastatic COM. The NGS analysis and subsequent qRT-PCR validation were performed using hypoxic and normoxic KMeC and LMeC cells, and clinical samples [tumor tissue, plasma, and plasma-derived extracellular vesicles] obtained from dogs with metastatic or non-metastatic melanoma were analyzed with qRT-PCR. Y RNA was significantly decreased in metastatic LMeC cells versus primary KMeC cells in hypoxic and normoxic conditions. The expression of Y RNA was decreased in dogs with metastatic melanoma versus those with non-metastatic melanoma for all clinical sample types, reflecting the pattern found with hypoxia. Receiver operating characteristic analysis demonstrated that Y RNA level is a promising biomarker for discriminating metastatic from non-metastatic melanoma in plasma [area under the curve (AUC) = 0.993, p < 0.0001] and plasma-derived extracellular vesicles (AUC = 0.981, p = 0.0002). Overall, Y RNA may be more resistant to hypoxic stress in the metastatic than the non-metastatic state for COM. However, further investigation is required to elucidate the biological functions of Y RNA under hypoxic conditions.


Subject(s)
Dog Diseases , Melanoma , MicroRNAs , Mouth Neoplasms , Dogs , Animals , Melanoma/diagnosis , Melanoma/veterinary , Mouth Neoplasms/diagnosis , Mouth Neoplasms/veterinary , Hypoxia/veterinary , MicroRNAs/genetics , Biomarkers , Dog Diseases/diagnosis , Dog Diseases/genetics
7.
Mol Cell Biochem ; 479(2): 297-311, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37059894

ABSTRACT

Many advances in small RNA-seq technology and bioinformatics pipelines have been made recently, permitting the discovery of novel miRNAs in the embryonic day 15.5 (E15.5) mouse brain. We aimed to improve miRNA discovery in this tissue to expand our knowledge of the regulatory networks that underpin normal neurodevelopment, find new candidates for neurodevelopmental disorder aetiology, and deepen our understanding of non-coding RNA evolution. A high-quality small RNA-seq dataset of 458 M reads was generated. An unbiased miRNA discovery pipeline identified fifty putative novel miRNAs, six of which were selected for further validation. A combination of conservation analysis and target functional prediction was used to determine the authenticity of novel miRNA candidates. These findings demonstrate that miRNAs remain to be discovered, particularly if they have the features of other small RNA species.


Subject(s)
MicroRNAs , Animals , Mice , MicroRNAs/genetics , Computational Biology , RNA-Seq , Brain
8.
Chembiochem ; 25(5): e202300784, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38116890

ABSTRACT

Recently, the post-transcriptional modification of RNA with N-glycans was reported, changing the paradigm that RNAs are not commonly N-glycosylated. Moreover, glycan modifications of RNA are investigated for therapeutic targeting purposes. But the glyco-RNA field is in its infancy with many challenges to overcome. One question is how to accurately characterize glycosylated RNA constructs. Thus, we generated glycosylated forms of Y5 RNA mimics, a short non-coding RNA. The simple glycans lactose and sialyllactose were attached to the RNA backbone using azide-alkyne cycloadditions. Using nuclease digestion followed by LC-MS, we confirmed the presence of the glycosylated nucleosides, and characterized the chemical linkage. Next, we probed if glycosylation would affect the cellular response to Y5 RNA. We treated human foreskin fibroblasts in culture with the generated compounds. Key transcripts in the innate immune response were quantified by RT-qPCR. We found that under our experimental conditions, exposure of cells to the Y5 RNA did not trigger an interferon response, and glycosylation of this RNA did not have an impact. Thus, we have identified a successful approach to chemically characterize synthetic glyco-RNAs, which will be critical for further studies to elucidate how the presence of complex glycans on RNA affects the cellular response.


Subject(s)
Alkynes , Azides , Humans , Glycosylation , Cycloaddition Reaction , Nucleosides , RNA
9.
Animals (Basel) ; 13(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37835660

ABSTRACT

Hepatocellular carcinomas (HCC) are common tumors, whereas hepatocellular adenomas (HCA) are rare, benign tumors in dogs. The aberrant expression of noncoding RNAs (ncRNAs) plays a pivotal role in HCC tumorigenesis and progression. Among ncRNAs, micro RNAs have been widely researched in human HCC, but much less widely in canine HCC. However, Y RNA-derived fragments have yet to be investigated in canine HCC and HCA. This study targeted canine HCC and HCA patients. We used qRT-PCR to determine Y RNA expression in clinical tissues, plasma, and plasma extracellular vesicles, and two HCC cell lines (95-1044 and AZACH). Y RNA was significantly decreased in tissue, plasma, and plasma extracellular vesicles for canine HCC versus canine HCA and healthy controls. Y RNA was decreased in 95-1044 and AZACH cells versus normal liver tissue and in AZACH versus 95-1044 cells. In plasma samples, Y RNA levels were decreased in HCC versus HCA and Healthy controls and increased in HCA versus Healthy controls. Receiver operating characteristic analysis showed that Y RNA could be a promising biomarker for distinguishing HCC from HCA and healthy controls. Overall, the dysregulated expression of Y RNA can distinguish canine HCC from HCA. However, further research is necessary to elucidate the underlying Y RNA-related molecular mechanisms in hepatocellular neoplastic diseases. To the best of our knowledge, this is the first report on the relative expression of Y RNA in canine HCC and HCA.

10.
J Biol Chem ; 299(10): 105225, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37673341

ABSTRACT

Recent advancements in small RNA sequencing have unveiled a previously hidden world of regulatory small noncoding RNAs (sncRNAs) that extend beyond the well-studied small interfering RNAs, microRNAs, and piwi-interacting RNAs. This exploration, starting with tRNA-derived small RNAs, has led to the discovery of a diverse universe of sncRNAs derived from various longer structured RNAs such as rRNAs, small nucleolar RNAs, small nuclear RNAs, Y RNAs, and vault RNAs, with exciting uncharted functional possibilities. In this perspective, we discuss the emerging functional principles of sncRNAs beyond the well-known RNAi-like mechanisms, focusing on those that operate independent of linear sequence complementarity but rather function in an aptamer-like fashion. Aptamers use 3D structure for specific interactions with ligands and are modulated by RNA modifications and subcellular environments. Given that aptamer-like sncRNA functions are widespread and present in species lacking RNAi, they may represent an ancient functional principle that predates RNAi. We propose a rethinking of the origin of RNAi and its relationship with these aptamer-like functions in sncRNAs and how these complementary mechanisms shape biological processes. Lastly, the aptamer-like function of sncRNAs highlights the need for caution in using small RNA mimics in research and therapeutics, as their specificity is not restricted solely to linear sequence.

11.
J Thromb Haemost ; 21(11): 3252-3267, 2023 11.
Article in English | MEDLINE | ID: mdl-37558133

ABSTRACT

BACKGROUND: The small noncoding RNAs (sncRNAs) in megakaryocytes (MKs) and platelets are not well characterized. Neither is the impact of SARS-CoV-2 infection on the sncRNAs of platelets. OBJECTIVES: To investigate the sorting of MK sncRNAs into platelets, and the differences in the platelet sncRNAomes of healthy donors (HDs) and COVID-19 patients. METHODS: We comprehensively profiled sncRNAs from MKs cultured from cord blood-derived CD34+ cells, platelets from HDs, and platelets from patients with moderate and severe SARS-CoV-2 infection. We also comprehensively profiled Argonaute (AGO)-bound sncRNAs from the cultured MKs. RESULTS: We characterized the sncRNAs in MKs and platelets and can account for ∼95% of all sequenced reads. We found that MKs primarily comprise microRNA isoforms (isomiRs), tRNA-derived fragments (tRFs), rRNA-derived fragments (rRFs), and Y RNA-derived fragments (yRFs) in comparable abundances. The platelets of HDs showed a skewed distribution by comparison: 56.7% of all sncRNAs are yRFs, 34.4% are isomiRs, and <2.0% are tRFs and rRFs. Most isomiRs in MKs and platelets are either noncanonical, nontemplated, or both. When comparing MKs and platelets from HDs, we found numerous isomiRs, tRFs, rRFs, and yRFs showing opposite enrichments or depletions, including molecules from the same parental miRNA arm, tRNA, rRNA, or Y RNA. The sncRNAome of platelets from patients with COVID-19 is skewed compared to that of HDs with only 19.8% of all sncRNAs now being yRFs, isomiRs increasing to 63.6%, and tRFs and rRFs more than tripling their presence to 6.1%. CONCLUSION: The sncRNAomes of MKs and platelets are very rich and more complex than it has been believed. The evidence suggests complex mechanisms that sort MK sncRNAs into platelets. SARS-CoV-2 infection acutely alters the contents of platelets by changing the relative proportions of their sncRNAs.


