Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Protein Expr Purif ; 217: 106442, 2024 May.
Article in English | MEDLINE | ID: mdl-38336119

ABSTRACT

A novel tandem affinity tag is presented that enables the use of cation exchange resins for initial affinity purification, followed by an additional column step for enhanced purity and affinity tag self-removal. In this method, the highly charged heparin-binding tag binds strongly and selectively to either a strong or weak cation exchange resin based on electrostatic interactions, effectively acting as an initial affinity tag. Combining the heparin-binding tag (HB-tag) with the self-removing iCapTag™ provides a means for removing both tags in a subsequent self-cleaving step. The result is a convenient platform for the purification of diverse tagless proteins with a range of isoelectric points and molecular weights. In this work, we demonstrate a dual column process in which the tagged protein of interest is first captured from an E. coli cell lysate using a cation exchange column via a fused heparin-binding affinity tag. The partially purified protein is then diluted and loaded onto an iCapTag™ split-intein column, washed, and then incubated overnight to release the tagless target protein from the bound tag. Case studies are provided for enhanced green fluorescent protein (eGFP), beta galactosidase (ßgal), maltose binding protein (MBP) and beta lactamase (ßlac), where overall purity and host cell DNA clearance is provided. Overall, the proposed dual column process is shown to be a scalable platform technology capable of accessing both the high dynamic binding capacity of ion exchange resins and the high selectivity of affinity tags for the purification of recombinant proteins.


Subject(s)
Escherichia coli , Heparin , Recombinant Fusion Proteins/genetics , Escherichia coli/metabolism , Recombinant Proteins/chemistry , Chromatography, Affinity/methods , Heparin/metabolism
2.
J Genet Eng Biotechnol ; 21(1): 165, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38085387

ABSTRACT

BACKGROUND: As a white biotechnological trend, esterases are thought to be among the most active enzymes' classes in biocatalysis and synthesis of industrially importance organic compounds. Esterases are used in many applications such as the manufacture of pharmaceuticals, cosmetics, leather, textile, paper, food, dairy products, detergents, and treatment of some environmental pollutants. RESULTS: A poly-histidine moiety was added to the C-terminal end of the Geobacillus sp. gene encoding carboxyl esterase (EstB, ac: KJ735452) to facilitate one-step purification. This recombinant protein was successfully expressed in Escherichia coli (E. coli) under control of Lambda promoter (λ). An open reading frame (ORF) of 1500 bps encoding a polypeptide of 499 amino acid residues and a calculated molecular weight (54.7 kD) was identified as carboxyl-esterase B due to its conserved glycine-X-serine-X-glycine motif (G-X-S-X-G) and its high similarity toward other carboxyl esterases, where the 3-D tertiary structure of EstB was determined based on high homology % (94.8) to Est55. The expression was scaled up using 7-L stirred tank bioreactor, where a maximum yield of enzyme was obtained after 3.5 h with SEA 51.76 U/mg protein. The expressed protein was purified until unity using immobilized metal affinity chromatography (IMAC) charged with cobalt and then characterized. The purified enzyme was most active at pH 8.0 and remarkably stable at pH (8-10). Temperature optimum was recorded at 65 °C, and it kept 70% of its activity after 1-h exposure to 60 °C. The active half-live of enzyme was 25 min at 70 °C and a calculated T melting (Tm) at 70 °C. The determined reaction kinetics Michaelis-Menten constant (Km), maximum velocity rate (Vmax), the turnover number (Kcat), and catalytic efficiency (Kcat/Km) of the pure enzyme were found 22.756 mM, 164.47 U/ml (59.6 min-1), and (2.619 mol/ min), respectively. CONCLUSION: Creation of a recombinant 6 × -His estB derived from a thermophile Geobacillus sp. was performed successfully and then overexpressed under λ-promoter. In a bench scale bioreactor, the overexpression was grown up, followed by one-step purification and biochemical characterization. The recorded promising pH and temperature stability properties suggest that this expressed carboxyl esterase could be used in many industrial sectors.

3.
Curr Protoc ; 3(10): e901, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37882966

ABSTRACT

In this work, we describe a novel self-cleaving affinity tag technology based on a highly modified split-intein cleaving element. In this system, which has recently been commercialized by Protein Capture Science, LLC under the name iCapTagTM , the N-terminal segment of an engineered split intein is covalently immobilized onto a capture resin, while the smaller C-terminal intein segment is fused to the N-terminus of the desired target protein. The tagged target can then be expressed in an appropriate expression system, without concern for premature intein cleaving. During the purification, strong binding between the intein segments effectively captures the tagged target onto the capture resin while simultaneously generating a cleaving-competent intein complex. After unwanted impurities are washed from the resin, cleavage of the target protein is initiated by a shift of the buffer pH from 8.5 to 6.2. As a result, the highly purified tagless target protein is released from the column in the elution step. Alternately, the resin beads can be added directly to cell culture broth or lysate, allowing capture, purification and cleavage of the tagless target protein using a column-free format. These methods result in highly pure tagless target protein in a single step, and can thereby accelerate characterization and functional studies. In this work we demonstrate the single step purification of streptokinase, a fibrinolytic agent, and an engineered recombinant human hemoglobin 1.1 (rHb1.1). © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Expression of high-titer protein tagged with the Nostoc punctiforme (Npu) DnaE split-intein on the N-terminus Basic Protocol 2: Purification of high-titer protein using the Nostoc punctiforme (Npu) DnaE split-intein purification platform Alternate Protocol 1: Expression of low-titer protein tagged with the Nostoc punctiforme (Npu) DnaE split-intein on the N-terminus Alternate Protocol 2: Purification of low-titer protein using the Nostoc punctiforme (Npu) DnaE split-intein purification platform.


Subject(s)
Inteins , Nostoc , Humans , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Protein Splicing , Nostoc/genetics , Nostoc/chemistry
4.
Biosci Biotechnol Biochem ; 87(9): 1029-1035, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37328425

ABSTRACT

Triple-FLAG (3 × FLAG)-tagged proteins can be affinity purified through binding to an anti-FLAG antibody and competitive elution with excess free 3 × FLAG peptide. To expand the availability of the 3 × FLAG purification system, we produced a recombinant His-tagged 3 × FLAG peptide in Brevibacillus choshinensis. The screening of connecting linkers between His-tag and the 3 × FLAG peptide, culture containers, and culture media showed that the His-tagged 3 × FLAG peptide with an LA linker was most expressed in 2SY medium using a baffled shake flask. The peptide was affinity-purified to give a yield of about 25 mg/L of culture. The peptide was effective for eluting 3 × FLAG-tagged α-amylase from anti-FLAG magnetic beads. Finally, the peptide remaining in the amylase fraction was removed by His-tag affinity purification. These results show that the recombinant His-tagged 3 × FLAG peptide can function as an easy-to-remove affinity peptide in the 3 × FLAG purification system.


Subject(s)
Brevibacillus , Recombinant Proteins/metabolism , Brevibacillus/genetics , Brevibacillus/metabolism , Chromatography, Affinity/methods , Peptides/genetics , Peptides/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
5.
Front Bioeng Biotechnol ; 11: 1134152, 2023.
Article in English | MEDLINE | ID: mdl-36873348

ABSTRACT

Nicotinamide riboside kinase (NRK) plays an important role in the synthesis of ß -nicotinamide nucleotide (NMN). NMN is a key intermediate of NAD+ synthesis, and it actually contribute to the well-being of our health. In this study, gene mining technology was used to clone nicotinamide nucleoside kinase gene fragments from S. cerevisiae, and the ScNRK1 was achieved a high level of soluble expression in E. coli BL21. Then, the reScNRK1 was immobilized by metal affinity label to optimize the enzyme performance. The results showed that the enzyme activity in the fermentation broth was 14.75 IU/mL, and the specific enzyme activity after purification was 2252.59 IU/mg. After immobilization, the optimum temperature of the immobilized enzyme was increased by 10°C compared with the free enzyme, and the temperature stability was improved with little change in pH. Moreover, the activity of the immobilized enzyme remained above 80% after four cycles of immobilized reScNRK1, which makes the enzyme more advantageous in the enzymatic synthesis of NMN.

6.
Biotechnol Lett ; 45(1): 115-124, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36450976

ABSTRACT

OBJECTIVE: To examine the influence of widely used protein affinity tags and the tobacco PR1a signal peptide (SP) on detection, purification and bioactivity analyses of the small oomycete apoplastic effector SCR96 in planta. RESULTS: Through agroinfiltration, the phytotoxic effector SCR96 of Phytophthora cactorum was expressed in Nicotiana benthamiana leaf apoplast as a fusion protein carrying single affinity tag (His, HA or FLAG) at either C- or N-terminus. Leaf necrosis caused by different affinity-tagged SCR96 varied among tags and replicates. All of tagged proteins can be detected by antibodies against SCR96. All of SCR96 fusions except N-terminally fused 6His-tagged protein were detected using tag antibodies, indicating that 6His tag may be degraded when fused at N-terminus. Interestingly, C-terminal His- and FLAG-tagged SCR96 maintained the biological activity after purification. In the substitution assay of SCR96 SP, we observed that PR1a SP can lead chimeric SCR96 expression in N. benthamiana, but the replacement totally disrupted its bioactivity. CONCLUSION: C-terminal His or FLAG tag, along with its original SP, is efficient enough to enable detection and purification of functional SCR96 from N. benthamiana leaf apoplast, which would facilitate plant-pathogen interaction studies.


Subject(s)
Nicotiana , Phytophthora , Nicotiana/genetics , Nicotiana/metabolism , Protein Sorting Signals/genetics , Proteins/metabolism , Phytophthora/genetics , Phytophthora/metabolism , Antibodies/metabolism , Chromatography, Affinity
7.
Biosens Bioelectron ; 220: 114806, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36327904

ABSTRACT

Polycatecholamines (pCAs)-based molecularly imprinted polymers (MIPs) represent the new performing generation of biocompatible ligand/receptor mimetics. In this context, dealing with MIPs synthesis for bio-macromolecules detection/extraction, one of the critical steps in ensuring effective binding affinity for the parent molecule is the selection of suitable epitopes for pCAs imprinting. To address this challenge, here we investigated the ability of lysine (K) residues to trigger the epitope imprinting process into a polynorepinephrine (PNE) matrix. To this aim, we first designed a set of model epitopes composed of three K and six alanine (A) residues to investigate the influence of each 'KA' combination on the imprinting process and the resulting binding performance by Surface Plasmon Resonance (SPR). Only the case of three flanking K residues in N-terminus arose as an excellent trigger for epitope imprinting. The efficacy of the 3K-tag strategy was then evaluated on two peptide templates belonging to soluble programmed cell death protein 1 ligand (PD-L1), which is of great interest as a cancer biomarker in liquid biopsies. These templates were selected due to their negligible natural ability to be imprinted into the PNE matrix and were modified with 3K-tags, in N-, C-, and N/C- positions, respectively. The SPR sensor developed by exploiting the N-3K tag strategy allowed us to achieve excellent sensitivity (0.31 ± 0.04 ng mL-1) and repeatability (avCV% = 4.5) in human serum samples. This strategy opens new insights both for epitopes' design for pCAs-based mimetics and as triggering tags when native epitopes display negligible imprinting capabilities.


Subject(s)
Biosensing Techniques , Catecholamines , Molecular Imprinting , Humans , B7-H1 Antigen , Epitopes/chemistry , Ligands , Molecular Imprinting/methods , Catecholamines/chemistry
8.
Metallomics ; 14(12)2022 12 08.
Article in English | MEDLINE | ID: mdl-36537552

ABSTRACT

X-ray fluorescence microscopy (XFM) has become a widely used technique for imaging the concentration and distribution of metal ions in cells and tissues. Recent advances in synchrotron sources, optics, and detectors have improved the spatial resolution of the technique to <10 nm with attogram detection sensitivity. However, to make XFM most beneficial for bioimaging-especially at the nanoscale-the metal ion distribution must be visualized within the subcellular context of the cell. Over the years, a number of approaches have been taken to develop X-ray-sensitive tags that permit the visualization of specific organelles or proteins using XFM. In this review, we examine the types of X-ray fluorophore used, including nanomaterials and metal ions, and the approaches used to incorporate the metal into their target binding site via antibodies, genetically encoded metal-binding peptides, affinity labeling, or cell-specific peptides. We evaluate their advantages and disadvantages, review the scientific findings, and discuss the needs for future development.


Subject(s)
Metals , Proteins , X-Rays , Metals/metabolism , Ions/metabolism , Microscopy, Fluorescence/methods
9.
Methods Mol Biol ; 2541: 143-154, 2022.
Article in English | MEDLINE | ID: mdl-36083553

ABSTRACT

DNA-encoded library (DEL) technology utilizes affinity-based selection methods to screen chemical libraries. DEL technology possesses some unique features compared to other small molecule screening technologies, such as the use of DNA identification tags and use of target protein immobilization in the standard library screening process. Therefore, it is of great importance to ensure the target protein is properly designed for DEL selections, that the protein is of high quality, and that ligand binding sites are accessible under DEL selection conditions. Here we describe general considerations for target protein design and expression and experiments that are conducted before initiating selections to assess protein quality and validate methods that will be used for the DEL selection.


Subject(s)
DNA , Small Molecule Libraries , DNA/chemistry , Gene Library , Ligands , Small Molecule Libraries/chemistry
10.
Rep Biochem Mol Biol ; 11(2): 252-261, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36164634

ABSTRACT

Background: In the field of recombinant protein production, downstream processing, especially protein purification, is critical and often the most expensive step. Carbohydrate binding module 64 (CBM64) was shown in 2011 to bind efficiently to a broad range of cellulose materials. Methods: In this study, we developed a protein purification method using nanocrystalline cellulose embedded in a polyacrylamide monolith cryogel and CBM64 affinity tag linked by intein to PD1 as a model protein. The CBM64-Intein-PD1 gene cassette was expressed in E. coli. Following cell lysis, CBM64-Intein-PD1 protein bound to the monolith PA-NCC cryogel. After washing and reducing the pH from 8.0 to 6.5, the intein underwent self-cleavage, resulting in the release and elution of pure PD1 protein. Results: The synthesized monolith column had a porous structure with an average pore size of 30 µm and a maximum binding capacity of 497 µg per gram of dried column. The yield of this purification method was 84%, while the yield of the His tag-acquired CBM64-Intein-PD1 method was 89%. Discussion: We used cellulose as support for affinity chromatography, which can be used as a cost-effective method for protein purification.

11.
N Biotechnol ; 71: 37-46, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35926774

ABSTRACT

Fusion protein technologies improve the expression and purification of recombinant proteins, but the removal of the tags involved requires specific proteases. The circularly permuted caspase-2 (cpCasp2) with its specific cleavage site, efficiently generates the untagged protein. While cleavage with cpCasp2 is possible before all 20 proteinogenic amino acids, cleavage before valine, leucine, isoleucine, aspartate and glutamate suffers from slow, and before proline extremely slow, turnover. To make the platform fusion protein process even more general such that any protein with an authentic N-terminus can be produced with high efficiency, the bacterial selection system PROFICS (PRotease Optimization via Fusion-Inhibited Carbamoyltransferase-based Selection) was used to evolve cpCasp2 into a variant with a catalytic turnover two orders of magnitude higher and the ability to cleave before any amino acid. The high specificity and the stability of the original circularly permuted protease was fully retained in this mutant, while the high manufacturability was mostly retained, albeit with decreased soluble titer. Four point-mutations are responsible for this change in activity, two of which are located in or near the binding pocket of the active site. This variant was named CASPON enzyme and is a major component of the CASPase-based fusiON (CASPON) platform technology. Applicability for the production of recombinant proteins was demonstrated by enzymatic removal of the CASPON tag from five model proteins. The CASPON tag enables high soluble expressions, affinity purification and good accessibility for cleavage. The five industry-relevant proteins of interest were FGF2, TNF, GH, GCSF and PTH.


Subject(s)
Amino Acids , Caspase 2 , Chromatography, Affinity , Recombinant Fusion Proteins/metabolism , Recombinant Proteins
12.
Protein Expr Purif ; 183: 105856, 2021 07.
Article in English | MEDLINE | ID: mdl-33640460

ABSTRACT

Spindle assembly abnormal protein 6 (SAS-6), a highly conserved centriolar protein, constitutes the center of the cartwheel assembly that scaffolds centrioles early in their biogenesis. Abnormalities in cartwheel assembly lead to chromosomal dysfunctions. The molecular structure of human SAS-6 (HsSAS-6) and cartwheel hub and how they direct centriole symmetry is unknown. No crystal structure of wildtype HsSAS-6 has been reported to date, since soluble recombinant partial/full-length HsSAS-6 expression and purification posed grand challenges. In the present study we have explored optimization of ten different N terminal SAS-6 fusion proteins expression in a variety of E. coli hosts. During optimization we have included some of the most commonly used purification tags: Histidine tag, maltose-binding protein (MBP), small ubiquitin-related modifier (SUMO) tag and modified MBP tag with surface entropy reduction mutations. We demonstrate several levels of tag assisted solubility and stable expression strategies. We find that the MBP tag accompanied by Surface Entropy Reduction mutations (MBP/SER) in a fixed arm approach rescues the folded SAS-6N protein with significantly improved solubility. This expression of HsSAS-6N in E. coli Rosetta DE3 pLysS expression strain gave rise to high protein expression yielding around 6.0-11.5 mg of soluble protein per liter of growth culture.


Subject(s)
Cell Cycle Proteins , Escherichia coli , Gene Expression , Cell Cycle Proteins/biosynthesis , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Cell Cycle Proteins/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Solubility
13.
J Immunol Methods ; 492: 113001, 2021 05.
Article in English | MEDLINE | ID: mdl-33621564

ABSTRACT

Complement C1q is a multifunctional protein able to sense pathogens and immune molecules such as immunoglobulins and pentraxins, and to trigger the classical complement pathway through activation of its two associated proteases, C1r and C1s. C1q is a multimeric protein composed of three homologous yet distinct polypeptide chains A, B, and C, each composed of an N-terminal collagen-like sequence and a C-terminal globular gC1q module, that assemble into six heterotrimeric (A-B-C) subunits. This hexameric structure exhibits the characteristic shape of a bouquet of flowers, comprising six collagen-like triple helices, each terminating in a trimeric C-terminal globular head. We have produced previously functional recombinant full-length C1q in stably transfected HEK 293-F cells, with a FLAG tag inserted at the C-terminal end of C1qC chain. We report here the generation of additional recombinant C1q proteins, with a FLAG tag fused to the C-terminus of C1qA or C1qB chains, or to the N-terminus of the C1qC chain. Two other variants harboring a Myc or a 6-His tag at the C-terminal end of C1qC were also produced. We show that all C1q variants, except for the His-tagged protein, can be produced at comparable yields and are able to bind with similar affinities to either IgM, a ligand of the globular regions, or to the C1r2-C1s2 tetramer, and to trigger IgM-mediated serum complement activation. These new recombinant C1q variants provide additional tools to investigate the multiple functions of C1q.


Subject(s)
Complement C1q/isolation & purification , Molecular Probes/genetics , Amino Acid Sequence , Complement Activation , Complement C1q/genetics , Complement C1q/metabolism , HEK293 Cells , Humans , Immunoassay/methods , Protein Multimerization , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Transfection
14.
Methods Mol Biol ; 2178: 311-328, 2021.
Article in English | MEDLINE | ID: mdl-33128758

ABSTRACT

Heparin, a polysulfated polyanionic member of the glycosaminoglycan family, is known to specifically bind to a number of functionally important proteins. Based on the available information on structural specificity of heparin-protein interactions, a novel heparin-binding peptide (HB) affinity tag has been designed to achieve simple and cost-effective purification of target recombinant proteins. The HB-fused recombinant target proteins are purified on a heparin-Sepharose column using a stepwise/continuous sodium chloride gradient. A major advantage of the HB tag is that the HB-fused target proteins can be purified under denaturing conditions in the presence of 8 M urea. In addition, polyclonal antibody directed against the HB tag can be used to specifically detect and quantitate the HB-fused recombinant protein(s). Herein, a step-by-step protocol(s) for the purification of different soluble recombinant target proteins is described. In addition, useful tips to troubleshoot potential problems and also suggestions to successfully adopt the HB-tag-based purification to a wide range of target proteins are provided.


Subject(s)
Chromatography, Affinity , Recombinant Fusion Proteins , Sepharose/analogs & derivatives , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Sepharose/chemistry
15.
Methods Mol Biol ; 2178: 329-344, 2021.
Article in English | MEDLINE | ID: mdl-33128759

ABSTRACT

The bacterium Escherichia coli is still considered the first option as a microbial cell factory for recombinant protein production, and affinity chromatography is by far the preferred technique for initial purification after protein expression and cell lysis. In this chapter, we describe the methodology to express and purify recombinant proteins in E. coli tagged with the first two metal-binding proteins proposed as fusion partners. They are the small metal-binding protein SmbP and a mutant of the copper resistance protein CusF3H+. There are several advantages of using them as protein tags: they prevent the formation of inclusion bodies by increasing solubility of the target proteins, they enable purification by immobilized metal-affinity chromatography using Ni(II) ions with high purity, and because of their low molecular weights, excellent final yields are obtained for the target proteins after cleavage and removal of the protein tag. Here we also describe the protocol for the production of proteins in the periplasm of E. coli tagged with two SmbP variants that include the PelB or the TorA signal sequences for transport via the Sec or the Tat pathway, respectively. Based on these methods, we consider CusF3H+ and SmbP excellent alternatives as fusion proteins for the production of recombinant proteins in E. coli.


Subject(s)
Chromatography, Affinity , Copper Transport Proteins , Escherichia coli Proteins , Escherichia coli/chemistry , Nickel/chemistry , Periplasm/chemistry , Copper Transport Proteins/chemistry , Copper Transport Proteins/genetics , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Periplasm/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification
16.
Biotechnol J ; 16(4): e2000366, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33245633

ABSTRACT

BACKGROUND: Magnetic nanoparticles (MNPs) are becoming more important as carriers, because of their large specific surface area and easy separability. They are increasingly used in enzyme technology, diagnostics, and drug delivery. MAJOR RESULTS: For the directed and almost irreversible immobilization of proteins on MNPs, we have developed a new selective (His-Arg)4 peptide-tag, that binds fusion proteins directly from an E. coli cell lysate to non-functionalized, low-cost MNPs. Using the immobilization of an ene-reductase as an example, we could demonstrate that the fusion with this tag increases thermostability without reducing overall activity (ER w/o tag: t1/2  = 3.7 h, (HR)4 -ER: t1/2  = 9.9 h). Immobilization by adsorption in Tris buffer resulted in very high enzyme loads with approx. 380 mg g-1 and 67% residual activity. The immobilization on the MNPs allowed a fast concentration, buffer exchange, and reuse. While about 50% of the activity was lost after the first reuse, we were able to show that the activity did not decrease further and was stable for another nine cycles. CONCLUSION: According to our studies, our tag highly works for any kind of immobilization on MNPs and holds the potential for enzyme immobilizations as well as for drug delivery and sensors.


Subject(s)
Magnetite Nanoparticles , Enzymes, Immobilized , Escherichia coli/genetics , Magnetics , Oxidoreductases
17.
Biomolecules ; 10(12)2020 11 24.
Article in English | MEDLINE | ID: mdl-33255244

ABSTRACT

Caspase-2 is the most specific protease of all caspases and therefore highly suitable as tag removal enzyme creating an authentic N-terminus of overexpressed tagged proteins of interest. The wild type human caspase-2 is a dimer of heterodimers generated by autocatalytic processing which is required for its enzymatic activity. We designed a circularly permuted caspase-2 (cpCasp2) to overcome the drawback of complex recombinant expression, purification and activation, cpCasp2 was constitutively active and expressed as a single chain protein. A 22 amino acid solubility tag and an optimized fermentation strategy realized with a model-based control algorithm further improved expression in Escherichia coli and 5.3 g/L of cpCasp2 in soluble form were obtained. The generated protease cleaved peptide and protein substrates, regardless of N-terminal amino acid with high activity and specificity. Edman degradation confirmed the correct N-terminal amino acid after tag removal, using Ubiquitin-conjugating enzyme E2 L3 as model substrate. Moreover, the generated enzyme is highly stable at -20 °C for one year and can undergo 25 freeze/thaw cycles without loss of enzyme activity. The generated cpCasp2 possesses all biophysical and biochemical properties required for efficient and economic tag removal and is ready for a platform fusion protein process.


Subject(s)
Caspase 2/biosynthesis , Cysteine Endopeptidases/biosynthesis , Escherichia coli/chemistry , Recombinant Fusion Proteins/biosynthesis , Caspase 2/isolation & purification , Caspase 2/metabolism , Cloning, Molecular , Cysteine Endopeptidases/isolation & purification , Cysteine Endopeptidases/metabolism , Escherichia coli/metabolism , Humans , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism
18.
Plasmid ; 112: 102540, 2020 11.
Article in English | MEDLINE | ID: mdl-32991924

ABSTRACT

The Escherichia coli/Corynebacterium glutamicum shuttle vector pEKEx2 is an IPTG-inducible expression vector that has been used successfully for the synthesis of numerous proteins in C. glutamicum. We discovered that the leaky gene expression observed for pEKEx2-derived plasmids relates to reduced functionality of the plasmid-encoded repressor LacI carrying a modified C-terminus, while duplicate DNA sequences in the pEKEx2 backbone contribute to plasmid instability. We constructed the pEKEx2-derivatives pPBEx2 and pPREx2, which harbor a restored lacI gene and which lack the unnecessary duplicate DNA sequences. pPREx2 in addition enables fusion of target genes to a C-terminal Strep-tag II coding region for easy protein detection and purification. In the absence of inducer, the novel vectors exhibit tight gene repression in C. glutamicum, as shown for the secretory production of Fusarium solani pisi cutinase and the cytosolic production of green fluorescent protein and C. glutamicum myo-inositol dehydrogenase. Undesired heterogeneity amongst clones expressing cutinase from pEKEx2 was attributed to the loss of a vector fragment containing the cutinase gene, which likely occurred via homologous recombination of the identical flanking DNA sequences. Such loss was not observed for pPBEx2. Using pPREx2, IolG-Strep was successfully produced and purified to homogeneity by Strep-Tactin affinity chromatography, obtaining 1.5 mg IolG with a specific activity of 27 µmol·min-1·(mg protein)-1 from 100 mL culture. The tight gene repression in the absence of inducer and the improved plasmid stability make expression vectors pPBEx2/pPREx2 attractive alternatives to the available molecular tools for genetic manipulation and high-level production of recombinant proteins in C. glutamicum.


Subject(s)
Corynebacterium glutamicum/genetics , Gene Expression Regulation, Bacterial , Genetic Vectors/genetics , Plasmids/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Chromatography, Affinity , Corynebacterium glutamicum/metabolism , Homologous Recombination , Recombinant Proteins/isolation & purification
19.
Nano Lett ; 20(10): 7287-7295, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32955895

ABSTRACT

Fusion protein tags are widely used to capture and track proteins in research and industrial bioreactor processes. Quantifying fusion-tagged proteins normally requires several purification steps coupled with classical protein assays. Here, we developed a broadly applicable nanosensor platform that quantifies glutathione-S-transferase (GST) fusion proteins in real-time. We synthesized a glutathione-DNA-carbon nanotube system to investigate glutathione-GST interactions via semiconducting single-walled carbon nanotube (SWCNT) photoluminescence. We found that SWCNT fluorescence wavelength and intensity modulation occurred specifically in response to GST and GST-fusions. The sensor response was dependent on SWCNT structure, wherein mod(n - m, 3) = 1 nanotube wavelength and intensity responses correlated with nanotube diameter distinctly from mod(n - m, 3) = 2 SWCNT responses. We also found broad functionality of this sensor to diverse GST-tagged proteins. This work comprises the first label-free optical sensor for GST and has implications for the assessment of protein expression in situ, including in imaging and industrial bioreactor settings.


Subject(s)
Glutathione Transferase , Glutathione , Chromatography, Affinity , Glutathione Transferase/genetics , Proteins
20.
Curr Protein Pept Sci ; 21(8): 821-830, 2020.
Article in English | MEDLINE | ID: mdl-32504500

ABSTRACT

The affinity tags are unique proteins/peptides that are attached at the N- or C-terminus of the recombinant proteins. These tags help in protein purification. Additionally, some affinity tags also serve a dual purpose as solubility enhancers for challenging protein targets. By applying a combinatorial approach, carefully chosen affinity tags designed in tandem have proven to be very successful in the purification of single proteins or multi-protein complexes. In this mini-review, the key features of the most commonly used affinity tags are discussed. The affinity tags have been classified into two significant categories, epitope tags, and protein/domain tags. The epitope tags are generally small peptides with high affinity towards a chromatography resin. The protein/domain tags often perform double duty as solubility enhancers as well as aid in affinity purification. Finally, protease-based affinity tag removal strategies after purification are discussed.


Subject(s)
Chromatography, Affinity/methods , Escherichia coli/genetics , Histidine/genetics , Oligopeptides/genetics , Recombinant Fusion Proteins/chemistry , Staining and Labeling/methods , Epitopes/chemistry , Epitopes/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Histidine/metabolism , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Oligopeptides/metabolism , Peptide Hydrolases/chemistry , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Protein Domains , Proteolysis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , Solubility , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL