Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 277
Filter
1.
BMC Oral Health ; 24(1): 1054, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252060

ABSTRACT

BACKGROUND: Tyrosine-rich amelogenin peptide (TRAP) is the main amelogenin digestion product in the developmental enamel matrix. It has been shown to promote remineralization of demineralized enamel in our previous study. However, direct evidence of the effect of TRAP on the morphology and nanostructure of crystal growth on an enamel surface has not been reported. This study aimed to examine the effect of TRAP on the morphology of calcium phosphate crystals grown on early enamel erosion using a pH-cycling model. METHODS: Eroded lesions were produced in human premolars by 30-second immersion in 37% phosphoric acid. Forty-five samples of eroded human premolar enamel blocks were selected and randomly divided into 3 groups: deionized water (DDW, negative control); 100 µg/mL TRAP, and 2 ppm sodium fluoride (NaF, positive control group). For 14 days, the specimens were exposed to a pH-cycling model. Using scanning electron microscopy (SEM) and atomic force microscopy (AFM) methods, the surface morphology, calcium-phosphorus ratio, and enamel surface roughness were examined. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were used to assess crystal characteristics. RESULTS: After pH-cycling, compared to the two control groups, the surface of the eroded enamel of the peptide TRAP group shows a large number of new, densely arranged rod-like crystals, parallel to each other, regularly arranged, forming an ordered structure, with crystal morphology similar to that of natural enamel. The crystals are mostly hydroxyapatite (HA). CONCLUSION: This study demonstrates that the peptide TRAP modulates the formation of hydroxyapatite in eroded enamel and that the newly formed crystals resemble natural enamel crystals and promote the remineralization of enamel, providing a promising biomaterial for remineralization treatment of enamel lesions.


Subject(s)
Amelogenin , Dental Enamel , Microscopy, Electron, Scanning , Tooth Erosion , Tooth Remineralization , X-Ray Diffraction , Humans , Tooth Remineralization/methods , Dental Enamel/drug effects , Tooth Erosion/pathology , Hydrogen-Ion Concentration , Amelogenin/therapeutic use , Amelogenin/pharmacology , Spectroscopy, Fourier Transform Infrared , Microscopy, Atomic Force , Calcium Phosphates/pharmacology , Surface Properties , Bicuspid , Crystallization
2.
Sci Rep ; 14(1): 21818, 2024 09 23.
Article in English | MEDLINE | ID: mdl-39313501

ABSTRACT

Uncertainties regarding traditional osteological methods in biological sex estimation can often be overcome with genomic and proteomic analyses. The combination of the three methodologies has been used for a better understanding of the gender-related funerary rituals at the Iberian megalithic cemetery of Panoría. As a result, 44 individuals have been sexed including, for the first time, non-adults. Contrary to the male bias found in many Iberian and European megalithic monuments, the Panoría population shows a clear sex ratio imbalance in favour of females, with twice as many females as males. Furthermore, this imbalance is found regardless of the criterion considered: sex ratio by tomb, chronological period, method of sex estimation, or age group. Biological relatedness was considered as possible sociocultural explanations for this female-related bias. However, the current results obtained for Panoría are indicative of a female-centred social structure potentially influencing rites and cultural traditions.


Subject(s)
Archaeology , Proteomics , Female , Humans , Proteomics/methods , Male , Sexism , DNA, Ancient/analysis , Spain , History, Ancient
3.
Sci Rep ; 14(1): 18195, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39107380

ABSTRACT

Identification of the sex of modern, fossil and archaeological animal remains offers many insights into their demography, mortality profiles and domestication pathways. However, due to many-factors, sex determination of osteological remains is often problematic. To overcome this, we have developed an innovative protocol to determine an animal's sex from tooth enamel, by applying label-free quantification (LFQ) of two unique AmelY peptides 'LRYPYP' (AmelY;[M+2] 2 + 404.7212 m/z) and 'LRYPYPSY' (AmelY;[M+2] 2 + 529.7689 m/z) that are only present in the enamel of males. We applied this method to eight modern cattle (Bos taurus) of known sex, and correctly assigned them to sex. We then applied the same protocol to twelve archaeological Bos teeth from the Neolithic site of Beisamoun, Israel (8-th-7-th millennium BC) and determined the sex of the archaeological samples. Since teeth are usually better preserved than bones, this innovative protocol has potential to facilitate sex determination in ancient and modern bovine remains that currently cannot be sexed.