Subject(s)
COVID-19 , MicroRNAs , RNA, Small Untranslated , Humans , Megakaryocytes , SARS-CoV-2/genetics , Blood Platelets , MicroRNAs/genetics , RNA, Transfer/genetics
12.
J Bone Oncol ; 39: 100474, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36936386

ABSTRACT

Primary bone cancer (PBC) comprises several subtypes each underpinned by distinctive genetic drivers. This driver diversity produces novel morphological features and clinical behaviour that serendipitously makes PBC an excellent metastasis model. Here, we report that some transfer RNA-derived small RNAs termed tRNA fragments (tRFs) perform as a constitutive tumour suppressor mechanism by blunting a potential pro-metastatic protein-RNA interaction. This mechanism is reduced in PBC progression with a gradual loss of tRNAGlyTCC cleavage into 5' end tRF-GlyTCC when comparing low-grade, intermediate-grade and high-grade patient tumours. We detected recurrent activation of miR-140 leading to upregulated RUNX2 expression in high-grade patient tumours. Both tRF-GlyTCC and RUNX2 share a sequence motif in their 3' ends that matches the YBX1 recognition site known to stabilise pro-metastatic mRNAs. Investigating some aspects of this interaction network, gain- and loss-of-function experiments using small RNA mimics and antisense LNAs, respectively, showed that ectopic tRF-GlyTCC reduced RUNX2 expression and dispersed 3D micromass architecture in vitro. iCLIP sequencing revealed YBX1 physical binding to the 3' UTR of RUNX2. The interaction between YBX1, tRF-GlyTCC and RUNX2 led to the development of the RUNX2 inhibitor CADD522 as a PBC treatment. CADD522 assessment in vitro revealed significant effects on PBC cell behaviour. In xenograft mouse models, CADD522 as a single agent without surgery significantly reduced tumour volume, increased overall and metastasis-free survival and reduced cancer-induced bone disease. Our results provide insight into PBC molecular abnormalities that have led to the identification of new targets and a new therapeutic.

13.
J. physiol. biochem ; 79(1): 59-69, feb. 2023. graf
Article in English | IBECS | ID: ibc-215714

ABSTRACT

Allergic asthma is the most common type of asthma. It is characterized by TH2 cell–driven inflammation in which interleukin-13 (IL-13) plays a pivotal role. Cytoplasmic RNAs (Y-RNAs), a variety of non-coding RNAs that are dysregulated in many cancer types, are also differentially expressed in patients with allergic asthma. Their function in the development of the disease is still unknown. We investigated the potential role of RNY3 RNA (hY3) in the TH2 cell inflammatory response using the Jurkat cell line as a model. hY3 expression levels were modulated to mimic the upregulation effect in allergic disease. We evaluated the effect of hY3 over cell stimulation and the expression of the TH2 cytokine IL13. Total RNA was isolated and retrotranscribed, and RNA levels were assessed by qPCR. In Jurkat cells, hY3 levels increased upon stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin. When transfecting with high levels of hY3 mimic molecules, cell proliferation rate decreased while IL13 mRNA levels increased upon stimulation compared to stimulated control cells. Our results show the effect of increased hY3 levels on cell proliferation and the levels of IL13 mRNA in Jurkat cells. Also, we showed that hY3 could act over other cells via exosomes. This study opens up new ways to study the potential regulatory function of hY3 over IL-13 production and its implications for asthma development. (AU)


