Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
J Cell Physiol ; : e31371, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38988073

ABSTRACT

Piezo1 is a Ca2+-permeable mechanically activated ion channel that is involved in various physiological processes and cellular responses to mechanical stimuli. The study of biophysical characteristics of Piezo1 is important for understanding the mechanisms of its function and regulation. Stretch activation, a routine approach that is applied to stimulate Piezo1 activity in the plasma membrane, has a number of significant limitations that complicate precise single-channel analysis. Here, we aimed to determine pore properties of native Piezo1, specifically to examine permeation for physiologically relevant signaling divalent ions (calcium and magnesium) in human myeloid leukemia K562 cells using Piezo1-specific chemical agonist, Yoda1. Using a combination of low-noise single-current patch-clamp recordings of Piezo1 activity in response to Yoda1, we have determined single-channel characteristics of native Piezo1 under various ionic conditions. Whole-cell assay allowed us to directly measure Piezo1 single currents carried by Ca2+ or Mg2+ ions in the absence of other permeable cations in the extracellular solutions; unitary conductance values estimated at various concentrations of Mg2+ revealed strong saturation effect. Patch clamp data complemented with fluorescent imaging clearly evidenced Ca2+ and Mg2+ entry via native Piezo1 channel in human leukemia K562 cells. Mg2+ influx via Piezo1 was detected under quasi-physiological conditions, thus showing that Piezo1 channels could potentially provide the physiological relevant pathway for Mg2+ ion transport and contribute to the regulation of Mg2+-dependent intracellular signaling.

2.
J Nanobiotechnology ; 22(1): 407, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987801

ABSTRACT

Segmental bone defects, arising from factors such as trauma, tumor resection, and congenital malformations, present significant clinical challenges that often necessitate complex reconstruction strategies. Hydrogels loaded with multiple osteogenesis-promoting components have emerged as promising tools for bone defect repair. While the osteogenic potential of the Piezo1 agonist Yoda1 has been demonstrated previously, its hydrophobic nature poses challenges for effective loading onto hydrogel matrices.In this study, we address this challenge by employing Yoda1-pretreated bone marrow-derived mesenchymal stem cell (BMSCs) exosomes (Exo-Yoda1) alongside exosomes derived from BMSCs (Exo-MSC). Comparatively, Exo-Yoda1-treated BMSCs exhibited enhanced osteogenic capabilities compared to both control groups and Exo-MSC-treated counterparts. Notably, Exo-Yoda1-treated cells demonstrated similar functionality to Yoda1 itself. Transcriptome analysis revealed activation of osteogenesis-associated signaling pathways, indicating the potential transduction of Yoda1-mediated signals such as ErK, a finding validated in this study. Furthermore, we successfully integrated Exo-Yoda1 into gelatin methacryloyl (GelMA)/methacrylated sodium alginate (SAMA)/ß-tricalcium phosphate (ß-TCP) hydrogels. These Exo-Yoda1-loaded hydrogels demonstrated augmented osteogenesis in subcutaneous ectopic osteogenesis nude mice models and in rat skull bone defect model. In conclusion, our study introduces Exo-Yoda1-loaded GELMA/SAMA/ß-TCP hydrogels as a promising approach to promoting osteogenesis. This innovative strategy holds significant promise for future widespread clinical applications in the realm of bone defect reconstruction.


Subject(s)
Exosomes , Hydrogels , Mesenchymal Stem Cells , Osteogenesis , Osteogenesis/drug effects , Animals , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Hydrogels/chemistry , Mice , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Rats , Male , Alginates/chemistry , Gelatin/chemistry , Cell Differentiation/drug effects , Bone Regeneration/drug effects , Cells, Cultured
3.
Pflugers Arch ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955832

ABSTRACT

Piezo1 mechanosensitive ion channel plays a important role in vascular physiology and disease. This study aimed to elucidate the altered signaling elicited by Piezo1 activation in the arteries of type 2 diabetes. Ten- to 12-week-old male C57BL/6 (control) and type 2 diabetic mice (db-/db-) were used. The second-order mesenteric arteries (~ 150 µm) were used for isometric tension experiments. Western blot analysis and immunofluorescence staining were performed to observe protein expression. Piezo1 was significantly decreased in mesenteric arteries of type 2 diabetic mice compared to control mice, as analyzed by western blot and immunofluorescence staining. Piezo1 agonist, Yoda1, concentration-dependently induced relaxation of mesenteric arteries in both groups. Interestingly, the relaxation response was significantly greater in control mice than in db-/db- mice. The removal of endothelium reduced relaxation responses induced by Yoda1, which was greater in control mice than db-/db- mice. Furthermore, the relaxation response was reduced by pre-treatment with various types of K+ channel blockers in endothelium-intact arteries in control mice. In endothelium-denuded arteries, pre-incubation with charybdotoxin, an Ca2+-activated K+ channel (BKCa channel) blocker, significantly attenuated Yoda1-induced relaxation in db-/db- mice, while there was no effect in control mice. Co-immunofluorescence staining showed co-localization of Piezo1 and BKCa channel was more pronounced in db-/db- mice than in control mice. These results indicate that the vascular responses induced by Piezo1 activation are different in the mesenteric resistance arteries in type 2 diabetic mice.

4.
J Mol Cell Cardiol ; 191: 63-75, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718563

ABSTRACT

INTRODUCTION: Thoracic aortic aneurysm (TAA) is a severe vascular disease that threatens human life, characterized by focal dilatation of the entire aortic wall, with a diameter 1.5 times larger than normal. PIEZO1, a mechanosensitive cationic channel, monitors mechanical stimulations in the environment, transduces mechanical signals into electrical signals, and converts them into biological signals to activate intracellular signaling pathways. However, the role of PIEZO1 in TAA is still unclear. METHODS: We analyzed a single-cell database to investigate the expression level of PIEZO1 in TAA. We constructed a conditional knockout mouse model of Piezo1 and used the PIEZO1 agonist Yoda1 to intervene in the TAA model mice established by co-administration of BAPN and ANG-II. Finally, we explored the effect of Yoda1 on TAA in vitro. RESULTS AND DISCUSSION: We observed decreased PIEZO1 expression in TAA at both RNA and protein levels. Single-cell sequencing identified a specific reduction in Piezo1 expression in endothelial cells. Administration of PIEZO1 agonist Yoda1 prevented the formation of TAA. In PIEZO1 endothelial cell conditional knockout mice, Yoda1 inhibited TAA formation by interfering with PIEZO1. In vivo and in vitro experiments demonstrated that the effect of Yoda1 on endothelial cells involved macrophage infiltration, extracellular matrix degradation, and neovascularization. This study highlights the role of PIEZO1 in TAA and its potential as a therapeutic target, providing opportunities for clinical translation.


Subject(s)
Aortic Aneurysm, Thoracic , Disease Models, Animal , Endothelial Cells , Ion Channels , Mice, Knockout , Single-Cell Analysis , Animals , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/pathology , Ion Channels/metabolism , Ion Channels/genetics , Mice , Endothelial Cells/metabolism , Humans , Male , Pyrazines , Thiadiazoles
5.
Eur J Med Chem ; 273: 116502, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38761789

ABSTRACT

The cation channel Piezo1, a crucial mechanotransducer found in various organs and tissues, has gained considerable attention as a therapeutic target in recent years. Following this trend, several Piezo1 inhibitors have been discovered and studied for potential pharmacological properties. This review provides an overview of the structural and functional importance of Piezo1, as well as discussing the biological activities of Piezo1 inhibitors based on their mechanism of action. The compounds addressed include the toxin GsMTx4, Aß peptides, certain fatty acids, ruthenium red and gadolinium, Dooku1, as well as the natural products tubeimoside I, salvianolic acid B, jatrorrhzine, and escin. The findings revealed that misexpression of Piezo1 can be associated with a number of chronic diseases, including hypertension, cancer, and hemolytic anemia. Consequently, inhibiting Piezo1 and the subsequent calcium influx can have beneficial effects on various pathological processes, as shown by many in vitro and in vivo studies. However, the development of Piezo1 inhibitors is still in its beginnings, with many opportunities and challenges remaining to be explored.


