Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Dose Response ; 22(3): 15593258241271692, 2024.
Article in English | MEDLINE | ID: mdl-39114768

ABSTRACT

Although it is well established that a vegetable-rich (Mediterranean) diet is associated with health benefits in later life, the mechanisms and biological origins of this benefit are not well established. This review seeks to identify the components a healthful diet that reduce the individual's suffering from non-communicable disease and extend longevity. We note the difference between the claims made for an essential diet (that prevents deficiency syndromes) and those argued for a diet that also prevents or delays non-communicable diseases and ask: what chemicals in our food induce this added resilience, which is effective against cardiovascular and neurodegenerative diseases, diabetes and even cancer? Working in the framework of acquired resilience (tissue resilience induced by a range of stresses), we arguethat the toxins evolved by plants as part of allelopathy (the competition between plant species) are key in making the 'healthful difference'. We further suggest the recognition of a category of micronutrients additional to the established 'micro' categories of vitamins and trace elements and suggest also that the new category be called 'trace toxins'. Implications of these suggestions are discussed.

2.
J Alzheimers Dis ; 97(3): 1069-1081, 2024.
Article in English | MEDLINE | ID: mdl-38217606

ABSTRACT

This review advances an understanding of several dementias, based on four premises. One is that capillary hemorrhage is prominent in the pathogenesis of the dementias considered (dementia pugilistica, chronic traumatic encephalopathy, traumatic brain damage, Alzheimer's disease). The second premise is that hemorrhage introduces four neurotoxic factors into brain tissue: hypoxia of the tissue that has lost its blood supply, hemoglobin and its breakdown products, excitotoxic levels of glutamate, and opportunistic pathogens that can infect brain cells and induce a cytotoxic immune response. The third premise is that where organisms evolve molecules that are toxic to itself, like the neurotoxicity ascribed to hemoglobin, amyloid- (A), and glutamate, there must be some role for the molecule that gives the organism a selection advantage. The fourth is the known survival-advantage roles of hemoglobin (oxygen transport), of A (neurotrophic, synaptotrophic, detoxification of heme, protective against pathogens) and of glutamate (a major neurotransmitter). From these premises, we propose 1) that the brain has evolved a multi-factor response to intracerebral hemorrhage, which includes the expression of several protective molecules, including haptoglobin, hemopexin and A; and 2) that it is logical, given these premises, to posit that the four neurotoxic factors set out above, which are introduced into the brain by hemorrhage, drive the progression of the capillary-hemorrhage dementias. In this view, A expressed at the loci of neuronal death in these dementias functions not as a toxin but as a first responder, mitigating the toxicity of hemoglobin and the infection of the brain by opportunistic pathogens.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Cerebral Hemorrhage/complications , Brain/pathology , Hemoglobins/metabolism , Glutamates
3.
Front Neuroanat ; 17: 1280275, 2023.
Article in English | MEDLINE | ID: mdl-38020212

ABSTRACT

As human longevity has increased, we have come to understand the ability of the brain to function into advanced age, but also its vulnerability with age, apparent in the age-related dementias. Against that background of success and vulnerability, this essay reviews how the brain is protected by (by our count) 12 mechanisms, including: the cranium, a bony helmet; the hydraulic support given by the cerebrospinal fluid; the strategically located carotid body and sinus, which provide input to reflexes that protect the brain from blood-gas imbalance and extremes of blood pressure; the blood brain barrier, an essential sealing of cerebral vessels; the secretion of molecules such as haemopexin and (we argue) the peptide Aß to detoxify haemoglobin, at sites of a bleed; autoregulation of the capillary bed, which stabilises metabolites in extracellular fluid; fuel storage in the brain, as glycogen; oxygen storage, in the haemoprotein neuroglobin; the generation of new neurones, in the adult, to replace cells lost; acquired resilience, the stress-induced strengthening of cell membranes and energy production found in all body tissues; and cognitive reserve, the ability of the brain to maintain function despite damage. Of these 12 protections, we identify 5 as unique to the brain, 3 as protections shared with all body tissues, and another 4 as protections shared with other tissues but specialised for the brain. These protections are a measure of the brain's vulnerability, of its need for protection. They have evolved, we argue, to maintain cognitive function, the ability of the brain to function despite damage that accumulates during life. Several can be tools in the hands of the individual, and of the medical health professional, for the lifelong care of our brains.

4.
Mech Ageing Dev ; 201: 111605, 2022 01.
Article in English | MEDLINE | ID: mdl-34798081

ABSTRACT

There is growing interest in finding ways to enhance longevity and the quality of life. This paper summarizes a vast scientific literature over the past two decades that has suggested approaches to enhancing biological resilience - and particularly neurological function - via hormetic and preconditioning processes. The employment of hormesis and preconditioning has been shown to protect biological systems from many of the effects of aging, both by sustaining structural and functional integrity, and by affording relative protection against certain types of diseases. The paper confronts the challenges - and opportunities - for society when considering possible practical use of evolving evidence about the mechanisms, processes and effects of these biological phenomena.


Subject(s)
Adaptation, Physiological , Aging/physiology , Longevity , Neuroprotection/physiology , Quality of Life , Hormesis/physiology , Humans
5.
Pharmacol Res ; 167: 105526, 2021 05.
Article in English | MEDLINE | ID: mdl-33667690

ABSTRACT

A generalized mechanism for hormetic dose responses is proposed that is based on the redox-activated transcription factor (TF), Nrf2, and its upregulation of an integrative system of endogenous anti-oxidant and anti-inflammatory adaptive responses. Nrf2 can be activated by numerous oxidative stressors (e.g., exercise, caloric restriction/intermittent fasting) and by exposures to synthetic, naturally occurring and endogenous chemicals, to non-ionizing (e.g., low-level light) and ionizing radiation, and to low-to-moderate stress from aging processes, among others. Nrf2 conducts crosstalk with other TFs to further integrate and enhance the effectiveness of adaptive metabolic strategies that produce acquired resilience. This adaptive mechanism of Nrf2 accounts for the generality and ubiquity of hormetic dose responses and supports the fundamental hormetic characteristic of protecting biological systems. At the same time, Nrf2 is highly evolutionarily conserved and quantitatively constrained in response (i.e., modest stimulatory response), further conserving biological resources and enhancing metabolic efficiencies. The notion that Nrf2 may serve as an hormetic mediator not only provides a regulatory-based evolutionary understanding of temporal acquired resilience and adaptive homeostasis but also causally integrates toxicological and pharmacological detoxification processes that are central to ecological and human risk assessments as well as to the development of drugs and therapeutics. These findings can also account for considerable inter-individual variation in susceptibility to toxic substances, the differential effectiveness of numerous therapeutic agents, and the variation in onset and severity of numerous age-related illnesses, such as type II diabetes.


Subject(s)
NF-E2-Related Factor 2/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Drug Discovery , Hormesis/drug effects , Humans , Light , Methylene Blue/pharmacology , Methylene Blue/therapeutic use , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , Oxidative Stress/drug effects , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Protective Agents/pharmacology , Protective Agents/therapeutic use , Radiation, Ionizing
6.
Ageing Res Rev ; 67: 101273, 2021 05.
Article in English | MEDLINE | ID: mdl-33571705

ABSTRACT

This paper provides evidence to support that riluzole, an FDA-approved treatment for amyotrophic lateral sclerosis (ALS), like many neuroprotective agents, displays and exerts hormetic biphasic dose responses. These findings have important implications for the experimental study and clinical treatment of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Neuroprotective Agents , Amyotrophic Lateral Sclerosis/drug therapy , Humans , Neuroprotection , Neuroprotective Agents/pharmacology , Riluzole/pharmacology
7.
Annu Rev Food Sci Technol ; 12: 355-381, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33428457

ABSTRACT

This review provides an assessment of hormesis, a highly conserved evolutionary dose-response adaptive strategy that leads to the development of acquired resilience within well-defined temporal windows. The hormetic-based acquired resilience has a central role in affecting healthy aging, slowing the onset and progression of numerous neurodegenerative and other age-related diseases, and reducing risks and damage due to heart attacks, stroke, and other serious conditions of public health and medical importance. The review provides the historical foundations of hormesis, its dose-response features, its capacity for generalization across biological models and endpoints measured, and its mechanistic foundations. The review also provides a focus on the adaptive features of hormesis, i.e., its capacity to upregulate acquired resilience and how this can be mediated by numerous plant-derived extracts, such as curcumin, ginseng, Ginkgo biloba, resveratrol, and green tea, that induce a broad spectrum of chemopreventive effects via hormesis.


Subject(s)
Hormesis , Models, Biological , Phytochemicals
8.
Dose Response ; 16(4): 1559325818803428, 2018.
Article in English | MEDLINE | ID: mdl-30627064

ABSTRACT

This review brings together observations on the stress-induced regulation of resilience mechanisms in body tissues. It is argued that the stresses that induce tissue resilience in mammals arise from everyday sources: sunlight, food, lack of food, hypoxia and physical stresses. At low levels, these stresses induce an organised protective response in probably all tissues; and, at some higher level, cause tissue destruction. This pattern of response to stress is well known to toxicologists, who have termed it hormesis. The phenotypes of resilience are diverse and reports of stress-induced resilience are to be found in journals of neuroscience, sports medicine, cancer, healthy ageing, dementia, parkinsonism, ophthalmology and more. This diversity makes the proposing of a general concept of induced resilience a significant task, which this review attempts. We suggest that a system of stress-induced tissue resilience has evolved to enhance the survival of animals. By analogy with acquired immunity, we term this system 'acquired resilience'. Evidence is reviewed that acquired resilience, like acquired immunity, fades with age. This fading is, we suggest, a major component of ageing. Understanding of acquired resilience may, we argue, open pathways for the maintenance of good health in the later decades of human life.

SELECTION OF CITATIONS
SEARCH DETAIL