Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 894
Filter
1.
Food Chem ; 463(Pt 2): 141204, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39276551

ABSTRACT

A three-phase hollow-fiber liquid phase microextraction for o-phenylphenol (OPP) determination was developed. 1-octanol was employed as the organic phase, impregnated within the pores of the hollow fiber wall which was immersed in the sample solution, serving as a donor phase. OPP in the sample solution was extracted via octanol in the fiber pores into NaOH, which acted as the acceptor phase in the lumen of the fiber. The extracted OPP was then subjected to spectrophotometric detection at 712 nm using the indophenol blue reaction. The developed method showed a linear calibration curve (0.002-0.040 mg L-1) with high sensitivity (5.75 L mg-1), low limit of detection (0.31 µg L-1), and high recovery (73.6-94.8 %). Intra-day and inter-day precision at 2.1 µg L-1 OPP were 7.4 % (n = 12) and 10.9 % (n = 4) relative standard deviations, respectively. The determined OPP in various canned drinks was found to be between 2.0 and 17.8 µg L-1 using the developed method.

2.
Food Chem ; 463(Pt 2): 141248, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39278084

ABSTRACT

To explore the volatile markers of typical sweet berry flavors in dry red wine, Marselan, Cabernet Sauvignon, Merlot, and Cabernet Franc wines were pretreated using solid-phase microextraction (SPME) and liquid-liquid extraction-solvent-assisted flavor evaporation (LLE-SAFE), and key odorants were analyzed using sensomics approach. Results indicated that Marselan wines exhibited intense sweet berry aromas compared to other varieties wines. Omission tests on one- and four-year-aged wines identified ß-damascenone, isoamyl acetate, 2,3-butanediol, phenylethanol as sweet aroma markers, while geranyl acetone, ethyl isobutyrate, ethyl 2-methylbutyrate as berry aroma markers, which were verified by partial least squares regression. Meanwhile, optimal flavor intensity prediction models between sweet/berry aroma and volatile markers natural logarithms concentration were created with all wines. Moreover, consistent with aroma intensity, most berry markers content increased during aging while sweet markers decreased. This study completes the analytical methodology for volatile markers of wine typical aroma and provides theoretical support for wine flavor prediction.

3.
J Hazard Mater ; 480: 135839, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39298965

ABSTRACT

A precious metal catalyst with loaded Pt single atoms was prepared and used for the complete oxidation of C3H6O. Detailed results show that the T100 of the 1.5Pt SA/γ-Al2O3 catalyst in the oxidation process of acetone is 250 °C, the TOF of Pt is 1.09 × 10-2 s-1, and the catalyst exhibits good stability. Characterization reveals that the high dispersion of Pt single atoms and strong interaction with the carrier improve the redox properties of the catalyst, enhancing the adsorption and dissociation capability of gaseous oxygen. DFT calculations show that after the introduction of Pt, the oxygen vacancy formation energy on the catalyst surface is reduced to 1.2 eV, and PDOS calculations prove that electrons on Pt atoms can be quickly transferred to O atoms, increasing the number of electrons on the σp * bond and promoting the escape of lattice oxygen. In addition, in situ DRIFTS and adsorption experiments indicate that the C3H6O oxidation process follows the Mars-van Krevelen reaction mechanism, and CH2 =C(CH3)=O(ads), O* (O2-), formate, acetate, and carbonate are considered as the main intermediate species and/or transients in the reaction process. Particularly, the activation rate of O2 and the cleavage of the -C-C- bond are the main rate-determining steps in the oxidation of C3H6O. This work will further enhance the study of the oxidation mechanism of oxygenated volatile organic pollutants over loaded noble metal catalysts.