Subject(s)
Ion Channels , Ion Channels/antagonists & inhibitors , Ion Channels/metabolism , Humans , Animals , Molecular Structure
6.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612801

ABSTRACT

The Piezo1 mechanosensitive ion channel is abundant on several elements of the central nervous system including astrocytes. It has been already demonstrated that activation of these channels is able to elicit calcium waves on astrocytes, which contributes to the release of gliotransmitters. Astrocyte- and N-methyl-D-aspartate (NMDA) receptor-dependent slow inward currents (SICs) are hallmarks of astrocyte-neuron communication. These currents are triggered by glutamate released as gliotransmitter, which in turn activates neuronal NMDA receptors responsible for this inward current having slower kinetics than any synaptic events. In this project, we aimed to investigate whether Piezo1 activation and inhibition is able to alter spontaneous SIC activity of murine neocortical pyramidal neurons. When the Piezo1 opener Yoda1 was applied, the SIC frequency and the charge transfer by these events in a minute time was significantly increased. These changes were prevented by treating the preparations with the NMDA receptor inhibitor D-AP5. Furthermore, Yoda1 did not alter the spontaneous EPSC frequency and amplitude when SICs were absent. The Piezo1 inhibitor Dooku1 effectively reverted the actions of Yoda1 and decreased the rise time of SICs when applied alone. In conclusion, activation of Piezo1 channels is able to alter astrocyte-neuron communication. Via enhancement of SIC activity, astrocytic Piezo1 channels have the capacity to determine neuronal excitability.


Subject(s)
Astrocytes , Neocortex , Animals , Mice , Receptors, N-Methyl-D-Aspartate , Neurons , Glutamic Acid , Ion Channels
7.
Cell Mol Life Sci ; 81(1): 140, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485771

ABSTRACT

The importance of mechanosensory transduction pathways in cellular signalling has prominently come to focus in the last decade with the discovery of the Piezo ion channel family. Mechanosignaling involving Piezo1 ion channels in the function of the heart and cardiovascular system has only recently been identified to have implications for cardiovascular physiology and pathophysiology, in particular for heart failure (i.e., hypertrophy or dilative cardiomyopathy). These results have emphasized the need for higher throughput methods to study single-cell cardiovascular mechanobiology with the aim of identifying new targets for therapeutic interventions and stimulating the development of new pharmacological agents. Here, we present a novel method to assess mechanosignaling in adherent cardiac cells (murine HL-1 cell line) using a combination of isotropic cell stretch application and simultaneous Ca2+ fluorescence readout with quantitative analysis. The procedure implements our IsoStretcher technology in conjunction with a single-cell- and population-based analysis of Ca2+ signalling by means of automated image registration, cell segmentation and analysis, followed by automated classification of single-cell responses. The method is particularly valuable for assessing the heterogeneity of populations with distinct cellular responses to mechanical stimulation and provides more user-independent unbiased drug response classifications.


Subject(s)
Ion Channels , Mechanotransduction, Cellular , Mice , Animals , Ion Channels/metabolism , Signal Transduction , Heart , Cell Line
8.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396901

ABSTRACT

TMEM16A is a Ca2+-activated Cl- channel expressed in various species and tissues. In mammalian skeletal muscle precursors, the activity of these channels is still poorly investigated. Here, we characterized TMEM16A channels and investigated if the pharmacological activation of Piezo1 channels could modulate the TMEM16A currents in mouse myogenic precursors. Whole-cell patch-clamp recordings combined with the pharmacological agents Ani9, T16inh-A01 and Yoda1 were used to characterize TMEM16A-mediated currents and the possible modulatory effect of Piezo1 activity on TMEM16A channels. Western blot analysis was also carried out to confirm the expression of TMEM16A and Piezo1 channel proteins. We found that TMEM16A channels were functionally expressed in fusion-competent mouse myogenic precursors. The pharmacological blockage of TMEM16A inhibited myocyte fusion into myotubes. Moreover, the specific Piezo1 agonist Yoda1 positively regulated TMEM16A currents. The findings demonstrate, for the first time, a sarcolemmal TMEM16A channel activity and its involvement at the early stage of mammalian skeletal muscle differentiation. In addition, the results suggest a possible role of mechanosensitive Piezo1 channels in the modulation of TMEM16A currents.


Subject(s)
Anoctamin-1 , Chloride Channels , Muscle Cells , Animals , Mice , Anoctamin-1/metabolism , Anoctamin-1/physiology , Biological Transport , Calcium/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , Ion Channels/metabolism , Mammals/metabolism , Muscle Cells/metabolism
9.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338693

ABSTRACT

The Gárdos channel (KCNN4) and Piezo1 are the best-known ion channels in the red blood cell (RBC) membrane. Nevertheless, the quantitative electrophysiological behavior of RBCs and its heterogeneity are still not completely understood. Here, we use state-of-the-art biochemical methods to probe for the abundance of the channels in RBCs. Furthermore, we utilize automated patch clamp, based on planar chips, to compare the activity of the two channels in reticulocytes and mature RBCs. In addition to this characterization, we performed membrane potential measurements to demonstrate the effect of channel activity and interplay on the RBC properties. Both the Gárdos channel and Piezo1, albeit their average copy number of activatable channels per cell is in the single-digit range, can be detected through transcriptome analysis of reticulocytes. Proteomics analysis of reticulocytes and mature RBCs could only detect Piezo1 but not the Gárdos channel. Furthermore, they can be reliably measured in the whole-cell configuration of the patch clamp method. While for the Gárdos channel, the activity in terms of ion currents is higher in reticulocytes compared to mature RBCs, for Piezo1, the tendency is the opposite. While the interplay between Piezo1 and Gárdos channel cannot be followed using the patch clamp measurements, it could be proved based on membrane potential measurements in populations of intact RBCs. We discuss the Gárdos channel and Piezo1 abundance, interdependencies and interactions in the context of their proposed physiological and pathophysiological functions, which are the passing of small constrictions, e.g., in the spleen, and their active participation in blood clot formation and thrombosis.


Subject(s)
Erythrocytes , Intermediate-Conductance Calcium-Activated Potassium Channels , Reticulocytes , Biological Transport , Calcium/metabolism , Erythrocytes/metabolism , Reticulocytes/metabolism , Humans , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Ion Channels/metabolism
10.
Int J Mol Sci ; 25(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38338996

ABSTRACT

Renal fibrosis, the result of different pathological processes, impairs kidney function and architecture, and usually leads to renal failure development. Piezo1 is a mechanosensitive cation channel highly expressed in kidneys. Activation of Piezo1 by mechanical stimuli increases cations influx into the cell with slight preference of calcium ions. Two different models of Piezo1 activation are considered: force through lipid and force through filament. Expression of Piezo1 on mRNA and protein levels was confirmed within the kidney. Their capacity is increased in the fibrotic kidney. The pharmacological tools for Piezo1 research comprise selective activators of the channels (Yoda1 and Jedi1/2) as well as non-selective inhibitors (spider peptide toxin) GsMTx4. Piezo1 is hypothesized to be the upstream element responsible for the activation of integrin. This pathway (calcium/calpain2/integrin beta1) is suggested to participate in profibrotic response induced by mechanical stimuli. Administration of the Piezo1 unspecific inhibitor or activators to unilateral ureter obstruction (UUO) mice or animals with folic acid-induced fibrosis modulates extracellular matrix deposition and influences kidney function. All in all, according to the recent data Piezo1 plays an important role in kidney fibrosis development. This channel has been selected as the target for pharmacotherapy of renal fibrosis.


Subject(s)
Ion Channels , Kidney Diseases , Mice , Animals , Ion Channels/metabolism , Mechanotransduction, Cellular/physiology , Calcium/metabolism , Cations/metabolism , Fibrosis
11.
Acta Pharmacol Sin ; 45(1): 76-86, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37670136

ABSTRACT

Mechanosensitive cation channels such as Piezo1 and Piezo2 are activated by mechanical force like a starched wall of the aorta while blood pressure (BP) rising, which helps to elucidate the underlying mechanism of mechanotransduction of baroreceptor endings. In this study we investigated how Piezo1 channel activation-mediated gender- and afferent-specific BP regulation in rats. We established high-fat diet and fructose drink-induced hypertension model rats (HFD-HTN) and deoxycorticosterone (DOCA)-sensitive hypertension model rats. We showed that the expression levels of Piezo1 and Piezo2 were significantly up-regulated in left ventricle of HFD and DOCA hypertensive rats, whereas the down-regulation of Piezo1 was likely to be compensated by Piezo2 up-regulation in the aorta. Likewise, down-regulated Piezo1 was observed in the nodose ganglion (NG), while up-regulated Piezo2 was found in the nucleus tractus solitarius (NTS), which might synergistically reduce the excitatory neurotransmitter release from the presynaptic membrane. Notably, microinjection of Yoda1 (0.025-2.5 mg/ml) into the NG concentration-dependently reduced BP in both hypertensive rat models as well as in control rats with similar EC50; the effect of Yoda1 was abolished by microinjection of a Piezo1 antagonist GsMTx4 (1.0 µM). Functional analysis in an in vitro aortic arch preparation showed that instantaneous firing frequency of single Ah-fiber of aortic depressor nerve was dramatically increased by Yoda1 (0.03-1.0 µM) and blocked by GsMTx4 (1.0 µM). Moreover, spontaneous synaptic currents recorded from identified 2nd-order Ah-type baroreceptive neurons in the NTS was also facilitated over 100% by Yoda1 (1.0 µM) and completely blocked by GsMTx4 (3.0 µM). These results demonstrate that Piezo1 expressed on Ah-type baroreceptor and baroreceptive neurons in the NG and NTS plays a key role in a sexual-dimorphic BP regulation under physiological and hypertensive condition through facilitation of baroreflex afferent neurotransmission, which is presumably collaborated by Piezo2 expression at different level of baroreflex afferent pathway via compensatory and synergistic mechanisms.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Rats , Animals , Baroreflex , Blood Pressure , Mechanotransduction, Cellular/physiology , Desoxycorticosterone Acetate/pharmacology , Synaptic Transmission
12.
J Biol Chem ; 300(1): 105524, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043795

ABSTRACT

The renal collecting duct is continuously exposed to a wide spectrum of fluid flow rates and osmotic gradients. Expression of a mechanoactivated Piezo1 channel is the most prominent in the collecting duct. However, the status and regulation of Piezo1 in functionally distinct principal and intercalated cells (PCs and ICs) of the collecting duct remain to be determined. We used pharmacological Piezo1 activation to quantify Piezo1-mediated [Ca2+]i influx and single-channel activity separately in PCs and ICs of freshly isolated collecting ducts with fluorescence imaging and electrophysiological tools. We also employed a variety of systemic treatments to examine their consequences on Piezo1 function in PCs and ICs. Piezo1 selective agonists, Yoda-1 or Jedi-2, induced a significantly greater Ca2+ influx in PCs than in ICs. Using patch clamp analysis, we recorded a Yoda-1-activated nonselective channel with 18.6 ± 0.7 pS conductance on both apical and basolateral membranes. Piezo1 activity in PCs but not ICs was stimulated by short-term diuresis (injections of furosemide) and reduced by antidiuresis (water restriction for 24 h). However, prolonged stimulation of flow by high K+ diet decreased Yoda-1-dependent Ca2+ influx without changes in Piezo1 levels. Water supplementation with NH4Cl to induce metabolic acidosis stimulated Piezo1 activity in ICs but not in PCs. Overall, our results demonstrate functional Piezo1 expression in collecting duct PCs (more) and ICs (less) on both apical and basolateral sides. We also show that acute changes in fluid flow regulate Piezo1-mediated [Ca2+]i influx in PCs, whereas channel activity in ICs responds to systemic acid-base stimuli.


Subject(s)
Calcium , Ion Channels , Kidney Tubules, Collecting , Cell Membrane , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/metabolism , Pyrazines/pharmacology , Thiadiazoles/pharmacology , Water/metabolism , Ion Channels/agonists , Ion Channels/metabolism , Animals , Mice , Calcium/metabolism
13.
Biomed Pharmacother ; 170: 115942, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042111