Subject(s)
Humans , Asthma , Interleukin-13/pharmacology , Cell Proliferation , Epigenesis, Genetic , Tetradecanoylphorbol Acetate/pharmacology , RNA , T-Lymphocytes
14.
J Physiol Biochem ; 79(1): 59-69, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36089628

ABSTRACT

Allergic asthma is the most common type of asthma. It is characterized by TH2 cell-driven inflammation in which interleukin-13 (IL-13) plays a pivotal role. Cytoplasmic RNAs (Y-RNAs), a variety of non-coding RNAs that are dysregulated in many cancer types, are also differentially expressed in patients with allergic asthma. Their function in the development of the disease is still unknown. We investigated the potential role of RNY3 RNA (hY3) in the TH2 cell inflammatory response using the Jurkat cell line as a model. hY3 expression levels were modulated to mimic the upregulation effect in allergic disease. We evaluated the effect of hY3 over cell stimulation and the expression of the TH2 cytokine IL13. Total RNA was isolated and retrotranscribed, and RNA levels were assessed by qPCR. In Jurkat cells, hY3 levels increased upon stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin. When transfecting with high levels of hY3 mimic molecules, cell proliferation rate decreased while IL13 mRNA levels increased upon stimulation compared to stimulated control cells. Our results show the effect of increased hY3 levels on cell proliferation and the levels of IL13 mRNA in Jurkat cells. Also, we showed that hY3 could act over other cells via exosomes. This study opens up new ways to study the potential regulatory function of hY3 over IL-13 production and its implications for asthma development.


Subject(s)
Asthma , Interleukin-13 , RNA, Untranslated , Humans , Cell Proliferation , Epigenesis, Genetic , Interleukin-13/metabolism , Lymphocyte Activation , RNA, Messenger , T-Lymphocytes , Tetradecanoylphorbol Acetate/pharmacology , RNA, Untranslated/metabolism
15.
J Extracell Biol ; 2(2): e73, 2023 Feb.
Article in English | MEDLINE | ID: mdl-38938522

ABSTRACT

Mounting evidence implicates extracellular vesicles (EVs) factors as mediators of cell therapy. Cardiosphere-derived cells are cardiac-derived cells with tissue reparative capacity. Activation of a downstream target of wnt/ß-catenin signalling, tryptophan 2,3 dioxygenase (TDO2) renders therapeutically inert skin fibroblasts cardioprotective. Here, we investigate the mechanism by which concentrated conditioned media from TDO2-augmented fibroblasts (TDO2-CCM) exert cardioprotective effects. TDO2-CCM is cardioprotective in a mouse model of MI compared to CCM from regular fibroblasts (HDF-CCM). Transcriptomic analysis of cardiac tissue at 24 h demonstrates broad suppression of inflammatory and cell stress markers in animals given TDO2-CCM compared to HDF-CCM or vehicle. Sequencing analysis of TDO2-EV RNA demonstrated abundance of a small Y-derived small RNA dubbed 'NT4'. Purification of TDO2-EVs by size-exclusion chromatography and RNAse protection assays demonstrated that NT4 is encapsulated inside EVs. Consistently with TDO2-CCM, macrophages exposed to NT4 showed suppression of the inflammatory and cell stress mediators, particularly p21/cdkn1a. NT4-depleted TDO2-CCM resulted in diminished immunomodulatory capacity. Finally, administration of NT4 alone was cardioprotective in an acute model of myocardial infarction. Taken together, these findings elucidate the mechanism by which TDO2 augmentation mediates potency in secreted EVs through enrichment of NT4 which suppresses upstream cell stress mediators including p21/cdkn1a.

16.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-35901462

ABSTRACT

Extracellular vesicles (EVs) carrying various small non-coding RNAs (sncRNAs) play a vital roles in cell communication and diseases. Correct quantification of multiple sncRNA biotypes simultaneously in EVs is a challenge due to the short reads (<30 bp) could be mapped to multiple sncRNA types. To address this question, we developed an optimized reads assignment algorithm (ORAA) to dynamically map multi-mapping reads to the sncRNA type with a higher proportion. We integrated ORAA with reads processing steps into EVAtool Python-package (http://bioinfo.life.hust.edu.cn/EVAtool) to quantify sncRNAs, especially for sncRNA-seq from EV samples. EVAtool allows users to specify interested sncRNA types in advanced mode or use default seven sncRNAs (microRNA, small nucleolar RNA, PIWI-interacting RNAs, small nuclear RNA, ribosomal RNA, transfer RNA and Y RNA). To prove the utilities of EVAtool, we quantified the sncRNA expression profiles for 200 samples from cognitive decline and multiple sclerosis. We found that more than 20% of short reads on average were mapped to multiple sncRNA biotypes in multiple sclerosis. In cognitive decline, the proportion of Y RNA is significantly higher than other sncRNA types. EVAtool is a flexible and extensible tool that would benefit to mine potential biomarkers and functional molecules in EVs.


Subject(s)
Extracellular Vesicles , MicroRNAs , Multiple Sclerosis , RNA, Small Untranslated , Biomarkers , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Humans , MicroRNAs/genetics , RNA, Ribosomal , RNA, Small Interfering , RNA, Small Nuclear , RNA, Small Untranslated/genetics , RNA, Transfer , Sequence Analysis, RNA
17.
RNA Biol ; 19(1): 468-480, 2022.
Article in English | MEDLINE | ID: mdl-35354369

ABSTRACT

Y RNAs (84-112 nt) are non-coding RNAs transcribed by RNA polymerase III and are characterized by a distinctive secondary structure. Human Y RNAs interact with the autoimmune proteins SSB and RO60 that together form a ribonucleoprotein (RNP) complex termed RoRNP and Y RNAs also perform regulatory roles in DNA and RNA replication and stability, which has major implications for diseases including cancer. During cellular stress and apoptosis, Y RNAs are cleaved into 3' and 5' end fragments termed Y RNA-derived small RNAs (ysRNAs). Although some ysRNA functions in stress, apoptosis and cancer have been reported, their fundamental biogenesis has not been described. Here we report that 3' end RNY5 cleavage is structure dependent. In high throughput mutagenesis experiments, cleavage occurred between the 2nd and 3rd nt above a double stranded stem comprising high GC content. We demonstrate that an internal loop above stem S3 is critical for producing 3' end ysRNAs (31 nt) with mutants resulting in longer or no ysRNAs. We show a UGGGU sequence motif at position 22 of RNY5 is critical for producing 5' end ysRNAs (22-25 nt). We show that intact RO60 is critical for ysRNA biogenesis. We conclude that ribonuclease L (RNASEL) contributes to Y RNA cleavage in mouse embryonic fibroblasts but is not the only endoribonuclease important in human cells.


Subject(s)
RNA, Untranslated , Ribonucleoproteins , Animals , Fibroblasts/metabolism , Mice , Nucleic Acid Conformation , RNA Processing, Post-Transcriptional , RNA, Untranslated/genetics , Ribonucleoproteins/metabolism
18.
Mol Ther Nucleic Acids ; 24: 951-960, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34094713

ABSTRACT

Cardiosphere-derived cell exosomes (CDCexo) and YF1, a CDCexo-derived non-coding RNA, elicit therapeutic bioactivity in models of myocardial infarction and hypertensive hypertrophy. Here we tested the hypothesis that YF1, a 56-nucleotide Y RNA fragment, could alleviate cardiomyocyte hypertrophy, inflammation, and fibrosis associated with hypertrophic cardiomyopathy (HCM) in transgenic mice harboring a clinically relevant mutation in cardiac troponin I (cTnIGly146). By quantitative PCR, YF1 was detectable in bone marrow, spleen, liver, and heart 30 min after intravenous (i.v.) infusion. For efficacy studies, mice were randomly allocated to receive i.v. YF1 or vehicle, monitored for ambulatory and cardiac function, and sacrificed at 4 weeks. YF1 (but not vehicle) improved ambulation and reduced cardiac hypertrophy and fibrosis. In parallel, peripheral mobilization of neutrophils and proinflammatory monocytes was decreased, and fewer macrophages infiltrated the heart. RNA-sequencing of macrophages revealed that YF1 confers substantive and broad changes in gene expression, modulating pathways associated with immunological disease and inflammatory responses. Together, these data demonstrate that YF1 can reverse hypertrophic and fibrotic signaling pathways associated with HCM, while improving function, raising the prospect that YF1 may be a viable novel therapeutic candidate for HCM.

19.
Curr Oncol Rep ; 23(6): 66, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33855607

ABSTRACT

PURPOSE OF REVIEW: Many prognostic and predictive biomarkers have been proposed for chronic lymphocytic leukaemia (CLL). Here, we aim to discuss the evidence showing a prognostic potential for extracellular vesicles (EV) and their associated microRNAs (miRNAs). RECENT FINDINGS: EV are produced by several cells in the body as a physiological event; however, there is evidence suggesting that an elevated EV concentration is present in the circulation of CLL patients. Moreover, some studies have associated EV concentration with advanced Rai stage and unmutated CLL while others have demonstrated its potential as an independent prognostic factor for TTFT and OS. Finally, some studies have shown that CLL EV shared some dysregulated microRNAs with CLL cells and plasma. On the other hand, it was found that CLL EV has a distinctive microRNA expression profile. Until now, EV-associated miR-155 is the most studied miRNA. Despite methodological diversity and limitations in study design, unanimity in CLL EV concentration behaviour and miRNA content has been found.


Subject(s)
Extracellular Vesicles/physiology , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , MicroRNAs/physiology , Biomarkers, Tumor , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/etiology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , MicroRNAs/analysis , Prognosis , Receptors, Antigen, B-Cell/physiology
20.
Biochem Biophys Res Commun ; 557: 104-109, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33862452

ABSTRACT

Cel7 RNA is a member of the Caenorhabditis elegans stem-bulge RNAs (sbRNAs) that are classified into the Y RNA family based on their structural similarity. We identified a 15-nucleotide-shorter form of Cel7 RNA and designated it Cel7s RNA. Both Cel7 and Cel7s RNAs increased during the development of worms from L1 to adult. Cel7s RNA was notably more abundant in embryos than in L1 to L3 larvae. Cel7 RNA in embryo was less than those in L2 to adult. The ratio of cellular level of Cel7 RNA to that of Cel7s RNA was higher in L1 to L4, but reversed in embryos and adults. In rop-1 mutants, in which the gene for the C. elegans Ro60 homolog, ROP-1, was disrupted, Cel7s RNA decreased similar to CeY RNA, another C. elegans Y RNA homolog. Surprisingly, Cel7 RNA, existed stably in the absence of ROP-1, unlike Cel7s and CeY RNAs. Gel-shift assays demonstrated that Cel7 and Cel7s RNAs bound to ROP-1 in a similar manner, which was much weaker than CeY RNA. The 5'-terminal 15-nt of Cel7 RNA could be folded into a short stem-loop structure, probably contributing to the stability of Cel7 RNA in vivo and the distinct expression patterns of the 2 RNAs.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , RNA Processing, Post-Transcriptional , RNA/metabolism , Ribonucleoproteins/metabolism , Animals , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Protein Isoforms , RNA/chemistry , RNA/genetics , Ribonucleoproteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL