Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 963
Filter
1.
Angew Chem Int Ed Engl ; : e202409391, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137360

ABSTRACT

Short peptides are versatile molecules for the construction of supramolecular materials. Most reported peptide materials are hydrophobic, stiff, and show limited response to environmental conditions in the solid-state. Herein, we describe a design strategy for minimalistic supramolecular metallo-peptide nanofibers that, depending on their sequence, change stiffness, or reversibly assemble in the solid-state, in response to changes in relative humidity (RH). We tested a series of histidine (H) containing dipeptides with varying hydrophobicity, XH, where X is G, A, L, Y (glycine, alanine, leucine, and tyrosine). The one-dimensional fiber formation is supported by metal coordination and dynamic H-bonds. Solvent conditions were identified where GH/Zn and AH/Zn formed gels that upon air-drying gave rise to nanofibers. Upon exposure of the nanofiber networks to increasing RH, a reduction in stiffness was observed with GH/Zn fibers reversibly (dis-)assembled at 60-70% RH driven by a rebalancing of H-bonding interactions between peptides and water. When these metallo-peptide nanofibers were deposited on the surface of polyimide films and exposed to varying RH, peptide/water-vapor interactions in the solid-state mechanically transferred to the polymer film, leading to the rapid and reversible folding-unfolding of the films, thus demonstrating RH-responsive actuation.

2.
Plants (Basel) ; 13(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39124196

ABSTRACT

Hygroscopic seed-scale movement is responsible for the weather-adaptive opening and closing of pine cones and for facilitating seed dispersal under favorable environmental conditions. Although this phenomenon has long been investigated, many involved processes are still not fully understood. To gain a deeper mechanical and structural understanding of the cone and its functional units, namely the individual seed scales, we have investigated their desiccation- and wetting-induced movement processes in a series of analyses and manipulative experiments. We found, for example, that the abaxial scale surface is responsible for the evaporation of water from the closed cone and subsequent cone opening. Furthermore, we tested the capability of dry and deformed scales to restore their original shape and biomechanical properties by wetting. These results shed new light on the orchestration of scale movement in cones and the involved forces and provide information about the functional robustness and resilience of cones, leading to a better understanding of the mechanisms behind hygroscopic pine cone opening, the respective ecological framework, and, possibly, to the development of smart biomimetic actuators.

3.
Article in English | MEDLINE | ID: mdl-39143893

ABSTRACT

Excitation of multiple acoustic wave modes on a single chip is beneficial to implement diversified acoustofluidic functions. Conventional acoustic wave devices made of bulk LiNbO3 substrates generally generate few acoustic wave modes once the crystal-cut and electrode pattern are defined, limiting the realization of acoustofluidic diversity. In this paper, we demonstrated diversity of acoustofluidic behaviors using multiple modes of acoustic waves generated on piezoelectric-thin-film-coated aluminum sheets. Multiple acoustic wave modes were excited by varying the ratios between IDT pitch/wavelength and substrate thickness. Through systematic investigation of fluidic actuation behaviors and performances using these acoustic wave modes, we demonstrated fluidic actuation diversities using various acoustic wave modes and showed that the Rayleigh mode, pseudo-Rayleigh mode, and A0 mode of Lamb wave generally have better fluidic actuation performance than those of Sezawa mode and higher-order modes of Lamb wave, providing guidance for high-performance acoustofluidic actuation platform design. Additionally, we demonstrated diversified particle patterning functions, either on two sides of acoustic wave device or on a glass sheet by coupling acoustic waves into the glass using the gel. The pattern formation mechanisms were investigated through finite element simulations of acoustic pressure fields under different experimental configurations.

4.
Adv Healthc Mater ; : e2402373, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109957

ABSTRACT

Enabling minimally invasive and precise control of liquid release in dental implants is crucial for therapeutic functions such as delivering antibiotics to prevent biofilm formation, infusing stem cells to promote osseointegration, and administering other biomedicines. However, achieving controllable liquid cargo release in dental implants remains challenging due to the lack of wireless and miniaturized fluidic control mechanisms. Here wireless miniature pumps and valves that allow remote activation of liquid cargo delivery in dental implants, actuated and controlled by external magnetic fields (<65 mT), are reported. A magnet-screw mechanism in a fluidic channel to function as a piston pump, alongside a flexible magnetic valve designed to open and close the fluidic channel, is proposed. The mechanisms are showcased by storing and releasing of liquid up to 52 µL in a dental implant. The liquid cargos are delivered directly to the implant-bone interface, a region traditionally difficult to access. On-demand liquid delivery is further showed by a metal implant inside both dental phantoms and porcine jawbones. The mechanisms are promising for controllable liquid release after implant placement with minimal invasion, paving the way for implantable devices that enable long-term and targeted delivery of therapeutic agents in various bioengineering applications.

5.
Article in English | MEDLINE | ID: mdl-39105731

ABSTRACT

Magnetically controllable soft robots are of great interest because they have unique properties compared with conventional rigid counterparts and can be used in diverse applications such as intelligent electronics, bionics, personalized medicine, and cargo grasping. However, the fabrication of such multifunctional soft robots has been challenging because of the integration of dissimilar materials into the robot body. Herein, we designed and fabricated a soft robotic multifunctional system using conventional papers and elastomeric polymers for the colorimetric detection of heavy metal ions (Hg2+ and Fe3+) in water samples. The magnetic actuation of the platforms was shown to correlate with the type of underlying paper and magnetic particle content in the mixtures. Moreover, it was observed that actuation can also be manipulated by controlling the magnetic field strength. A proof-of-concept robotic paper-based Hg2+, Zn2+, and Fe3+ ion detection was demonstrated by combining colorimetric paper sensors and magneto-papers. Our study highlights the significant potential of paper as a material for the fabrication of effective and multifunctional untethered soft robots.

6.
Theranostics ; 14(11): 4438-4461, 2024.
Article in English | MEDLINE | ID: mdl-39113795

ABSTRACT

The high incidence of bone defect-related diseases caused by trauma, infection, and tumor resection has greatly stimulated research in the field of bone regeneration. Generally, bone healing is a long and complicated process wherein manipulating the biological activity of interventional scaffolds to support long-term bone regeneration is significant for treating bone-related diseases. It has been reported that some physical cues can act as growth factor substitutes to promote osteogenesis through continuous activation of endogenous signaling pathways. This review focuses on the latest progress in bone repair by remote actuation and on-demand activation of biomaterials pre-incorporated with physical cues (heat, electricity, and magnetism). As an alternative method to treat bone defects, physical cues show many advantages, including effectiveness, noninvasiveness, and remote manipulation. First, we introduce the impact of different physical cues on bone repair and potential internal regulatory mechanisms. Subsequently, biomaterials that mediate various physical cues in bone repair and their respective characteristics are summarized. Additionally, challenges are discussed, aiming to provide new insights and suggestions for developing intelligent biomaterials to treat bone defects and promote clinical translation.


Subject(s)
Biocompatible Materials , Bone Regeneration , Tissue Scaffolds , Bone Regeneration/drug effects , Biocompatible Materials/chemistry , Humans , Animals , Tissue Scaffolds/chemistry , Osteogenesis/drug effects , Tissue Engineering/methods , Bone and Bones/metabolism
7.
Nanomicro Lett ; 16(1): 251, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037551

ABSTRACT

Disorders of the musculoskeletal system are the major contributors to the global burden of disease and current treatments show limited efficacy. Patients often suffer chronic pain and might eventually have to undergo end-stage surgery. Therefore, future treatments should focus on early detection and intervention of regional lesions. Microrobots have been gradually used in organisms due to their advantages of intelligent, precise and minimally invasive targeted delivery. Through the combination of control and imaging systems, microrobots with good biosafety can be delivered to the desired area for treatment. In the musculoskeletal system, microrobots are mainly utilized to transport stem cells/drugs or to remove hazardous substances from the body. Compared to traditional biomaterial and tissue engineering strategies, active motion improves the efficiency and penetration of local targeting of cells/drugs. This review discusses the frontier applications of microrobotic systems in different tissues of the musculoskeletal system. We summarize the challenges and barriers that hinder clinical translation by evaluating the characteristics of different microrobots and finally point out the future direction of microrobots in the musculoskeletal system.

8.
Adv Mater ; : e2403954, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992999

ABSTRACT

Soft pneumatic actuation is widely used in wearable devices, soft robots, artificial muscles, and surgery machines. However, generating high-pressure gases in a soft, controllable, and portable way remains a substantial challenge. Here, a class of programmable chemical reactions that can be used to controllably generate gases with a maximum pressure output of nearly 6 MPa is reported. It is proposed to realize the programmability of the chemical reaction process using thermoelectric material with programmable electric current and employing preprogrammed reversible chemical reactants. The programmable chemical reactions as soft pneumatic actuation can be operated independently as miniature gas sources (∼20-100 g) or combined with arbitrary physical structures to make self-contained machines, capable of generating unprecedented pressures of nearly 6 MPa or forces of about 18 kN in a controllable, portable, and silent manner. Striking demonstrations of breaking a brick, a marble, and concrete blocks, raising a sightseeing car, and successful applications in artificial muscles and soft assistive wearables illustrate tremendous application prospects of soft pneumatic actuation via programmable chemical reactions. The study establishes a new paradigm toward ultrastrong soft pneumatic actuation.

9.
Micromachines (Basel) ; 15(7)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39064406

ABSTRACT

In this paper, different concepts of reconfigurable RF-MEMS attenuators for beamforming applications are proposed and critically assessed. Capitalizing on the previous part of this work, the 1-bit attenuation modules featuring series and shunt resistors and low-voltage membranes (7-9 V) are employed to develop a 3-bit attenuator for fine-tuning attenuations (<-10 dB) in the 24.25-27.5 GHz range. More substantial attenuation levels are investigated using fabricated samples of coplanar waveguide (CPW) sections equipped with Pi-shaped resistors aiming at attenuations of -15, -30, and -45 dB. The remarkable electrical features of such configurations, showing flat attenuation curves and limited return losses, and the investigation of a switched-line attenuator design based on them led to the final proposed concept of a low-voltage 24-state attenuator. Such a simulated device combines the Pi-shaped resistors for substantial attenuations with the 3-bit design for fine-tuning operations, showing a maximum attenuation level of nearly -50 dB while maintaining steadily flat attenuation levels and limited return losses (<-11 dB) along the frequency band of interest.

10.
Bioinspir Biomim ; 19(5)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38991522

ABSTRACT

This work examines the acoustically actuated motions of artificial flagellated micro-swimmers (AFMSs) and compares the motility of these micro-swimmers with the predictions based on the corrected resistive force theory (RFT) and the bar-joint model proposed in our previous work. The key ingredient in the theory is the introduction of a correction factorKin drag coefficients to correct the conventional RFT so that the dynamics of an acoustically actuated AFMS with rectangular cross-sections can be accurately modeled. Experimentally, such AFMSs can be easily manufactured based on digital light processing of ultra-violet (UV)-curable resins. We first determined the viscoelastic properties of a UV-cured resin through dynamic mechanical analysis. In particular, the high-frequency storage moduli and loss factors were obtained based on the assumption of time-temperature superposition (TTS), which were then applied in theoretical calculations. Though the extrapolation based on the TTS implied the uncertainty of high-frequency material response and there is limited accuracy in determining head oscillation amplitude, the differences between the measured terminal velocities of the AFMSs and the predicted ones are less than 50%, which, to us, is well acceptable. These results indicate that the motions of acoustic AFMS can be predicted, and thus, designed, which pave the way for their long-awaited applications in targeted therapy.


Subject(s)
Computer Simulation , Equipment Design , Models, Biological , Swimming , Swimming/physiology , Equipment Failure Analysis , Biomimetic Materials/chemistry , Biomimetics/methods , Robotics/methods , Robotics/instrumentation , Sound , Acoustics , Computer-Aided Design , Animals
11.
Nano Lett ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083658

ABSTRACT

The high operating voltage of conventional nanoelectromechanical switches, typically tens of volts, is much higher than the driving voltage of the complementary metal oxide semiconductor integrated circuit (∼1 V). Though the operating voltage can be reduced by adopting a narrow air gap, down to several nanometers, this leads to formidable manufacturing challenges and occasionally irreversible switch failures due to the surface adhesive force. Here, we demonstrate a new nanowire-morphed nanoelectromechanical (NW-NEM) switch structure with ultralow operation voltages. In contrast to conventional nanoelectromechanical switches actuated by unidirectional electrostatic attraction, the NW-NEM switch is bidirectionally driven by Lorentz force to allow the use of a large air gap for excellent electrical isolation, while achieving a record-low driving voltage of <0.2 V. Furthermore, the introduction of the Lorentz force allows the NW-NEM switch to effectively overcome the adhesion force to recover to the turn-off state.

12.
ACS Appl Mater Interfaces ; 16(30): 39051-39063, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39028802

ABSTRACT

Light-propelled nanomotors, which can convert external light into mechanical motion, have shown considerable potential in the construction of a new generation of drug delivery systems. However, the therapeutic efficacy of light-driven nanomotors is always unsatisfactory due to the limited penetration depth of near-infrared-I (NIR-I) light and the inherent biocompatibility of the motor itself. Herein, an asymmetric nanomotor (Pd@ZIF-8/R848@M JNMs) with efficient motion capability is successfully constructed for enhanced photoimmunotherapy toward hepatocellular carcinoma. Under near-infrared-II (NIR-II) irradiation, Pd@ZIF-8/R848@M JNMs convert light energy into heat energy, exhibiting self-thermophoretic locomotion to penetrate deeper into tumor tissues to achieve photothermal therapy. At the same time, functionalized with an immune-activated agent Resiquimod (R848), our nanomotors could convert a "cold tumor" into a "hot tumor", transforming the immunosuppressive microenvironment into an immune-activated state, thus achieving immunotherapy. Dual photoimmunotherapy of the as-developed NIR-II light-driven Pd@ZIF-8/R848@M JNMs demonstrates considerable tumor inhibition effects, offering a promising therapeutic approach in the field of anticancer therapy.


Subject(s)
Carcinoma, Hepatocellular , Immunotherapy , Infrared Rays , Liver Neoplasms , Phototherapy , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Animals , Mice , Humans , Photothermal Therapy , Cell Line, Tumor , Mice, Inbred BALB C
13.
Adv Sci (Weinh) ; : e2308382, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946679

ABSTRACT

Small-scale robots offer significant potential in minimally invasive medical procedures. Due to the nature of soft biological tissues, however, robots are exposed to complex environments with various challenges in locomotion, which is essential to overcome for useful medical tasks. A single mini-robot often provides insufficient force on slippery biological surfaces to carry medical instruments, such as a fluid catheter or an electrical wire. Here, for the first time, a team of millirobots (TrainBot) is reported to generate around two times higher actuating force than a TrainBot unit by forming a convoy to collaboratively carry long and heavy cargos. The feet of each unit are optimized to increase the propulsive force around three times so that it can effectively crawl on slippery biological surfaces. A human-scale permanent magnetic set-up is developed to wirelessly actuate and control the TrainBot to transport heavy and lengthy loads through narrow biological lumens, such as the intestine and the bile duct. The first electrocauterization performed by the TrainBot is demonstrated to relieve a biliary obstruction and open a tunnel for fluid drainage and drug delivery. The developed technology sheds light on the collaborative strategy of small-scale robots for future minimally invasive surgical procedures.

14.
Adv Mater ; : e2406103, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39036840

ABSTRACT

Thermo-responsive hydrogels can generate the actuation force through volumetric transitions in response to temperature changes. However, their weak mechanical properties and fragile actuation performance limit robust applications. Existing approaches to enhance these properties have typically depended on additional components, leading to an unavoidable interference to the actuation performance. In this work, robust thermo-responsive hydrogels are fabricated through solvent engineering. A particular solvent, N-methylformamide, interacts affinitively with the carbonyl group of N-isopropylacrylamide monomer, solubilizes the monomer with extremely high concentration, stabilizes chain propagation during polymerization, and greatly increases chain lengths and entanglements of the resulting polymer. The synthesized hydrogels are highly elastic, strong, and tough, displaying remarkable thermo-responsive contractile actuation. The simple synthetic process can broaden its applicability in designing robust functional hydrogel applications.

15.
Nano Lett ; 24(29): 8973-8978, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38989861

ABSTRACT

The design space of two-dimensional materials is undergoing significant expansion through the stacking of layers in non-equilibrium configurations. However, the lack of quantitative insights into twist dynamics impedes the development of such heterostructures. Herein, we utilize the lateral force sensitivity of an atomic force microscope cantilever and specially designed rotational bearing structures to measure the torque in graphite and MoS2 interfaces. While the extracted torsional energies are virtually zero across all angular misfit configurations, commensurate interfaces of graphite and MoS2 are characterized by values of 0.1533 and 0.6384 N-m/m2, respectively. Furthermore, we measured the adhesion energies of graphite and MoS2 to elucidate the interplay between twist and slide. The adhesion energy dominates over the torsional energy for the graphitic interface, suggesting a tendency to twist prior to superlubric sliding. Conversely, MoS2 displays an increased torsional energy exceeding its adhesion energy. Consequently, our findings demonstrate a fundamental disparity between the sliding-to-twisting dynamics at MoS2 and graphite interfaces.

16.
Adv Sci (Weinh) ; : e2405021, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073727

ABSTRACT

Untethered magnetic soft robots capable of performing adaptive locomotion and shape reconfiguration open up possibilities for various applications owing to their flexibility. However, magnetic soft robots are typically composed of soft materials with fixed modulus, making them unable to exert or withstand substantial forces, which limits the exploration of their new functionalities. Here, water-induced, shape-locking magnetic robots with magnetically controlled shape change and water-induced shape-locking are introduced. The water-induced phase separation enables these robots to undergo a modulus transition from 1.78 MPa in the dry state to 410 MPa after hydration. Moreover, the body material's inherent self-healing property enables the direct assembly of morphing structures and magnetic soft robots with complicated structures and magnetization profiles. These robots can be delivered through magnetic actuation and perform programmed tasks including supporting, blocking, and grasping by on-demand deformation and subsequent water-induced stiffening. Moreover, a water-stiffening magnetic stent is developed, and its precise delivery and water-induced shape-locking are demonstrated in a vascular phantom. The combination of untethered delivery, on-demand shape change, and water-induced stiffening properties makes the proposed magnetic robots promising for biomedical applications.

17.
Small ; : e2402292, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864236

ABSTRACT

Tailoring the microstructure of magnetic microparticles is of vital importance for their applications. Spiky magnetic particles, such as those made from sunflower pollens, have shown promise in single cell treatment and biofilm removal. Synthetic methods that can replicate or extend the functionality of such spiky particles would be advantageous for their widespread utilization. In this work, a wet-chemical method is introduced for spiky magnetic particles that are templated from microrod-stabilized Pickering emulsions. The spiky morphology is generated by the upright attachment of silica microrods at the oil-water interface of oil droplets. Spiky magnetic microparticles with control over the length of the spikes are obtained by dispersing hydrophobic magnetic nanoparticles in the oil phase and photopolymerizing the monomer. The spiky morphology dramatically enhances colloidal stability of these particles in high ionic strength solutions and physiologic media such as human saliva and saline-based biofilm suspension. To demonstrate their utility, the spiky magnetic particles are applied for magnetically controlled removal of oral biofilms and retrieval of bacteria for diagnostic sampling. This method expands the toolbox for engineering microparticle morphology and could promote the fabrication of functional magnetic microrobots.

18.
Ultrasound Med Biol ; 50(8): 1247-1254, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38834492

ABSTRACT

OBJECTIVE: Needle biopsy is a common technique used to obtain cell and tissue samples for diagnostics. Currently, two biopsy methods are widely used: (i) fine-needle aspiration biopsy (FNAB) and (ii) core needle biopsy (CNB). However, these methods have limitations. Recently, we developed ultrasound-enhanced fine-needle aspiration biopsy (USeFNAB), which employs a needle that flexurally oscillates at an ultrasonic frequency of ∼32 kHz. The needle motion contributes to increased tissue collection while preserving cells and tissue constructs for pathological assessment. Previously, USeFNAB has been investigated only in ex vivo animal tissue. The present study was aimed at determining the feasibility of using USeFNAB in human epithelial and lymphoid tissue. METHODS: Needle biopsy samples were acquired using FNAB, CNB and USeFNAB on ex vivo human tonsils (N = 10). The tissue yield and quality were quantified by weight measurement and blinded pathologists' assessments. The biopsy methods were then compared. RESULTS: The results revealed sample mass increases of, on average, 2.3- and 5.4-fold with USeFNAB compared with the state-of-the-art FNAB and CNB, respectively. The quality of tissue fragments collected by USeFNAB was equivalent to that collected by the state-of-the-art methods in terms of morphology and immunohistochemical stainings made from cell blocks as judged by pathologists. CONCLUSION: Our study indicates that USeFNAB is a promising method that could improve tissue yield to ensure sufficient material for ancillary histochemical and molecular studies for diagnostic pathology, thereby potentially increasing diagnostic accuracy.


Subject(s)
Lymphoid Tissue , Palatine Tonsil , Humans , Palatine Tonsil/pathology , Palatine Tonsil/diagnostic imaging , Lymphoid Tissue/pathology , Lymphoid Tissue/diagnostic imaging , Biopsy, Fine-Needle/methods , Feasibility Studies , Ultrasonography, Interventional/methods , Image-Guided Biopsy/methods , Epithelium/pathology
19.
Macromol Rapid Commun ; : e2400282, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850266

ABSTRACT

Soft actuators are one of the most promising technological advancements with potential solutions to diverse fields' day-to-day challenges. Soft actuators derived from hydrogel materials possess unique features such as flexibility, responsiveness to stimuli, and intricate deformations, making them ideal for soft robotics, artificial muscles, and biomedical applications. This review provides an overview of material composition and design techniques for hydrogel actuators, exploring 3D printing, photopolymerization, cross-linking, and microfabrication methods for improved actuation. It examines applications of hydrogel actuators in biomedical, soft robotics, bioinspired systems, microfluidics, lab-on-a-chip devices, and environmental, and energy systems. Finally, it discusses challenges, opportunities, advancements, and regulatory aspects related to hydrogel actuators.

20.
Carbohydr Polym ; 340: 122314, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38858012

ABSTRACT

Hierarchical supramolecular systems, characterized by nanoscale sensitivity and macroscopic tangible changes, offer promising perspectives for the design of remotely controllable, rapid, and precise actuation materials, serving as a potential substitution for non-intelligent and complex actuation switches. Herein, we reported on the disassembly of orderly and rigid starch helical covalent structures, and their subsequent reassembly into a hierarchical supramolecular gel composed of nanocluster aggregates, integrating supramolecular interactions of three different scales. The incorporation of photo-sensitive FeIIITA, a complex of trivalent iron ions and tannic acid, significantly enhances the photo-responsive strain capacity of the hierarchical supramolecular gel. The supramolecular gel exhibits its features in a rapid light-responsive rate of hardness and viscosity, enabling the actuation of objects within 22 s under light exposure when employed as a remote actuation switch. Meanwhile, this actuation mechanism of the hierarchical supramolecular gel also has a promising perspective in precise control, identifying and actuating one of the two objects in distances of 0.8 mm even smaller scales. Our work provides a reliable reference for replacing complex actuation switches with intelligent materials for remote, rapid, and accurate actuation, and offers valuable insights for actuation in harsh and vacuum outdoor environments.

SELECTION OF CITATIONS
SEARCH DETAIL