ABSTRACT

Bladder cancer cells possess unique adaptive capabilities: shaped by their environment, cells face a complex chemical mixture of metabolites and xenobiotics accompanied by physiological mechanical cues. These responses might translate into resistance to chemotherapeutical regimens and can largely rely on autophagy. Considering molecules capable of rewiring tumor plasticity, compounds of natural origin promise to offer valuable options. Fungal derived metabolites, such as bafilomycin and wortmannin are widely acknowledged as autophagy inhibitors. Here, their potential to tune bladder cancer cells´ adaptability to chemical and physical stimuli was assessed. Additionally, dietary occurring mycotoxins were also investigated, namely deoxynivalenol (DON, 0.1-10 µM) and fusaric acid (FA, 0.1-1 mM). Endowing a Janus' face behavior, DON and FA are on the one side described as toxins with detrimental health effects. Concomitantly, they are also explored experimentally for selective pharmacological applications including anticancer activities. In non-cytotoxic concentrations, bafilomycin (BAFI, 1-10 nM) and wortmannin (WORT, 1 µM) modified cell morphology and reduced cancer cell migration. Application of shear stress and inhibition of mechano-gated PIEZO channels reduced cellular sensitivity to BAFI treatment (1 nM). Similarly, for FA (0.5 mM) PIEZO1 expression and inhibition largely aligned with the modulatory potential on cancer cells motility. Additionally, this study highlighted that the activity profile of compounds with similar cytotoxic potential (e.g. co-incubation DON with BAFI or FA with WORT) can diverge substantially in the regulation of cell mechanotransduction. Considering the interdependence between tumor progression and response to mechanical cues, these data promise to provide a novel viewpoint for the study of chemoresistance and associated pathways.


Subject(s)
Antineoplastic Agents , Urinary Bladder Neoplasms , Humans , Mechanotransduction, Cellular , Wortmannin/pharmacology , Autophagy , Antineoplastic Agents/pharmacology , Urinary Bladder Neoplasms/drug therapy , Ion Channels
14.
Proc Natl Acad Sci U S A ; 120(50): e2310933120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38060566

ABSTRACT

Mechanosensitive PIEZO channels constitute potential pharmacological targets for multiple clinical conditions, spurring the search for potent chemical PIEZO modulators. Among them is Yoda1, a widely used synthetic small molecule PIEZO1 activator discovered through cell-based high-throughput screening. Yoda1 is thought to bind to PIEZO1's mechanosensory arm domain, sandwiched between two transmembrane regions near the channel pore. However, how the binding of Yoda1 to this region promotes channel activation remains elusive. Here, we first demonstrate that cross-linking PIEZO1 repeats A and B with disulfide bridges reduces the effects of Yoda1 in a redox-dependent manner, suggesting that Yoda1 acts by perturbing the contact between these repeats. Using molecular dynamics-based absolute binding free energy simulations, we next show that Yoda1 preferentially occupies a deeper, amphipathic binding site with higher affinity in PIEZO1 open state. Using Yoda1's binding poses in open and closed states, relative binding free energy simulations were conducted in the membrane environment, recapitulating structure-activity relationships of known Yoda1 analogs. Through virtual screening of an 8 million-compound library using computed fragment maps of the Yoda1 binding site, we subsequently identified two chemical scaffolds with agonist activity toward PIEZO1. This study supports a pharmacological model in which Yoda1 activates PIEZO1 by wedging repeats A and B, providing a structural and thermodynamic framework for the rational design of PIEZO1 modulators. Beyond PIEZO channels, the three orthogonal computational approaches employed here represent a promising path toward drug discovery in highly heterogeneous membrane protein systems.


Subject(s)
High-Throughput Screening Assays , Ion Channels , Ion Channels/metabolism , Drug Discovery , Binding Sites , Thermodynamics , Mechanotransduction, Cellular/physiology
15.
J Physiol ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38098265

ABSTRACT

The transient receptor potential melastatin 4 (TRPM4) channel contributes extensively to cardiac electrical activity, especially cardiomyocyte action potential formation. Mechanical stretch can induce changes in heart rate and rhythm, and the mechanosensitive channel Piezo1 is expressed in many cell types within the myocardium. Our previous study showed that TRPM4 and Piezo1 are closely co-localized in the t-tubules of ventricular cardiomyocytes and contribute to the Ca2+ -dependent signalling cascade that underlies hypertrophy in response to mechanical pressure overload. However, there was no direct evidence showing that Piezo1 activation was related to TRPM4 activation in situ. In the present study, we employed the HL-1 mouse atrial myocyte-like cell line as an in vitro model to investigate whether Piezo1-TRPM4 coupling can affect action potential properties. We used the small molecule Piezo1 agonist, Yoda1, as a surrogate for mechanical stretch to activate Piezo1 and detected the action potential changes in HL-1 cells using FluoVolt, a fluorescent voltage sensitive dye. Our results demonstrate that Yoda1-induced activation of Piezo1 changes the action potential frequency in HL-1 cells. This change in action potential frequency is reduced by Piezo1 knockdown using small intefering RNA. Importantly knockdown or pharmacological inhibition of TRPM4 significantly affected the degree to which Yoda1-evoked Piezo1 activation influenced action potential frequency. Thus, the present study provides in vitro evidence of a functional coupling between Piezo1 and TRPM4 in a cardiomyocyte-like cell line. The coupling of a mechanosensitive Ca2+ permeable channel and a Ca2+ -activated TRP channel probably represents a ubiquitous model for the role of TRP channels in mechanosensory transduction. KEY POINTS: The transient receptor potential melastatin 4 (TRPM4) and Piezo1 channels have been confirmed to contribute to the Ca2+ -dependent signalling cascade that underlies cardiac hypertrophy in response to mechanical pressure overload. However, there was no direct evidence showing that Piezo1 activation was related to TRPM4 activation in situ. We employed the HL-1 mouse atrial myocyte-like cell line as an in vitro model to investigate the effect of Piezo1-TRPM4 coupling on cardiac electrical properties. The results show that both pharmacological and genetic inhibition of TRPM4 significantly affected the degree to which Piezo1 activation influenced action potential frequency in HL-1 cells. Our findings provide in vitro evidence of a functional coupling between Piezo1 and TRPM4 in a cardiomyocyte-like cell line. The coupling of a mechanosensitive Ca2+ permeable channel and a Ca2+ -activated TRP channel probably represents a ubiquitous model for the role of TRP channels in mechanosensory transduction in various (patho)physiological processes.

16.
Int J Mol Sci ; 24(21)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37958687

ABSTRACT

Melanoma is a highly aggressive type of skin cancer produced through the malignant transformation of melanocytes, and it is usually associated with a poor prognosis. Clinically, melanoma has several stages associated with migration and invasion of the cells through the skin's layers, the rapid spreading of cells and the formation of tumors in multiple organs. The main problem is the emergence of resistance in melanoma to the applied methods of treatment; thus, it is of primary importance to find more crucial signaling pathways that control the progression of this type of cancer and could be targeted to prevent melanoma spreading. Here, we uncover novel aspects of the role of the mechanosensitive ion channel Piezo1 in melanoma tumor formation. Using a combinative approach, we showed the functional expression of mechanosensitive Piezo1 channels in the aggressive human melanoma SK-MEL-2 cell line. We found that chemical activation of Piezo1 by its agonist, Yoda1, prevents melanoma spheroid formation; thus, Piezo1 could be a potential target for selective modulation aimed at the prevention of melanoma development.


Subject(s)
Ion Channels , Melanoma , Humans , Ion Channels/genetics , Ion Channels/metabolism , Melanoma/genetics , Signal Transduction
17.
Front Physiol ; 14: 1222983, 2023.
Article in English | MEDLINE | ID: mdl-37492641

ABSTRACT

PIEZO1 is a mechanosensitive non-selective cation channel, present in many cell types including Red Blood Cells (RBCs). Together with the Gárdos channel, PIEZO1 forms in RBCs a tandem that participates in the rapid adjustment of the cell volume. The pharmacology allowing functional studies of the roles of PIEZO1 has only recently been developed, with Yoda1 as a widely used PIEZO1 agonist. In 2018, Yoda1 analogues were developed, as a step towards an improved understanding of PIEZO1 roles and functions. Among these, Dooku1 was the most promising antagonist of Yoda1-induced effects, without having any ability to activate PIEZO1 channels. Since then, Dooku1 has been used in various cell types to antagonize Yoda1 effects. In the present study using RBCs, Dooku1 shows an apparent IC50 on Yoda1 effects of 90.7 µM, one order of magnitude above the previously reported data on other cell types. Unexpectedly, it was able, by itself, to produce entry of calcium sufficient to trigger Gárdos channel activation. Moreover, Dooku1 evoked a rise in intracellular sodium concentrations, suggesting that it targets a non-selective cation channel. Dooku1 effects were abolished upon using GsMTx4, a known mechanosensitive channel blocker, indicating that Dooku1 likely targets PIEZO1. Our observations lead to the conclusion that Dooku1 behaves as a PIEZO1 agonist in the RBC membrane, similarly to Yoda1 but with a lower potency. Taken together, these results show that the pharmacology of PIEZO1 in RBCs must be interpreted with care especially due to the unique characteristics of RBC membrane and associated cytoskeleton.

18.
Biology (Basel) ; 12(5)2023 May 19.
Article in English | MEDLINE | ID: mdl-37237554

ABSTRACT

Human dental pulp stem cells (hDPSCs) are adult mesenchymal stem cells (MSCs) obtained from dental pulp and derived from the neural crest. They can differentiate into odontoblasts, osteoblasts, chondrocytes, adipocytes and nerve cells, and they play a role in tissue repair and regeneration. In fact, DPSCs, depending on the microenvironmental signals, can differentiate into odontoblasts and regenerate dentin or, when transplanted, replace/repair damaged neurons. Cell homing depends on recruitment and migration, and it is more effective and safer than cell transplantation. However, the main limitations of cell homing are the poor cell migration of MSCs and the limited information we have on the regulatory mechanism of the direct differentiation of MSCs. Different isolation methods used to recover DPSCs can yield different cell types. To date, most studies on DPSCs use the enzymatic isolation method, which prevents direct observation of cell migration. Instead, the explant method allows for the observation of single cells that can migrate at two different times and, therefore, could have different fates, for example, differentiation and self-renewal. DPSCs use mesenchymal and amoeboid migration modes with the formation of lamellipodia, filopodia and blebs, depending on the biochemical and biophysical signals of the microenvironment. Here, we present current knowledge on the possible intriguing role of cell migration, with particular attention to microenvironmental cues and mechanosensing properties, in the fate of DPSCs.

19.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37047487

ABSTRACT

Since the recent discovery of the mechanosensitive Piezo1 channels, many studies have addressed the role of the channel in various physiological or even pathological processes of different organs. Although the number of studies on their effects on the musculoskeletal system is constantly increasing, we are still far from a precise understanding. In this review, the knowledge available so far regarding the musculoskeletal system is summarized, reviewing the results achieved in the field of skeletal muscles, bones, joints and cartilage, tendons and ligaments, as well as intervertebral discs.


Subject(s)
Ion Channels , Tendons , Tendons/physiology , Muscle, Skeletal/physiology , Ligaments , Cartilage
20.
Adv Healthc Mater ; 12(18): e2203105, 2023 07.
Article in English | MEDLINE | ID: mdl-36912184

ABSTRACT

Guided bone regeneration membranes are widely used to prevent fibroblast penetration and facilitate bone defect repair by osteoblasts. However, the current clinically available collagen membranes lack bone induction and angiogenic capacities, exhibiting limited bone regeneration. The mechanically sensitive channel, Piezo1, which is activated by Yoda1, has been reported to play crucial roles in osteogenesis and angiogenesis. Nevertheless, the application of Yoda1 alone is unsustainable to maintain this activity. Therefore, this study fabricates a Yoda1-loading bilayer membrane using electrospinning technology. Its inner layer in contact with the bone defect is composed of vertically aligned fibers, which regulate the proliferation and differentiation of cells, release Yoda1, and promote bone regeneration. Its outer layer in contact with the soft tissue is dense with oriented fibers by UV cross-linking, mainly preventing fibroblast infiltration and inhibiting the immune response. Furthermore, the loaded Yoda1 affects osteogenesis and angiogenesis via the Piezo1/RhoA/Rho-associated coiled-coil-containing protein kinase 1/Yes1-associated transcriptional regulator signaling pathway. The results reveal that the Yoda1 bilayer membrane is efficient and versatile in accelerating bone regeneration, suggesting its potential as a novel therapeutic agent for various clinical issues.


Subject(s)
Bone Regeneration , Ion Channels , Osteogenesis , Signal Transduction , Ion Channels/metabolism , Membranes/metabolism , Angiogenesis Inducing Agents , Pyrazines , Thiadiazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...