Subject(s)
Archaeology , Dental Enamel , Sex Determination Analysis , Cattle , Animals , Dental Enamel/chemistry , Male , Female , Sex Determination Analysis/methods , Archaeology/methods , Fossils , Tooth/anatomy & histology , Tooth/chemistry , Israel
4.
Biochem Biophys Res Commun ; 734: 150462, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39083979

ABSTRACT

The first barrier of the human body is the skin, and more serious harm may occur when skin wound healing is delayed. One of the components of enamel matrix proteins is amelogenin, which inhibits inflammation and promotes periodontal tissue regeneration. However, its role in skin wound healing and angiogenesis is inconclusive. Thus, this study aimed to assess the therapeutic effect of recombinant human amelogenin (rhAM) on mouse skin wounds and to determine its effect on angiogenesis and its underlying mechanism. rhAM was expressed in Escherichia coli and purified using the optimized acetic acid method. A skin injury mouse model was established to explore the effects of rhAM on skin wound healing. After treatment with rhAM for 7 days, the wound healing rate was calculated, and the therapeutic effect of rhAM on skin wounds was assessed using hematoxylin & eosin (HE), Masson, and CD31 immunofluorescence staining. The expression of growth and inflammatory factors in wound tissues were detected using Western Blot. In addition, the rhAM effects on the proliferation and migration of human umbilical vein endothelial cells (HUVEC) and mouse fibroblasts (NIH 3T3) were studied in vitro using the Cell Counting Kit-8, cell scratch, cytoskeleton staining, and qPCR. The rhAM effect on HUVEC angiogenesis and its potential mechanism was studied using tube formation and Western Blot. The results showed that the purity of the obtained rhAM was more than 90 % using the optimized acetic acid method, and high-dose rhAM treatment could improve wound healing rate in mice. Additionally, more blood vessels and collagen were produced in the skin wound, and the expression of angiopoietin-related protein 2 (ANGPTL2) and transforming growth factor (TGF)-ß1 was upregulated; however, that of interleukin-6 was down-regulated. We also found that rhAM promoted the proliferation and migration of HUVEC and NIH 3T3, the mRNA levels of vascular endothelial growth factor (VEGF), fibroblast growth factor, TGF-ß1 and ANGPTL2 in HUVEC cells were upregulated, and expression of VEGF and phosphorylation of the p38 mitogen-activated protein kinase were activated. Therefore, rhAM could promote skin wound healing by upregulating angiogenesis and inhibiting inflammation.

5.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892321

ABSTRACT

AMELX mutations cause X-linked amelogenesis imperfecta (AI), known as AI types IE, IIB, and IIC in Witkop's classification, characterized by hypoplastic (reduced thickness) and/or hypomaturation (reduced hardness) enamel defects. In this study, we conducted whole exome analyses to unravel the disease-causing mutations for six AI families. Splicing assays, immunoblotting, and quantitative RT-PCR were conducted to investigate the molecular and cellular effects of the mutations. Four AMELX pathogenic variants (NM_182680.1:c.2T>C; c.29T>C; c.77del; c.145-1G>A) and a whole gene deletion (NG_012494.2:g.307534_403773del) were identified. The affected individuals exhibited enamel malformations, ranging from thin, poorly mineralized enamel with a "snow-capped" appearance to severe hypoplastic defects with minimal enamel. The c.145-1G>A mutation caused a -1 frameshift (NP_001133.1:p.Val35Cysfs*5). Overexpression of c.2T>C and c.29T>C AMELX demonstrated that mutant amelogenin proteins failed to be secreted, causing elevated endoplasmic reticulum stress and potential cell apoptosis. This study reveals a genotype-phenotype relationship for AMELX-associated AI: While amorphic mutations, including large deletions and 5' truncations, of AMELX cause hypoplastic-hypomaturation enamel with snow-capped teeth (AI types IIB and IIC) due to a complete loss of gene function, neomorphic variants, including signal peptide defects and 3' truncations, lead to severe hypoplastic/aplastic enamel (AI type IE) probably caused by "toxic" cellular effects of the mutant proteins.


Subject(s)
Amelogenesis Imperfecta , Amelogenin , Genetic Association Studies , Mutation , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Humans , Amelogenin/genetics , Male , Female , Pedigree , Phenotype , Child , Endoplasmic Reticulum Stress/genetics , Genotype , Exome Sequencing
6.
Matrix Biol ; 131: 17-29, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759902

ABSTRACT

Amelogenin (AMELX), the predominant matrix protein in enamel formation, contains a singular phosphorylation site at Serine 16 (S16) that greatly enhances AMELX's capacity to stabilize amorphous calcium phosphate (ACP) and inhibit its transformation to apatitic enamel crystals. To explore the potential role of AMELX phosphorylation in vivo, we developed a knock-in (KI) mouse model in which AMELX phosphorylation is prevented by substituting S16 with Ala (A). As anticipated, AMELXS16A KI mice displayed a severe phenotype characterized by weak hypoplastic enamel, absence of enamel rods, extensive ectopic calcifications, a greater rate of ACP transformation to apatitic crystals, and progressive cell pathology in enamel-forming cells (ameloblasts). In the present investigation, our focus was on understanding the mechanisms of action of phosphorylated AMELX in amelogenesis. We have hypothesized that the absence of AMELX phosphorylation would result in a loss of controlled mineralization during the secretory stage of amelogenesis, leading to an enhanced rate of enamel mineralization that causes enamel acidification due to excessive proton release. To test these hypotheses, we employed microcomputed tomography (µCT), colorimetric pH assessment, and Fourier Transform Infrared (FTIR) microspectroscopy of apical portions of mandibular incisors from 8-week old wildtype (WT) and KI mice. As hypothesized, µCT analyses demonstrated significantly higher rates of enamel mineral densification in KI mice during the secretory stage compared to the WT. Despite a greater rate of enamel densification, maximal KI enamel thickness increased at a significantly lower rate than that of the WT during the secretory stage of amelogenesis, reaching a thickness in mid-maturation that is approximately half that of the WT. pH assessments revealed a lower pH in secretory enamel in KI compared to WT mice, as hypothesized. FTIR findings further demonstrated that KI enamel is comprised of significantly greater amounts of acid phosphate compared to the WT, consistent with our pH assessments. Furthermore, FTIR microspectroscopy indicated a significantly higher mineral-to-organic ratio in KI enamel, as supported by µCT findings. Collectively, our current findings demonstrate that phosphorylated AMELX plays crucial mechanistic roles in regulating the rate of enamel mineral formation, and in maintaining physico-chemical homeostasis and the enamel growth pattern during early stages of amelogenesis.


Subject(s)
Ameloblasts , Amelogenesis , Amelogenin , Dental Enamel , X-Ray Microtomography , Animals , Amelogenin/metabolism , Amelogenin/genetics , Phosphorylation , Dental Enamel/metabolism , Dental Enamel/growth & development , Mice , Amelogenesis/genetics , Ameloblasts/metabolism , Gene Knock-In Techniques , Calcium Phosphates/metabolism , Hydrogen-Ion Concentration
7.
J Periodontal Res ; 59(3): 589-598, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38481308

ABSTRACT

OBJECTIVES: In order to evaluate the effect of methacrylated hyaluronic acid (HAMA) hydrogels containing the recombinant human amelogenin (rhAm) in vitro and in vivo. BACKGROUND: The ultimate goal in treating periodontal disease is to control inflammation and achieve regeneration of periodontal tissues. In recent years, methacrylated hyaluronic acid (HAMA) containing recombinant human amyloid protein (rhAm) has been widely used as a new type of biomaterial in tissue engineering and regenerative medicine. However, there is a lack of comprehensive research on the periodontal regeneration effects of this hydrogel. This experiment aims to explore the application of photoresponsive recombinant human amelogenin-loaded hyaluronic acid hydrogel for periodontal tissue regeneration and provide valuable insights into its potential use in this field. MATERIALS AND METHODS: The effects of rhAm-HAMA hydrogel on the proliferation of human periodontal ligament cells (hPDLCs) were assessed using the CCK-8 kit. The osteogenic differentiation of hPDLCs was evaluated through ALP staining and real-time PCR. Calvarial parietal defects were created in 4-week-old Sprague Dawley rats and implanted with deproteinized bovine bone matrix in different treatment groups. The animals were euthanized after 4 and 8 weeks of healing. The bone volume of the defect was observed by micro-CT and histological analysis. RESULTS: Stimulating hPDLCs with rhAm-HAMA hydrogel did not significantly affect their proliferation (p > .05). ALP staining and real-time PCR results demonstrated that the rhAm-HAMA group exhibited a significant upregulation of osteoclastic gene expression (p < .05). Micro-CT results revealed a significant increase in mineralized tissue volume fraction (MTV/TV%), trabecular bone number (Tb.N), and mineralized tissue density (MTD) of the bone defect area in the rhAm-HAMA group compared to the other groups (p < .05). The results of hematoxylin and eosin staining and Masson staining at 8 weeks post-surgery further supported the results of the micro-CT. CONCLUSIONS: The results of this study indicate that rhAm-HAMA hydrogel could effectively promote the osteogenic differentiation of hPDLCs and stabilize bone substitutes in the defects that enhance the bone regeneration in vivo.


Subject(s)
Amelogenin , Bone Regeneration , Cell Differentiation , Cell Proliferation , Hyaluronic Acid , Hydrogels , Periodontal Ligament , Rats, Sprague-Dawley , Hyaluronic Acid/pharmacology , Animals , Bone Regeneration/drug effects , Amelogenin/pharmacology , Amelogenin/therapeutic use , Humans , Periodontal Ligament/drug effects , Rats , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Osteogenesis/drug effects , Male , X-Ray Microtomography , Cells, Cultured , Methacrylates , Biocompatible Materials/pharmacology
8.
Cureus ; 16(2): e54560, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38516479

ABSTRACT

The purpose of the study was to compare and histologically investigate pulpal response and dentin bridge formation after direct pulp capping using recombinant amelogenin and mineral trioxide aggregate (MTA). Recombinant amelogenin protein and MTA were used as pulp capping materials in 120 teeth from eight mongrel dogs. Dogs were sacrificed at two different evaluation times. Regenerative changes were evaluated histologically. At two weeks, in contrast to the MTA group, most of the amelogenin group showed moderately formed hard tissue formation and the pulp tissue was completely filling the entire pulp chamber. These results were statistically significant. At two months, all the samples of the amelogenin group showed complete dentin bridge formation and the pulp chamber was filled entirely with tissue-mimicking the authentic pulp in all the specimens of the amelogenin group. These results were statistically significant. In conclusion, direct pulp capping by recombinant amelogenin protein resulted in significantly better regeneration of the dentin-pulp complex than MTA.

9.
Int Dent J ; 74(2): 187-194, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37743135

ABSTRACT

BACKGROUND: The aim of this research was to compare the efficacy of the remineralising potential of self-assembling peptides (SAPs): Curodont Repair (P11-4), P26, and leucine-rich amelogenin peptides (LRAP) with the standard 5% NaF varnish (Duraphat) on early enamel caries lesions (EECLs). METHODS: A demineralising solution (DS) was used to create artificial EECLs in human dental enamel specimens, which were randomly allocated to treatment groups: P11-4; P26 solution; LRAP solution; 5% NaF varnish; and deionised water (DIW). Each specimen was subjected to 8 days of pH cycling. Specimens from each test group were subjected to microcomputed tomography (micro-CT) and nanomechanical testing to assess mineral density (MD), hardness (H), and elastic modulus (EM) properties of sound, demineralised, and treated enamel. RESULTS: The mean MD percentage gain was highest in the P26 and P11-4 groups, followed by the LRAP, 5% NaF varnish, and DIW groups. There were statistically significant differences amongst groups. In the outer layer of EECLs, the EM and H were highest in P26 and P11-4 groups, followed by the LRAP and 5% NaF varnish. In the inner layer of EECLs, the EM and H were highest in P11-4 and P26 groups, indicative of enhanced penetration and remineralisation of the deeper parts of the artificial EECLs. CONCLUSIONS: P26 and P11-4 SAPs are more effective than 5% NaF varnish in remineralising the depth of EECLs.


Subject(s)
Dental Caries , Dental Enamel , Humans , X-Ray Microtomography , Dental Enamel/pathology , Tooth Remineralization/methods , Fluorides, Topical/therapeutic use , Sodium Fluoride/pharmacology , Sodium Fluoride/therapeutic use , Dental Caries/therapy , Dental Caries/pathology , Peptides
10.
J Dent Res ; 103(1): 51-61, 2024 01.
Article in English | MEDLINE | ID: mdl-37950483

ABSTRACT

Dental enamel formation is coordinated by ameloblast differentiation, production of enamel matrix proteins, and crystal growth. The factors regulating ameloblast differentiation are not fully understood. Here we show that the high mobility group N (HMGN) nucleosomal binding proteins modulate the rate of ameloblast differentiation and enamel formation. We found that HMGN1 and HMGN2 proteins are downregulated during mouse ameloblast differentiation. Genetically altered mice lacking HMGN1 and HMGN2 proteins show faster ameloblast differentiation and a higher rate of enamel deposition in mice molars and incisors. In vitro differentiation of induced pluripotent stem cells to dental epithelium cells showed that HMGN proteins modulate the expression and chromatin accessibility of ameloblast-specific genes and affect the binding of transcription factors epiprofin and PITX2 to ameloblast-specific genes. Our results suggest that HMGN proteins regulate ameloblast differentiation and enamel mineralization by modulating lineage-specific chromatin accessibility and transcription factor binding to ameloblast regulatory sites.


Subject(s)
Dental Enamel Proteins , HMGN1 Protein , HMGN2 Protein , Animals , Mice , Ameloblasts/metabolism , HMGN2 Protein/genetics , HMGN2 Protein/metabolism , HMGN1 Protein/genetics , HMGN1 Protein/metabolism , Epigenesis, Genetic , Cell Differentiation/genetics , HMGN Proteins/genetics , HMGN Proteins/metabolism , Transcription Factors/metabolism , Dental Enamel Proteins/genetics , Dental Enamel Proteins/metabolism , Chromatin/metabolism , Amelogenin/metabolism
11.
Dent Mater ; 40(2): 160-172, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37951748

ABSTRACT

OBJECTIVE: This study aims to synthesize novel chitosan nanoparticles loaded with an amelogenin-derived peptide QP5 (TMC-QP5/NPs), investigate their remineralization capability and inhibitory effects on endogenous matrix metalloproteinases (MMPs), and evaluate the dentin bonding properties of remineralized dentin regulated by TMC-QP5/NPs. METHODS: TMC-QP5/NPs were prepared by ionic crosslinking method and characterized by dynamic light scattering method, scanning electron microscopy, transmission electron microscope, atomic force microscope, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The encapsulation and loading efficiency of TMC-QP5/NPs and the release of QP5 were examined. To evaluate the remineralization capability of TMC-QP5/NPs, the mechanical properties, and the changes in structure and composition of differently conditioned dentin were characterized. The MMPs inhibitory effects of TMC-QP5/NPs were explored by MMP Activity Assay and in-situ zymography. The dentin bonding performance was detected by interfacial microleakage and microshear bond strength (µSBS). RESULTS: TMC-QP5/NPs were successfully synthesized, with uniform size, good stability and biosafety. The encapsulation and loading efficiency of TMC-QP5/NPs was respectively 69.63 ± 2.22% and 13.21 ± 0.73%, with a sustained release of QP5. TMC-QP5/NPs could induce mineral deposits on demineralized collagen fibers and partial occlusion of dentin tubules, and recover the surface microhardness of dentin, showing better remineralization effects than QP5. Besides, TMC-QP5/NPs significantly inhibited the endogenous MMPs activity. The remineralized dentin induced by TMC-QP5/NPs exhibited less interfacial microleakage and higher µSBS, greatly improved dentin bonding. SIGNIFICANCE: This novel peptide-loaded chitosan nanoparticles improved resin-dentin bonding by promoting dentin remineralization and inactivating MMPs, suggesting a promising strategy for optimizing dentin adhesive restorations.


Subject(s)
Chitosan , Nanoparticles , Chitosan/pharmacology , Biomimetics , Nanoparticles/chemistry , Peptides/pharmacology , Dentin/chemistry , Matrix Metalloproteinases
12.
J Dent Res ; 103(1): 81-90, 2024 01.
Article in English | MEDLINE | ID: mdl-37990471

ABSTRACT

Histone methylation assumes a crucial role in the intricate process of enamel development. Our study has illuminated the substantial prevalence of H3K4me3 distribution, spanning from the cap stage to the late bell stage of dental germs. In order to delve into the role of H3K4me3 modification in amelogenesis and unravel the underlying mechanisms, we performed a conditional knockout of Ash2l, a core subunit essential for the establishment of H3K4me3 within the dental epithelium of mice. The absence of Ash2l resulted in reduced H3K4me3 modification, subsequently leading to abnormal morphology of dental germ at the late bell stage. Notably, knockout of Ash2l resulted in a loss of polarity in ameloblasts and odontoblasts. The proliferation and apoptosis of the inner enamel epithelium cells underwent dysregulation. Moreover, there was a notable reduction in the expression of matrix-related genes, Amelx and Dspp, accompanied with impaired enamel and dentin formation. Cut&Tag-seq (cleavage under targets and tagmentation sequencing) analysis substantiated a reduction of H3K4me3 modification on Shh, Trp63, Sp6, and others in the dental epithelium of Ash2l knockout mice. Validation through real-time polymerase chain reaction, immunohistochemistry, and immunofluorescence consistently affirmed the observed downregulation of Shh and Sp6 in the dental epithelium following Ash2l knockout. Intriguingly, the expression of Trp63 isomers, DNp63 and TAp63, was perturbed in Ash2l defect dental epithelium. Furthermore, the downstream target of TAp63, P21, exhibited aberrant expression within the cervical loop of mandibular first molars and incisors. Collectively, our findings suggest that ASH2L orchestrates the regulation of crucial amelogenesis-associated genes, such as Shh, Trp63, and others, by modulating H3K4me3 modification. Loss of ASH2L and H3K4me3 can lead to aberrant differentiation, proliferation, and apoptosis of the dental epithelium by affecting the expression of Shh, Trp63, and others genes, thereby contributing to the defects of amelogenesis.


Subject(s)
Amelogenesis , Dental Enamel Proteins , Animals , Mice , Ameloblasts/metabolism , Amelogenesis/genetics , Dental Enamel/metabolism , Dental Enamel Proteins/genetics , Dental Enamel Proteins/metabolism , Methylation , Mice, Knockout
13.
J Forensic Sci ; 69(2): 618-630, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38108622

ABSTRACT

"Touch DNA" is a form of trace DNA that is presumed to be deposited when an individual touches something and leaves behind DNA-containing skin cells, sweat, or other fluids. While touch DNA is often the result of direct contact (i.e., primary transfer), it can also be indirectly transferred between surfaces or individuals (e.g., secondary or tertiary transfer). Even experts cannot distinguish between different types of transfer and do not fully understand which variables affect direct versus indirect transfer or how often each type of transfer occurs. In this study, we utilize an innovative protocol that combines a paired male and female transfer DNA experimental design with an Amelogenin qPCR assay to generate data on primary, secondary, and tertiary DNA transfer. We report frequencies of indirect DNA transfer and also investigate the potential effects of participant age, self-identified ethnicity, and skin conditions on DNA transfer. Out of 22 experimental trials, we detected primary transfer (male + female) in 71% of trials, secondary DNA transfer in 50% of trials, and tertiary DNA transfer in 27% of trials. No significant associations were found between primary DNA transfer and age, self-identified ancestry, or skin conditions, however, all individuals with sloughing skin conditions demonstrated primary DNA transfer and we suggest this variable be explored in larger samples. These results contribute to a better understanding of the conditions under which secondary and tertiary DNA transfer occurs and can be used to propose realistic DNA transfer scenarios in court cases.


Subject(s)
DNA Fingerprinting , Research Design , Humans , Male , Female , Skin/chemistry , Touch , DNA/analysis
14.
Genes (Basel) ; 14(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38002929

ABSTRACT

The study of gender markers is essential in forensic genetic analysis. Mutations in the X or Y homologs of the amelogenin gene can be misleading, resulting in serious mistakes in forensic genetic analysis. We recently discovered two male cases of the X homolog of the amelogenin (AMELX) allelic dropout while analyzing short tandem repeat genotypes obtained from crime scene evidence. Subsequently, we evaluated the molecular characteristics of AMELX allelic dropout in this study. We used two previously reported amelogenin primers to verify a half level of amelogenin gene amplification intensity in the two male cases, which we confirmed was caused by AMELX allelic dropout. We then characterized the point mutation using Sanger sequencing and designed mutation-specific primers that could overcome AMELX allelic dropout. Short tandem repeat genotyping analysis confirmed that the AMELX allelic dropout was recovered by the mutation-specific primer designed specifically for this case. The sequencing of the AMELX allele revealed a single-point variant from A→G at base position 7 downstream from the 3' end in the amelogenin forward primer-binding region. This point mutation was identically found in two different male cases, resulting in AMELX allelic dropout. To our knowledge, these mutations and the X homolog amplification failure of amelogenin have not been reported in the Korean population. Our study provides a reliable approach to AMELX allelic dropout due to rare case mutations and could enable the better interpretation of gender markers for forensic samples.


Subject(s)
Amelogenin , Point Mutation , Humans , Male , Alleles , Amelogenin/genetics , Asian People
15.
Forensic Sci Int Synerg ; 7: 100440, 2023.
Article in English | MEDLINE | ID: mdl-37840559

ABSTRACT

The Amelogenin sex test included in forensic DNA typing kits has the potential to identify congenital conditions such as differences/disorders of sex development (DSD). It can also reveal mismatches between genotypic sex and gender marker in identity documents of transgender persons who obtained legal gender recognition. In a 13-year case history of paternity/kinship tests, involving n = 962 females and n = 1001 males, two mismatches between Amelogenin sex test (male) and gender marker (female), and three cases of chromosomal DSD (Klinefelter syndrome) were observed. The concrete risk of observing Amelogenin anomalies, their potential causes, and the context in which they occur (forensic, i.e. non-medical) mean that laboratory operators are called to strike a complex balance between privacy interests and individual health rights when providing preliminary information and reporting Amelogenin incidental findings. This case history argues for the need of a more responsible approach towards the Amelogenin sex test in the forensic community.

16.
Int J Biol Macromol ; 253(Pt 7): 127322, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37848117

ABSTRACT

Amelogenin and its derived peptides have exhibited excellent efficacy in promoting enamel biomimetic remineralization. However, little is known about their specific action mechanisms. Herein, by combining experiments and computer simulation, the mechanism of an amelogenin-derived peptide QP5 in regulating enamel biomimetic remineralization is unveiled for the first time. In experiments, peptide QP5 was separated into (QPX)5 and C-tail domains, the interactions of peptide-minerals in nucleation solution and the regulation of peptide on enamel biomimetic remineralization were explored. QP5 exhibited an unordered conformation when mineral ions existed, and it could adsorb on minerals through its two domains, thereby inhibiting spontaneous nucleation. The remineralized enamel regulated by C-tail showed better mechanical properties and formed more biomimetic crystals than that of (QPX)5, indicating the C-tail domain of QP5 played an important role in forming enamel-like crystals. The simulation results showed that the conformation of QP5 changed greatly, mainly exhibiting ß-bend, ß-turn, and coil structures, and it eventually adsorbed on enamel through negatively charged residues of the C-tail domain, then captured Ca2+ from solution to promote enamel remineralization. This study improved the evaluation methods of the mechanism of biomimetic peptides, and laid a theoretical basis for the amelioration and clinical transformation of peptide QP5.


Subject(s)
Biomimetics , Minerals , Amelogenin/pharmacology , Computer Simulation , Peptides/pharmacology
17.
Clin Oral Investig ; 27(9): 5041-5048, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37421492

ABSTRACT

OBJECTIVES: To histologically evaluate the effects of a novel human recombinant amelogenin (rAmelX) on periodontal wound healing / regeneration in recession-type defects. MATERIALS AND METHODS: A total of 17 gingival recession-type defects were surgically created in the maxilla of three minipigs. The defects were randomly treated with a coronally advanced flap (CAF) and either rAmelX (test), or a CAF and placebo (control). At three months following reconstructive surgery, the animals were euthanized, and the healing outcomes histologically evaluated. RESULTS: The test group yielded statistically significantly (p = 0.047) greater formation of cementum with inserting collagen fibers compared with the control group (i.e., 4.38 mm ± 0.36 mm vs. 3.48 mm ± 1.13 mm). Bone formation measured 2.15 mm ± 0.8 mm in the test group and 2.24 mm ± 1.23 mm in the control group, respectively, without a statistically significant difference (p = 0.94). CONCLUSIONS: The present data have provided for the first-time evidence for the potential of rAmelX to promote regeneration of periodontal ligament and root cementum in recession-type defects, thus warranting further preclinical and clinical testing. CLINICAL RELEVANCE: The present results set the basis for the potential clinical application of rAmelX in reconstructive periodontal surgery.


Subject(s)
Gingival Recession , Humans , Animals , Swine , Amelogenin/pharmacology , Swine, Miniature , Gingival Recession/drug therapy , Gingival Recession/surgery , Wound Healing , Dental Cementum , Treatment Outcome , Tooth Root/pathology , Connective Tissue
18.
Mater Today Adv ; 182023 Jun.
Article in English | MEDLINE | ID: mdl-37324279

ABSTRACT

Organic macromolecules exert remarkable control over the nucleation and growth of inorganic crystallites during (bio)mineralization, as exemplified during enamel formation where the protein amelogenin regulates the formation of hydroxyapatite (HAP). However, it is poorly understood how fundamental processes at the organic-inorganic interface, such as protein adsorption and/or incorporation into minerals, regulates nucleation and crystal growth due to technical challenges in observing and characterizing mineral-bound organics at high-resolution. Here, atom probe tomography techniques were developed and applied to characterize amelogenin-mineralized HAP particles in vitro, revealing distinct organic-inorganic interfacial structures and processes at the nanoscale. Specifically, visualization of amelogenin across the mineralized particulate demonstrates protein can become entrapped during HAP crystal aggregation and fusion. Identification of protein signatures and structural interpretations were further supported by standards analyses, i.e., defined HAP surfaces with and without amelogenin adsorbed. These findings represent a significant advance in the characterization of interfacial structures and, more so, interpretation of fundamental organic-inorganic processes and mechanisms influencing crystal growth. Ultimately, this approach can be broadly applied to inform how potentially unique and diverse organic-inorganic interactions at different stages regulates the growth and evolution of various biominerals.

19.
Nano Lett ; 23(10): 4290-4297, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37141413

ABSTRACT

Supramolecular structures of matrix proteins in mineralizing tissues are known to direct the crystallization of inorganic materials. Here we demonstrate how such structures can be synthetically directed into predetermined patterns for which functionality is maintained. The study employs block copolymer lamellar patterns with alternating hydrophilic and hydrophobic regions to direct the assembly of amelogenin-derived peptide nanoribbons that template calcium phosphate nucleation by creating a low-energy interface. Results show that the patterned nanoribbons retain their ß-sheet structure and function and direct the formation of filamentous and plate-shaped calcium phosphate with high fidelity, where the phase, amorphous or crystalline, depends on the choice of mineral precursor and the fidelity depends on peptide sequence. The common ability of supramolecular systems to assemble on surfaces with appropriate chemistry combined with the tendency of many templates to mineralize multiple inorganic materials implies this approach defines a general platform for bottom-up-patterning of hybrid organic-inorganic materials.


Subject(s)
Biomimetics , Nanotubes, Carbon , Polymers/chemistry , Minerals , Calcium Phosphates/chemistry , Peptides/chemistry
20.
J Oral Pathol Med ; 52(7): 644-653, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37141592

ABSTRACT

BACKGROUND: This study aimed to investigate the differentiation of ameloblastic-like cells and the nature of the secreted eosinophilic materials in adenomatoid odontogenic tumors. METHODS: We studied histological and immunohistochemical characteristics of 20 cases using: cytokeratins 14 and 19, amelogenin, collagen I, laminin, vimentin, and CD34. RESULTS: Rosette cells differentiated into ameloblastic-like cells positioned face-to-face, displaying collagen I-positive material between them. Epithelial cells of the rosettes can differentiate into ameloblastic-like cells. This phenomenon probably occurs due to an induction phenomenon between these cells. The secretion of collagen I is probably a brief event. Amelogenin-positive areas were interspersed by epithelial cells in the lace-like areas, outside the rosettes and distant from the ameloblastic-like cells. CONCLUSIONS: There are at least two types of eosinophilic material in different areas within the tumor, one in the rosette and solid areas and another in lace-like areas. The secreted eosinophilic material in the rosettes and solid areas is probably a product of well-differentiated ameloblastic-like cells. It is positive for collagen I and negative for amelogenin, whereas some eosinophilic materials in the lace-like areas are positive for amelogenin. We hypothesize that the latter eosinophilic material could be a product of odontogenic cuboidal epithelial or intermediate stratum-like epithelial cells.


Subject(s)
Ameloblastoma , Dental Enamel Proteins , Odontogenic Tumors , Humans , Amelogenin , Odontogenic Tumors/pathology , Immunohistochemistry , Ameloblastoma/pathology , Epithelial Cells/pathology , Collagen , Cell Differentiation
SELECTION OF CITATIONS
SEARCH DETAIL