4.
Arch Toxicol ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225796

ABSTRACT

Many people convicted for drunken driving suffer from an alcohol use disorder and some traffic offenders consume denatured alcohol for intoxication purposes. Venous blood samples from people arrested for driving under the influence of alcohol were analyzed in triplicate by headspace gas chromatography (HS-GC) using three different stationary phases. The gas chromatograms from this analysis sometimes showed peaks with retention times corresponding to acetone, ethyl methyl ketone (2-butanone), 2-propanol, and 2-butanol in addition to ethanol and the internal standard (1-propanol). Further investigations showed that these drink-driving suspects had consumed an industrial alcohol (T-Red) for intoxication purposes, which contained > 90% w/v ethanol, acetone (~ 2% w/v), 2-butanone (~ 5% w/v) as well as Bitrex to impart a bitter taste. In n = 75 blood samples from drinkers of T-Red, median concentrations of ethanol, acetone, 2-butanone, 2-propanol and 2-butanol were 2050 mg/L (2.05 g/L), 97 mg/L, 48 mg/L, 26 mg/L and 20 mg/L, respectively. In a separate GC analysis, 2,3-butanediol (median concentration 87 mg/L) was identified in blood samples containing 2-butanone. When the redox state of the liver is shifted to a more reduced potential (excess NADH), which occurs during metabolism of ethanol, this favors the reduction of low molecular ketones into secondary alcohols via the alcohol dehydrogenase (ADH) pathway. Routine toxicological analysis of blood samples from apprehended drivers gave the opportunity to study metabolism of acetone and 2-butanone without having to administer these substances to human volunteers.

5.
ACS Appl Mater Interfaces ; 16(36): 47973-47987, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39225263

ABSTRACT

Owing to the correlation between acetone in human's exhaled breath (EB) and blood glucose, the development of EB acetone gas-sensing devices is important for early diagnosis of diabetes diseases. In this article, a noninvasive blood glucose detection device through acetone sensing in EB, based on an α-Fe2O3-multiwalled carbon nanotube (MWCNT) nanocomposite, was successfully developed. Different amounts of α-Fe2O3 were added to the MWCNTs by a simple solution method. The optimized acetone gas sensor showed a response of 5.15 to 10 ppm acetone gas at 200 °C. Also, the fabricated sensor showed very good sensing properties even in an atmosphere with high relative humidity. Since the EB has high humidity, the proposed sensor is a promising device to exactly detect the amount of acetone in EB with high humidity. The sensor was powered by a 3200 mAh battery with the possibility of charging using mains electricity. To increase the reliability and calibration of the sensing device, a practical test was taken to detect acetone EB from 50 volunteers, and a deep learning algorithm (DLA) was used to detect the effect of various factors on the amount of acetone in each person's acetone EB. The proposed device with ±15 errors had almost 85% correct responses. Also, the proposed device had excellent response, short response time, good selectivity, and good repeatability, leading it to be a suitable candidate for noninvasive blood glucose sensing.


Subject(s)
Acetone , Blood Glucose , Breath Tests , Deep Learning , Nanocomposites , Nanotubes, Carbon , Acetone/analysis , Nanotubes, Carbon/chemistry , Humans , Nanocomposites/chemistry , Blood Glucose/analysis , Breath Tests/instrumentation , Breath Tests/methods , Ferric Compounds/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Exhalation
6.
J Hazard Mater ; 478: 135462, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39126854

ABSTRACT

For hazardous gas monitoring and non-invasive diagnosis of diabetes using breath analysis, porous foams assembled by Co3O4 nanoparticles were designed as sensing electrode materials to fabricate efficient yttria-stabilized zirconia (YSZ)-based acetone sensors. The sensitivity of the sensors was improved by varying the sintering temperature to regulate the morphology. Compared to other materials sintered at different temperatures, the porous Co3O4 nanofoams sintered at 800 °C exhibited the highest electrochemical catalytic activity during the electrochemical test. The response of the corresponding Co3O4-based sensor to 10 ppm acetone was -77.2 mV and it exhibited fast response and recovery times. Moreover, the fabricated sensor achieved a low detection limit of 0.05 ppm and a high sensitivity of -56 mV/decade in the acetone concentration range of 1-20 ppm. The sensor also exhibited excellent repeatability, acceptable selectivity, good O2/humidity resistance, and long-term stability during continuous measurements for over 30 days. Moreover, the fabricated sensor was used to determine the acetone concentration in the exhaled breaths of patients with diabetic ketosis. The results indicated that it could distinguish between healthy individuals and patients with diabetic ketosis, thereby proving its abilities to diagnose and monitor diabetic ketosis. Based on its excellent sensitivity and exhaled breath measurement results, the developed sensor has broad application prospects.


Subject(s)
Acetone , Breath Tests , Cobalt , Electrodes , Oxides , Yttrium , Zirconium , Acetone/analysis , Zirconium/chemistry , Breath Tests/instrumentation , Breath Tests/methods , Yttrium/chemistry , Humans , Porosity , Cobalt/chemistry , Cobalt/analysis , Oxides/chemistry , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Limit of Detection
7.
Diabetol Int ; 15(3): 370-378, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39101172

ABSTRACT

Ketone bodies, comprising ß-hydroxybutyric acid (BHB), acetoacetate (AcAc), and acetone, play a vital role as essential energy substrates. In individuals with diabetes, ketone bodies can be elevated under various conditions, including diabetic ketoacidosis, use of sodium-glucose transporter type 2 (SGLT2) inhibitors, and extreme carbohydrate restriction. There are three methods for measuring ketone bodies. Urine ketone analysis (AcAc) is a standard clinical test, whereas blood ketone testing (BHB+AcAc) is valuable in identifying or resolving diabetic ketoacidosis. Recently, technology for measuring breath acetone has been introduced, which provides an easy means of monitoring ketogenic diets in obese individuals. The basic breath alcohol detector also reacts with breath acetone. Therefore, it is important for professional drivers taking SGLT2 inhibitors to be cautious as workplace breath alcohol detectors may show false-positive results. Conversely, if a positive result is obtained, a detailed examination of ketosis is necessary. This review provides an overview of ketone body measurements in individuals with diabetes.

8.
Sensors (Basel) ; 24(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39001099

ABSTRACT

High temperature represents a critical constraint in the development of gas sensors. Therefore, investigating gas sensors operating at room temperature holds significant practical importance. In this study, coal-based porous carbon (C-700) and coal-based C/MoO2 nanohybrid materials were synthesized using a simple one-step vapor deposition and sintering method, and their gas-sensing performance was investigated. The gas-sensing performance for several VOC gases (phenol, ethyl acetate, ethanol, acetone, triethylamine, and toluene) and a 95% RH high-humidity environment were tested. The results indicated that the C/MoO2-450 sample sintered at 450 °C exhibited excellent specific selectivity towards acetone at room temperature, with a response value of 4153.09% and response/recovery times of 10.8 s and 2.9 s, respectively. Furthermore, the C/MoO2-450 sample also demonstrated good repeatability and long-term stability. The sensing mechanism of the synthesized materials was also explored. The superior gas-sensing performance can be attributed to the synergistic effect between the porous carbon and MoO2 nanoparticles. Given the importance of enhancing the high-tech and high-value-added utilization of coal, this study provides a viable approach for utilizing coal-based carbon materials in detecting volatile organic compounds at room temperature.

9.
Nanomaterials (Basel) ; 14(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998702

ABSTRACT

Acetone is a biomarker found in the expired air of patients suffering from diabetes. Therefore, early and accurate detection of its concentration in the breath of such patients is extremely important. We prepared Tin(IV) oxide (SnO2) nanospheres via hydrothermal treatment and then decorated them with bimetallic PtAu nanoparticles (NPs) employing the approach of in situ reduction. The topology, elemental composition, as well as crystal structure of the prepared materials were studied via field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The findings revealed that bimetallic PtAu-decorated SnO2 nanospheres (PtAu/SnO2) were effectively synthesized as well as PtAu NPs evenly deposited onto the surface of the SnO2 nanospheres. Pure SnO2 nanospheres and PtAu/SnO2 sensors were prepared, and their acetone gas sensitivity was explored. The findings demonstrated that in comparison to pristine SnO2 nanosphere sensors, the sensors based on PtAu/SnO2 displayed superior sensitivity to acetone of 0.166-100 ppm at 300 °C, providing a low theoretical limit of detection equal to 158 ppm. Moreover, the PtAu/SnO2 sensors showed excellent gas response (Ra/Rg = 492.3 to 100 ppm), along with fast response and recovery (14 s/13 s to 10 ppm), good linearity of correlation, excellent repeatability, long-term stability, and satisfactory selectivity at 300 °C. This improved gas sensitivity was because of the electron sensitization of the Pt NPs, the chemical sensitization of the Au NPs, as well as the synergistic effects of bimetallic PtAu. The PtAu/SnO2 sensors have considerable potential for the early diagnosis and screening of diabetes.

10.
Sci Rep ; 14(1): 15461, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965300

ABSTRACT

This paper introduces a novel solid-state electrolyte-based enzymatic sensor designed for the detection of acetone, along with an examination of its performance under various surface modifications aimed at optimizing its sensing capabilities. To measure acetone concentrations in both liquid and vapor states, cyclic voltammetry and amperometry techniques were employed, utilizing disposable screen-printed electrodes consisting of a platinum working electrode, a platinum counter electrode, and a silver reference electrode. Four different surface modifications, involving different combinations of Nafion (N) and enzyme (E) layers (N + E; N + E + N; N + N + E; N + N + E + N), were tested to identify the most effective configuration for a sensor that can be used for breath acetone detection. The sensor's essential characteristics, including linearity, sensitivity, reproducibility, and limit of detection, were thoroughly evaluated through a range of experiments spanning concentrations from 1 µM to 25 mM. Changes in acetone concentration were monitored by comparing currents readings at different acetone concentrations. The sensor exhibited high sensitivity, and a linear response to acetone concentration in both liquid and gas phases within the specified concentration range, with correlation coefficients ranging from 0.92 to 0.98. Furthermore, the sensor achieved a rapid response time of 30-50 s and an impressive detection limit as low as 0.03 µM. The results indicated that the sensor exhibited the best linearity, sensitivity, and limit of detection when four layers were employed (N + N + E + N).

11.
Chemphyschem ; : e202400573, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955766

ABSTRACT

Acetone (CH3COCH3), the simplest ketone, has recently attracted considerable attention for its important role in atmospheric chemistry and in the formation of ices in extraterrestrial sources that contain complex organic molecules. In this study, we employed a combination of experimental rotational spectroscopy and quantum chemistry calculations to investigate the structure and dynamics of the acetone-water complex. Our aim was to understand how non-covalent interactions with water affect the methyl internal rotation dynamics of acetone, and how water-centered large amplitude motions alter the observed physical properties compared to those predicted at the equilibrium position. Detailed rotation-tunneling analyses of acetone-H2O and -D2O reveal that the interactions with water disrupt the equivalence of the two methyl rotors, resulting in a noticeably lower methyl rotor barrier for the top with the close-by water compared to that of free acetone. The barrier for the methyl group further from water is also lower, although to a lesser degree. To gain further insights, extensive theoretical modelling was conducted, focusing on the associated large amplitude motions. Furthermore, quantum theory of atoms in molecules and non-covalent interactions analyses were utilized to visualize the underlying causes of the observed trends.

12.
Molecules ; 29(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39064973

ABSTRACT

Few studies have reported on the continuous evolution of dual-linker zeolitic imidazolate frameworks' (ZIFs) structure and morphology during the crystal growth process. Herein, we report the synthesis of a novel ZIF material with CHA topology (ZIF-301-eIm) via the combination of a small-sized 2-ethylimidazole (eIm) with the large-sized 5-chlorobenzimidazole ligand. A series of derivative materials with distinct structures and morphologies were obtained via two pathways: (1) insufficient amount of eIm with prolonged crystallization time (pathway A) and (2) sufficient amount of eIm with prolonged crystallization time (pathway B). Various characterization techniques revealed the continuous evolution of structure and morphology during the crystal growth process. Insufficient amount of eIm and crystallization time (crystallization pathway A) led to ZIF-301-eIm derivatives with defective and open structures alongside an aggregated morphology of nanoparticles. Prolonging the crystallization time allowed small-sized eIm ligands to gradually fill into the framework, resulting in the formation of ZIF-301-eIm-A5 characterized by complete but dense structures with a perfect polyhedral morphology. Remarkably, a sufficient amount of eIm during synthesis (crystallization pathway B) formed ZIF-301-eIm-B1 with a similar structure and morphology to ZIF-301-eIm-A5 in just 1 day. ZIF-301-eIm-B3, with intact, dense structures, exhibits superior acetone/butanol separation performance compared to ZIF-301-eIm-A3 due to small pore windows and large cages facilitating selective adsorption of acetone through exclusion separation.

13.
Environ Sci Pollut Res Int ; 31(34): 46858-46876, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981967

ABSTRACT

Renewable and sustainable biofuel production, such as biobutanol, is becoming increasingly popular as a substitute for non-renewable and depleted petrol fuel. Many researchers have studied how to produce butanol cheaply by considering appropriate feedstock materials and bioprocess technologies. The production of biobutanol through acetone-butanol-ethanol (ABE) is highly sought after around the world because of its sustainable supply and lack of competition with food. The purpose of this study is to present the current biobutanol production research and to analyse the biobutanol research conducted during 2006 to 2023. The keyword used in this study is "Biobutanol," and the relevant data was extracted from the Web of Science database (WoS). According to the results, institutions and scholars from the People's Republic of China, the USA, and India have the highest number of cited papers across a broad spectrum of topics including acetone-butanol-ethanol (ABE) fermentation, biobutanol, various pretreatment techniques, and pervaporation. The success of biobutanol fermentation from biomass depends on the ability of the fermentation operation to match the microbial behaviour along with the appropriate bioprocessing strategies to improve the entire process to be suitable for industrial scale. Based on the review data, we will look at the biobutanol technologies and appropriate strategies that have been developed to improve biobutanol production from renewable biomass.


Subject(s)
Biofuels , Butanols , Fermentation , Butanols/metabolism , Ethanol/metabolism , Acetone , Biomass
14.
ACS Appl Mater Interfaces ; 16(31): 41086-41098, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39049749

ABSTRACT

Herein, the integration of SnO2 nanoparticles with two Zn(II) porphyrins─Zn(II) 5,10,15,20-tetraphenylporphyrin (ZnTPP) and its perfluorinated counterpart, Zn(II) 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (ZnTPPF20)─was investigated for the sensing of gaseous acetone at 120 °C, adopting three Zn-porphyrin/SnO2 weight ratios (1:4, 1:32, and 1:64). For the first time, we were able to provide evidence of the correlation between the materials' conductivity and these nanocomposites' sensing performances, obtaining optimal results with a 1:32 ratio for ZnTPPF20/SnO2 and showcasing a remarkable detection limit of 200 ppb together with a boosted sensing signal with respect to bare SnO2. To delve deeper, the combination of experimental data with density functional theory calculations unveiled an electron-donating behavior of both porphyrins when interacting with tin dioxide semiconductor, especially for the nonfluorinated one. The study suggested that the interplay between electrons injected, from the porphyrins' highest occupied molecular orbital to SnO2 conduction band, and the latter's available electronic states has a dramatic impact to boost the chemiresistive sensing. Indeed, we highlighted that the key lies in preventing the full saturation of SnO2 electronic states concomitantly increasing the materials' conductivity: in this respect, the best compromise turned out to be the perfluorinated porphyrin. A further corroboration of our findings was obtained by illuminating the sensors during measurements with light-emitting diode (LED) light. Actually, we demonstrated that it does not have any impact on improving the sensing behavior, most probably due to the electronic oversaturation and scattering caused by LED excitation in porphyrins. Lastly, the most effective hybrids (1:32 ratio) were physicochemically characterized, confirming the physisorption of the macrocycles onto the SnO2 surface. In conclusion, herein, we underscore the feasibility of customizing the porphyrin chemistry and porphyrin-to-SnO2 ratio to enhance the gaseous sensing of bare metal oxides, providing valuable insights for the engineering of highly performing light-free chemiresistors.

15.
Food Chem (Oxf) ; 8: 100208, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38883998

ABSTRACT

Water bamboo shoots (Zizania latifolia) is prone to quality deterioration during cold storage after harvest, which causes the decline of commodity value. Chlorophyll synthesis and lignin deposition are the major reasons for quality degradation. This paper studied the influence of exogenous melatonin (MT) on the cold storage quality of water bamboo shoots. MT treatment could delay the increase in skin browning, hardness and weight loss rate, inhibit chlorophyll synthesis and color change of water bamboo shoots, while maintain the content of total phenols and flavonoids, and inhibit lignin deposition by inhibiting the activity and gene expression of phenylpropanoid metabolism related enzymes as PAL, C4H, 4CL, CAD, and POD. The results indicate that exogenous MT treatment can effectively inhibit the quality degradation of cold stored water bamboo shoots.

16.
Cureus ; 16(5): e61241, 2024 May.
Article in English | MEDLINE | ID: mdl-38939283

ABSTRACT

Introduction Diagnosing a concussion is challenging because of complex and variable symptoms. Establishing a viable biomarker of injury may rely on physiologic measurements rather than symptomology. Volatile organic compounds (VOCs) such as breath acetone have been identified as potential physiological markers that can capture changes in the utilization of energy substrates post-concussion. Here, we aimed to explore whether differences in VOCs exist between concussed and non-concussed athletes at the initial and later stages of injury recovery. Methods Six (N=6) non-concussed athletes were enrolled as control participants prior to the competitive season. Control participants' breath acetone, heart rate, and anthropometric measures were obtained at rest and throughout a single exercise challenge by breathalyzer. Six (N=6) athletes diagnosed with concussion during the competitive season had breath acetone measured daily until cleared to return to activity or approximately four weeks following enrollment where they participated in an exit exercise challenge having breath acetone, heart rate, and anthropometric measures obtained. Comparisons were made between at-rest measures of concussed and non-concussed participants at multiple time points during the recovery period. Paired t-test comparisons with individuals serving as their own control were used to determine individual differences in recovery. Visual graphs were used to demonstrate differences in obtained measures amongst individuals and between groups during the exercise challenges. Results Results demonstrated statistically significant differences in breath acetone between concussed and control participants when the highest day measured during the first week of concussion was compared to the control participant's resting values (P=0.017). Additionally, when the concussed participants served as their own control and their highest measured day of the first week post-concussion was compared to values when cleared to return to activity or at 26 days post-concussion, there was a significant difference in breath acetone (P=0.028). Comparing breath acetone during exercise between non-concussed and cleared concussed participants or four weeks post-injury, demonstrated no significant differences throughout the challenge or at rest prior. Visual graph comparisons in a single participant before and after concussion suggest differences may appear following exercise during the recovery period. Discussion These results suggest VOCs, particularly breath acetone, have the potential to serve as diagnostic markers of concussion. However, longitudinal research within larger cohorts and with equipment able to expel VOCs other than acetone from measures are needed to make informed recommendations.

17.
J Agric Food Chem ; 72(26): 14786-14798, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38902910

ABSTRACT

Some thermal degradants of curcuminoids have demonstrated moderate health benefits in previous studies. Feruloyl acetone (FER), recently identified as a thermal degradant of curcumin, has been previously associated with anticancer and antioxidative effects, yet its other capabilities remain unexplored. Moreover, earlier reports suggest that methoxy groups on the aromatic ring may influence the functionality of the curcuminoids. To address these gaps, an animal study was conducted to investigate the antiobesity effects of both FER and its demethoxy counterpart (DFER) on mice subjected to a high-fat diet. The results demonstrated the significant prevention of weight gain and enlargement of the liver and various adipose tissues by both samples. Furthermore, these supplements exhibited a lipid regulatory effect in the liver through the adiponectin/AMPK/SIRT1 pathway, promoted thermogenesis via AMPK/PGC-1α activation, and positively influenced gut-microbial-produced short-chain fatty acid (SCFA) levels. Notably, DFER demonstrated superior overall efficacy in combating obesity, while FER displayed a significant effect in modulating inflammatory responses. It is considered that SCFA may be responsible for the distinct effects of FER and DFER in the animal study. Future studies are anticipated to delve into the efficacy of curcuminoid degradants, encompassing toxicity and pharmacokinetic evaluations.


Subject(s)
Anti-Obesity Agents , Curcumin , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Animals , Curcumin/chemistry , Curcumin/pharmacology , Curcumin/metabolism , Mice , Obesity/metabolism , Obesity/drug therapy , Male , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/administration & dosage , Humans , Diet, High-Fat/adverse effects , Liver/metabolism , Liver/drug effects , Liver/chemistry , Thermogenesis/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue/chemistry
18.
Angew Chem Int Ed Engl ; 63(36): e202408947, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38899792

ABSTRACT

Palladium-catalyzed coupling reactions of small nucleophiles are of great interest, but challenging due to difficulties in selectivity control. Herein, we report the development of a new platform of P,N-ligands consisting of ylide-functionalized phosphines with aminophosphonium groups (NYPhos) to address this challenge. These phosphine ligands are easily accessible in a wide structural diversity with highly modular electronic and steric properties. Based on a family of 14 ligands the selective monoarylation of acetone as well as other challenging ketones and amides was accomplished with record-setting activities even for aryl chlorides at room temperature including late-stage functionalizations of drug molecules. Moreover, ammonia and other small primary amines could be coupled at mild conditions. Isolation and structure analyses of palladium complexes within the catalytic cycle confirmed that the P,N-coordination mode is necessary to achieve the observed selectivities. It also demonstrated the facile adjustability of the N-donor strength, which is beneficial for the targeted design of tailored P,N-ligands for future applications.

19.
J Mol Model ; 30(7): 215, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884691

ABSTRACT

CONTEXT: The performance of pristine and Pd-doped WO3 acetone gas sensors is calculated theoretically and compared with available experimental results. Temperature, humidity, and acetone concentration variation are considered in the present work. Transition state theory calculates Gibbs free energy of transition, including its components enthalpy and entropy of transition or activation. The variation of Pd doping concentration is used to obtain the maximum response and lowest response time for the optimum performance of the gas sensor. The present theory considers the reduction of acetone gas concentration as acetone reaches its autoignition temperature. Acceptable agreement between theory and experiment is obtained. The acceptance includes the decrease of Gibbs free energy with doping percentage, variation of temperature exponent to the power twelve in the considered reactions, and reduction of response time with the increase of temperature. METHODS: Density functional theory at the B3LYP level is used. 6-311G** basis set (for O atoms) and SDD (for heavy Pd and W atoms) are used to optimize the structures examined in the present work. The Gaussian 09 program and accompanying software were used to perform the current tasks.

20.
Mol Pain ; 20: 17448069241261687, 2024.
Article in English | MEDLINE | ID: mdl-38818803

ABSTRACT

Preclinical studies on pathological pain rely on the von Frey test to examine changes in mechanical thresholds and the acetone spray test to determine alterations in cold sensitivity in rodents. These tests are typically conducted on rodent hindpaws, where animals with pathological pain show reliable nocifensive responses to von Frey filaments and acetone drops applied to the hindpaws. Pathological pain in orofacial regions is also an important clinical problem and has been investigated with rodents. However, performing the von Frey and acetone spray tests in the orofacial region has been challenging, largely due to the high mobility of the head of testing animals. To solve this problem, we implemented a sheltering tube method to assess orofacial nociception in mice. In experiments, mice were sheltered in elevated tubes, where they were well accommodated because the tubes provided safe shelters for mice. Examiners could reliably apply mechanical stimuli with von Frey filament, cold stimuli with acetone spray, and light stimuli with a laser beam to the orofacial regions. We validated this method in Nav1.8-ChR2 mice treated with oxaliplatin that induced peripheral neuropathy. Using the von Frey test, orofacial response frequencies and nociceptive response scores were significantly increased in Nav1.8-ChR2 mice treated with oxaliplatin. In the acetone spray test, the duration of orofacial responses was significantly prolonged in oxaliplatin-treated mice. The response frequencies to laser light stimulation were significantly increased in Nav1.8-ChR2 mice treated with oxaliplatin. Our sheltering tube method allows us to reliably perform the von Frey, acetone spray, and optogenetic tests in orofacial regions to investigate orofacial pain.


Subject(s)
Cold Temperature , Hyperalgesia , Oxaliplatin , Animals , Oxaliplatin/adverse effects , Hyperalgesia/chemically induced , Hyperalgesia/physiopathology , Male , Mice, Inbred C57BL , Mice , Behavior, Animal/drug effects , Nociception/drug effects , Organoplatinum Compounds/adverse effects , Pain Measurement/methods , Facial Pain/chemically induced , Facial Pain/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL