Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.131
Filter
1.
Elife ; 122024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028038

ABSTRACT

Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic signaling mechanisms of protein kinase domains have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (elongation factor Tu receptor) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (brassinosteroid insensitive 1-associated kinase 1/somatic embryogenesis receptor kinase 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Protein Serine-Threonine Kinases , Signal Transduction , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/chemistry , Allosteric Regulation , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Phosphorylation , Plant Immunity , Protein Kinases/metabolism , Protein Kinases/genetics , Protein Kinases/chemistry
2.
J Inorg Biochem ; 259: 112656, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38986290

ABSTRACT

The transcription factor CooA is a CRP/FNR (cAMP receptor protein/ fumarate and nitrate reductase) superfamily protein that uses heme to sense carbon monoxide (CO). Allosteric activation of CooA in response to CO binding is currently described as a series of discrete structural changes, without much consideration for the potential role of protein dynamics in the process of DNA binding. This work uses site-directed spin-label electron paramagnetic resonance spectroscopy (SDSL-EPR) to probe slow timescale (µs-ms) conformational dynamics of CooA with a redox-stable nitroxide spin label, and IR spectroscopy to probe the environment at the CO-bound heme. A series of cysteine substitution variants were created to selectively label CooA in key functional regions, the heme-binding domain, the 4/5-loop, the hinge region, and the DNA binding domain. The EPR spectra of labeled CooA variants are compared across three functional states: Fe(III) "locked off", Fe(II)-CO "on", and Fe(II)-CO bound to DNA. We observe changes in the multicomponent EPR spectra at each location; most notably in the hinge region and DNA binding domain, broadening the description of the CooA allosteric mechanism to include the role of protein dynamics in DNA binding. DNA-dependent changes in IR vibrational frequency and band broadening further suggest that there is conformational heterogeneity in the active WT protein and that DNA binding alters the environment of the heme-bound CO.

3.
Cell Syst ; 15(7): 628-638.e8, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38981486

ABSTRACT

In uncertain environments, phenotypic diversity can be advantageous for survival. However, as the environmental uncertainty decreases, the relative advantage of having diverse phenotypes decreases. Here, we show how populations of E. coli integrate multiple chemical signals to adjust sensory diversity in response to changes in the prevalence of each ligand in the environment. Measuring kinase activity in single cells, we quantified the sensitivity distribution to various chemoattractants in different mixtures of background stimuli. We found that when ligands bind uncompetitively, the population tunes sensory diversity to each signal independently, decreasing diversity when the signal's ambient concentration increases. However, among competitive ligands, the population can only decrease sensory diversity one ligand at a time. Mathematical modeling suggests that sensory diversity tuning benefits E. coli populations by modulating how many cells are committed to tracking each signal proportionally as their prevalence changes.


Subject(s)
Chemotaxis , Escherichia coli , Signal Transduction , Escherichia coli/metabolism , Escherichia coli/physiology , Chemotaxis/physiology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Chemotactic Factors/metabolism
4.
Proteins ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012208

ABSTRACT

The ATP-dependent phosphorylation activity of cyclin-dependent kinase 1 (CDK1), an essential enzyme for cell cycle progression, is regulated by interactions with Cyclin-B, substrate, and Cks proteins. We have recently shown that active site acetylation in CDK1 abrogated binding to Cyclin-B which posits an intriguing long-range communication between the catalytic site and the protein-protein interaction (PPI) interface. Now, we demonstrate a general allosteric link between the CDK1 active site and all three of its PPI interfaces through atomistic molecular dynamics (MD) simulations. Specifically, we examined ATP binding free energies to CDK1 in native nonacetylated (K33wt) and acetylated (K33Ac) forms as well as the acetyl-mimic K33Q and the acetyl-null K33R mutant forms, which are accessible in vitro. In agreement with experiments, ATP binding is stronger in K33wt relative to the other three perturbed states. Free energy decomposition reveals, in addition to expected local changes, significant and selective nonlocal entropic responses to ATP binding/perturbation of K33 from the αC $$ \alpha C $$ -helix, activation loop (A-loop), and αG $$ \alpha G $$ - α $$ \alpha $$ H segments in CDK1 which interface with Cyclin-B, substrate, and Cks proteins, respectively. Statistical analysis reveals that while entropic responses of protein segments to active site perturbations are on average correlated with their dynamical changes, such correlations are lost in about 9%-48% of the dataset depending on the segment. Besides proving the bi-directional communication between the active site and the CDK1:Cyclin-B interface, our study uncovers a hitherto unknown mode of ATP binding regulation by multiple PPI interfaces in CDK1.

5.
Protein Sci ; 33(8): e5114, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38989557

ABSTRACT

Sodium-calcium exchanger (NCX) proteins are ubiquitously expressed and play a pivotal role in cellular calcium homeostasis by mediating uphill calcium efflux across the cell membrane. Intracellular calcium allosterically regulates the exchange activity by binding to two cytoplasmic calcium-binding domains, CBD1 and CBD2. However, the calcium-binding affinities of these domains are seemingly inadequate to sense physiological calcium oscillations. Previously, magnesium binding to either domain was shown to tune their affinity for calcium, bringing it into the physiological range. However, while the magnesium-binding site of CBD2 was identified, the identity of the CBD1 magnesium site remains elusive. Here, using molecular dynamics in combination with differential scanning fluorimetry and mutational analysis, we pinpoint the magnesium-binding site in CBD1. Specifically, among four calcium-binding sites (Ca1-Ca4) in this domain, only Ca1 can accommodate magnesium with an affinity similar to its free intracellular concentration. Moreover, our results provide mechanistic insights into the modulation of the regulatory calcium affinity by magnesium, which allows an adequate NCX activity level throughout varying physiological needs.


Subject(s)
Calcium , Magnesium , Sodium-Calcium Exchanger , Sodium-Calcium Exchanger/chemistry , Sodium-Calcium Exchanger/metabolism , Sodium-Calcium Exchanger/genetics , Magnesium/metabolism , Calcium/metabolism , Binding Sites , Humans , Allosteric Regulation , Molecular Dynamics Simulation , Protein Binding , Protein Domains
6.
Molecules ; 29(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893328

ABSTRACT

Taste sensors with an allostery approach have been studied to detect non-charged bitter substances, such as xanthine derivatives, used in foods (e.g., caffeine) or pharmaceuticals (e.g., etofylline). In this study, the authors modified a taste sensor with 3-bromo-2,6-dihydroxybenzoic acid and used it in conjunction with sensory tests to assess the bitterness of non-charged pharmaceuticals with xanthine scaffolds (i.e., acefylline and doxofylline), as well as allopurinol, an analogue of hypoxanthine. The results show that the sensor was able to differentiate between different levels of sample bitterness. For instance, when assessing a 30 mM sample solution, the sensor response to acefylline was 34.24 mV, which corresponded to the highest level of bitterness (τ = 3.50), while the response to allopurinol was lowest at 2.72 mV, corresponding to relatively weaker bitterness (τ = 0.50). Additionally, this study extended the application of the sensor to detect pentoxifylline, an active pharmaceutical ingredient in pediatric medicines. These results underscore the taste sensor's value as an additional tool for early-stage assessment and prediction of bitterness in non-charged pharmaceuticals.


Subject(s)
Allopurinol , Taste , Xanthine , Allopurinol/chemistry , Humans , Xanthine/chemistry , Biosensing Techniques/methods
7.
Adv Sci (Weinh) ; : e2402531, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864341

ABSTRACT

Allostery is a fundamental way to regulate the function of biomolecules playing crucial roles in cell metabolism and proliferation and is deemed the second secret of life. Given the limited understanding of the structure of natural allosteric molecules, the development of artificial allosteric molecules brings a huge opportunity to transform the allosteric mechanism into practical applications. In this study, the concept of bionics is introduced into the design of artificial allosteric molecules and an allosteric DNA switch with an activity site and an allosteric site based on two aptamers for selective inhibition of thrombin activity. Compared with the single aptamer, the allosteric switch possesses a significantly enhanced inhibition ability, which can be precisely regulated by converting the switch states. Moreover, the dynamic allosteric switch is further subjected to the control of the DNA threshold circuit for realizing automatic concentration determination and activity inhibition of thrombin. These compelling results confirm that this allosteric switch equipped with self-sensing and information-processing modules puts a new slant on the research of allosteric mechanisms and further application of allosteric tactics in chemical and biomedical fields.

8.
Structure ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38861991

ABSTRACT

Due to their low binding affinities, detecting small-molecule fragments bound to protein structures from crystallographic datasets has been a challenge. Here, we report a trove of 65 new fragment hits for PTP1B, an "undruggable" therapeutic target enzyme for diabetes and cancer. These structures were obtained from computational analysis of data from a large crystallographic screen, demonstrating the power of this approach to elucidate many (∼50% more) "hidden" ligand-bound states of proteins. Our new structures include a fragment hit found in a novel binding site in PTP1B with a unique location relative to the active site, one that links adjacent allosteric sites, and, perhaps most strikingly, a fragment that induces long-range allosteric protein conformational responses. Altogether, our research highlights the utility of computational analysis of crystallographic data, makes publicly available dozens of new ligand-bound structures of a high-value drug target, and identifies novel aspects of ligandability and allostery in PTP1B.

9.
Elife ; 132024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900561

ABSTRACT

A study of two enzymes in the brain reveals new insights into how redox reactions regulate the activity of protein kinases.


Subject(s)
Oxidation-Reduction , Brain/metabolism , Brain/physiology , Humans , Animals , Protein Kinases/metabolism
10.
Int J Biol Macromol ; 273(Pt 1): 132868, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838881

ABSTRACT

Low molecular weight heparin and synthetic mimetics such as fondaparinux show different binding kinetics, protease specificity, and clinical effects. A combination of allosteric and template-mediated bridging mechanisms have been proposed to explain the differences in rate acceleration and specificity. The difficulty in working with heterogeneous heparin species has rendered a crystallographic interpretation of the differences in antithrombin activation between mimetics and natural heparin inaccessible. In this study, we examine the allosteric changes in antithrombin caused by binding fondaparinux, enoxaparin and depolymerized natural heparins using millisecond hydrogen deuterium exchange mass spectrometry (TRESI-HDX MS) and relate these conformational changes to complex stability in the gas phase using collision induced unfolding (CIU). This exploration reveals that in addition to the dynamic changes caused by fondaparinux, long chain heparins reduce structural flexibility proximal to Arg393, the cleavable residue in the reactive centre loop of the protein. These local changes in protein dynamics are associated with an increase in overall complex stability that increases with heparin chain length. Ultimately, these results shed light on the molecular mechanisms underlying differences in activity and specificity between heparin mimetics and natural heparins.


Subject(s)
Antithrombins , Fondaparinux , Heparin , Fondaparinux/chemistry , Heparin/chemistry , Antithrombins/chemistry , Antithrombins/pharmacology , Protein Unfolding/drug effects , Deuterium Exchange Measurement , Humans , Kinetics , Protein Binding , Polysaccharides/chemistry , Polysaccharides/pharmacology , Models, Molecular
11.
Elife ; 122024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836839

ABSTRACT

New experimental findings continue to challenge our understanding of protein allostery. Recent deep mutational scanning study showed that allosteric hotspots in the tetracycline repressor (TetR) and its homologous transcriptional factors are broadly distributed rather than spanning well-defined structural pathways as often assumed. Moreover, hotspot mutation-induced allostery loss was rescued by distributed additional mutations in a degenerate fashion. Here, we develop a two-domain thermodynamic model for TetR, which readily rationalizes these intriguing observations. The model accurately captures the in vivo activities of various mutants with changes in physically transparent parameters, allowing the data-based quantification of mutational effects using statistical inference. Our analysis reveals the intrinsic connection of intra- and inter-domain properties for allosteric regulation and illustrate epistatic interactions that are consistent with structural features of the protein. The insights gained from this study into the nature of two-domain allostery are expected to have broader implications for other multi-domain allosteric proteins.


Subject(s)
Mutation , Repressor Proteins , Thermodynamics , Allosteric Regulation , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Repressor Proteins/genetics , Protein Domains , Models, Molecular
12.
J Struct Biol X ; 9: 100101, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38883399

ABSTRACT

Physical properties of biological membranes directly or indirectly govern biological processes. Yet, the interplay between membrane and integral membrane proteins is difficult to assess due to reciprocal effects between membrane proteins, individual lipids, and membrane architecture. Using solid-state NMR (SSNMR) we previously showed that KirBac1.1, a bacterial Inward-Rectifier K+ channel, nucleates bilayer ordering and microdomain formation through tethering anionic lipids. Conversely, these lipids cooperatively bind cationic residues to activate the channel and initiate K+ flux. The mechanistic details governing the relationship between cooperative lipid loading and bilayer ordering are, however, unknown. To investigate, we generated KirBac1.1 samples with different concentrations of 13C-lableded phosphatidyl glycerol (PG) lipids and acquired a full suite of SSNMR 1D temperature series experiments using the ordered all-trans (AT) and disordered trans-gauche (TG) acyl conformations as markers of bilayer dynamics. We observed increased AT ordered signal, decreased TG disordered signal, and increased bilayer melting temperature with increased PG concentration. Further, we identified cooperativity between ordering and direct binding of PG lipids, indicating KirBac1.1-driven bilayer ordering and microdomain formation is a classically cooperative Hill-type process driven by and predicated upon direct binding of PG lipids. Our results provide unique mechanistic insight into how proteins and lipids in tandem contribute to supramolecular bilayer heterogeneity in the lipid membrane.

13.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798368

ABSTRACT

The 91 kDa oligomeric ring-shaped ligand binding protein TRAP (trp RNA binding attenuation protein) regulates the expression of a series of genes involved in tryptophan (Trp) biosynthesis in bacilli. When cellular Trp levels rise, the free amino acid binds to sites buried in the interfaces between each of the 11 (or 12, depending on the species) protomers in the ring. Crystal structures of Trp-bound TRAP show the Trp ligands are sequestered from solvent by a pair of loops from adjacent protomers that bury the bound ligand via polar contacts to several threonine residues. Binding of the Trp ligands occurs cooperatively, such that successive binding events occur with higher apparent affinity but the structural basis for this cooperativity is poorly understood. We used solution methyl-TROSY NMR relaxation experiments focused on threonine and isoleucine sidechains, as well as magic angle spinning solid-state NMR 13C-13C and 15N-13C chemical shift correlation spectra on uniformly labeled samples recorded at 800 and 1200 MHz, to characterize the structure and dynamics of the protein. Methyl 13C relaxation dispersion experiments on ligand-free apo TRAP revealed concerted exchange dynamics on the µs-ms time scale, consistent with transient sampling of conformations that could allow ligand binding. Cross-correlated relaxation experiments revealed widespread disorder on fast timescales. Chemical shifts for methyl-bearing side chains in apo- and Trp-bound TRAP revealed subtle changes in the distribution of sampled sidechain rotameric states. These observations reveal a pathway and mechanism for induced conformational changes to generate homotropic Trp-Trp binding cooperativity.

14.
Protein Sci ; 33(6): e5024, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38801229

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) is a validated therapeutic target for obesity, diabetes, and certain types of cancer. In particular, allosteric inhibitors hold potential for therapeutic use, but an incomplete understanding of conformational dynamics and allostery in this protein has hindered their development. Here, we interrogate solution dynamics and allosteric responses in PTP1B using high-resolution hydrogen-deuterium exchange mass spectrometry (HDX-MS), an emerging and powerful biophysical technique. Using HDX-MS, we obtain a detailed map of backbone amide exchange that serves as a proxy for the solution dynamics of apo PTP1B, revealing several flexible loops interspersed among more constrained and rigid regions within the protein structure, as well as local regions that exchange faster than expected from their secondary structure and solvent accessibility. We demonstrate that our HDX rate data obtained in solution adds value to estimates of conformational heterogeneity derived from a pseudo-ensemble constructed from ~200 crystal structures of PTP1B. Furthermore, we report HDX-MS maps for PTP1B with active-site versus allosteric small-molecule inhibitors. These maps suggest distinct and widespread effects on protein dynamics relative to the apo form, including changes in locations distal (>35 Å) from the respective ligand binding sites. These results illuminate that allosteric inhibitors of PTP1B can induce unexpected changes in dynamics that extend beyond the previously understood allosteric network. Together, our data suggest a model of BB3 allostery in PTP1B that combines conformational restriction of active-site residues with compensatory liberation of distal residues that aid in entropic balancing. Overall, our work showcases the potential of HDX-MS for elucidating aspects of protein conformational dynamics and allosteric effects of small-molecule ligands and highlights the potential of integrating HDX-MS alongside other complementary methods, such as room-temperature X-ray crystallography, NMR spectroscopy, and molecular dynamics simulations, to guide the development of new therapeutics.


Subject(s)
Hydrogen Deuterium Exchange-Mass Spectrometry , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Allosteric Regulation , Humans , Molecular Dynamics Simulation , Protein Conformation , Models, Molecular , Catalytic Domain
15.
Elife ; 122024 May 07.
Article in English | MEDLINE | ID: mdl-38713502

ABSTRACT

We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.


Subject(s)
Angiotensin-Converting Enzyme 2 , Evolution, Molecular , Polymorphism, Genetic , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites/genetics , Protein Binding , COVID-19/virology , COVID-19/genetics , Mutation , Molecular Dynamics Simulation
16.
Br J Pharmacol ; 181(14): 2091-2094, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38798136

ABSTRACT

LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.


Subject(s)
Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/metabolism , Humans , Animals
17.
FEBS Open Bio ; 14(7): 1040-1056, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38783588

ABSTRACT

Allostery is an important property of biological macromolecules which regulates diverse biological functions such as catalysis, signal transduction, transport, and molecular recognition. However, the concept was expressed using two different definitions by J. Monod and, over time, more have been added by different authors, making it fuzzy. Here, we reviewed the different meanings of allostery in the current literature and found that it has been used to indicate that the function of a protein is regulated by heterotropic ligands, and/or that the binding of ligands and substrates presents homotropic positive or negative cooperativity, whatever the hypothesized or demonstrated reaction mechanism might be. Thus, proteins defined to be allosteric include not only those that obey the two-state concerted model, but also those that obey different reaction mechanisms such as ligand-induced fit, possibly coupled to sequential structure changes, and ligand-linked dissociation-association. Since each reaction mechanism requires its own mathematical description and is defined by it, there are many possible 'allosteries'. This lack of clarity is made even fuzzier by the fact that the reaction mechanism is often assigned imprecisely and/or implicitly in the absence of the necessary experimental evidence. In this review, we examine a list of proteins that have been defined to be allosteric and attempt to assign a reaction mechanism to as many as possible.


Subject(s)
Proteins , Allosteric Regulation , Ligands , Proteins/metabolism , Proteins/chemistry , Humans , Protein Binding , Models, Molecular
18.
Methods Mol Biol ; 2797: 177-193, 2024.
Article in English | MEDLINE | ID: mdl-38570460

ABSTRACT

RAS is regulated by specific guanine nucleotide exchange factors, such as Son of Sevenless (SOS), that activates RAS by facilitating the exchange of inactive, GDP-bound RAS with GTP. The catalytic activity of SOS is known to be allosterically modulated by an active, GTP-bound RAS. However, it remains poorly understood how oncogenic RAS mutants interact with SOS and modulate its activity. In this chapter, we describe the application of native mass spectrometry (MS) to monitor the assembly of the catalytic domain of SOS (SOScat) with RAS and cancer-associated mutants. Results from this approach have led to the discovery of different molecular assemblies and distinct conformers of SOScat engaging KRAS. It was also found that KRASG13D exhibits high affinity for SOScat and is a potent allosteric modulator of its SOScat activity. KRASG13D-GTP can allosterically increase the nucleotide exchange rate of KRAS at the active site by more than twofold compared to the wild-type protein. Furthermore, small-molecule RAS•SOS disruptors fail to dissociate KRASG13D•SOScat complexes, underscoring the need for more potent disruptors targeting oncogenic RAS mutants. Taken together, native MS will be instrumental in better understanding the interaction between oncogenic RAS mutants and SOS, which is of crucial importance for development of improved therapeutics.


Subject(s)
Nucleotides , Proto-Oncogene Proteins p21(ras) , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Catalytic Domain , Nucleotides/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanosine Triphosphate/metabolism
19.
Biomol NMR Assign ; 18(1): 85-91, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642265

ABSTRACT

Ricin is a potent plant toxin that targets the eukaryotic ribosome by depurinating an adenine from the sarcin-ricin loop (SRL), a highly conserved stem-loop of the rRNA. As a category-B agent for bioterrorism it is a prime target for therapeutic intervention with antibodies and enzyme blocking inhibitors since no effective therapy exists for ricin. Ricin toxin A subunit (RTA) depurinates the SRL by binding to the P-stalk proteins at a remote site. Stimulation of the N-glycosidase activity of RTA by the P-stalk proteins has been studied extensively by biochemical methods and by X-ray crystallography. The current understanding of RTA's depurination mechanism relies exclusively on X-ray structures of the enzyme in the free state and complexed with transition state analogues. To date we have sparse evidence of conformational dynamics and allosteric regulation of RTA activity that can be exploited in the rational design of inhibitors. Thus, our primary goal here is to apply solution NMR techniques to probe the residue specific structural and dynamic coupling active in RTA as a prerequisite to understand the functional implications of an allosteric network. In this report we present de novo sequence specific amide and sidechain methyl chemical shift assignments of the 267 residue RTA in the free state and in complex with an 11-residue peptide (P11) representing the identical C-terminal sequence of the ribosomal P-stalk proteins. These assignments will facilitate future studies detailing the propagation of binding induced conformational changes in RTA complexed with inhibitors, antibodies, and biologically relevant targets.


Subject(s)
Nitrogen Isotopes , Nuclear Magnetic Resonance, Biomolecular , Ricin , Ricin/chemistry , Protein Subunits/chemistry , Amino Acid Sequence
20.
Eur J Pharm Sci ; 197: 106768, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38643940

ABSTRACT

The negative coordination of growth hormone secretagogue receptor (GHS-R) and growth hormone-releasing hormone receptor (GHRH-R) involves in the repair processes of cellular injury. The allosteric U- or H-like modified GHRH dimer Grinodin and 2Y were comparatively evaluated in normal Kunming mice and hamster infertility models induced by CPA treatment. 1-3-9 µg of Grinodin or 2Y per hamster stem-cell-exhaustion model was subcutaneously administered once a week, respectively inducing 75-69-46 or 45-13-50 % of birth rates. In comparison, the similar mole of human menopausal gonadotropin (hMG) or human growth hormone (hGH) was administered once a day but caused just 25 or 20 % of birth rates. Grinodin induced more big ovarian follicles and corpora lutea than 2Y, hMG, hGH. The hMG-treated group was observed many distorted interstitial cells and more connective tissues and the hGH-treated group had few ovarian follicles. 2Y had a plasma lifetime of 21 days and higher GH release in mice, inducing lower birth rate and stronger individual specificity in reproduction as well as only promoting the proliferation of mesenchymal-stem-cells (MSCs) in the models. In comparison, Grinodin had a plasma lifetime of 30 days and much lower GH release in mice. It significantly promoted the proliferation and activation of ovarian MSCs together with the development of follicles in the models by increasing Ki67 and GHS-R expressions, and decreasing GHRH-R expression in a dose-dependent manner. However, the high GH and excessive estrogen levels in the models showed a dose-dependent reduction in fertility. Therefore, unlike 2Y, the low dose of Grinodin specifically shows low GHS-R and high GHRH-R expressions thus evades GH and estrogen release and improves functions of organs, resulting in an increase of fertility.


Subject(s)
Cell Proliferation , Mesenchymal Stem Cells , Ovary , Female , Animals , Mice , Cell Proliferation/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Ovary/drug effects , Ovary/metabolism , Growth Hormone-Releasing Hormone/metabolism , Fertility/drug effects , Receptors, Neuropeptide/metabolism , Humans , Allosteric Regulation/drug effects , Receptors, Ghrelin/metabolism , Cricetinae , Receptors, Pituitary Hormone-Regulating Hormone/metabolism , Dimerization
SELECTION OF CITATIONS
SEARCH DETAIL